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Dušan Pokorný, Institute of Mathematics, Faculty of Mathematics and
Physics, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic.
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ON SECTION SETS OF NEIGHBORHOODS
OF GRAPHS OF SEMICONTINUOUS

FUNCTIONS

Abstract

We prove that for any lower semicontinuous function f : [0, 1]→ [0, 1]
with purely unrectifiable graph and for any ε > 0 there is an open set
U ⊃ graph f with every vertical section set of one-dimensional Lebesgue
measure at most ε.

1 Motivation and definitions

Two basic notions in geometric measure theory are those of purely and uni-
formly purely unrectifiable sets. A set A ⊂ R2 is purely unrectifiable if for
every Lipschitz curve γ we have H1(graph γ ∩ A) = 0 and A is uniformly
purely unrectifiable if for every K ≥ 0 and every ε > 0 there an open set U
with A ⊂ U and such that for every K-Lipschitz function g in any rotated
cartesian coordinates we have H1(graph g ∩ U) ≤ ε. Clearly, all uniformly
purely unrectifiable sets are purely unrectifiable and it is not difficult to ob-
serve that for Fσ sets these notions coincide. It is not known whether they
coincide also for Gδ sets or even Borel sets (this problem was stated by Alberti,
Csörnyei and Preiss, see [1], remark after Theorem 21.).

In this paper we deal with a similar but much weaker property. Our Gδ set
A will be a purely unrectifiable graph of a (lower) semicontinuous function and
we will look only for the existence of an open superset of its graph with small
measure of its intersections with all vertical lines. Recall that f : [0, 1]→ [0, 1]
is lower semicontinuous when for every α ∈ [0, 1] the set f−1([0, α]) is compact.
The main result is the following:
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Theorem 1.1. Let f : [0, 1]→ [0, 1] be a lower semicontinuous function with
purely unrectifiable graph. Then for any ε > 0 there in an open set U ⊃ graph f
with every vertical section set of one-dimensional Lebesgue measure at most ε.

Theorem 1.1 follows directly from Proposition 2.3. Before we proceed with
the proof it will be useful to make some remarks.

1) There exists a lower semicontinuous function f : [0, 1] → [0, 1] with
purely unrectifiable graph. To obtain such a function it is sufficient to consider
κ the usual von Koch curve (which is known to be purely unrectifiable) built
above the interval [0, 1] on the x-axis and put f(x) = min{y : (x, y) ∈ graphκ}.
Note that the result in [2] shows that the function f is not continuous.

2) There exists a lower semicontinuous function f : [0, 1]→ [0, 1] such that
every open set U ⊃ graph f contains the whole interval [0, 1] in some of its
vertical section sets.

One way to construct such a function is to find some compact set K ⊂
[0, 1]3 such that for every compact set L ⊂ [0, 1]3 there is some x ∈ [0, 1] with

L = Kx = {(y, z) ∈ [0, 1]2 : (x, y, z) ∈ K}

and put
f(x) = min({1} ∪ {y ∈ [0, 1] : (x, y, x) ∈ K}).

It is enough to prove that the graph of f intersects every compact set L ⊂
[0, 1]2. Choose such a set L and find x ∈ [0, 1] from the definition of K. Now,
we have (x, f(x)) ∈ Kx = L.

Another way is to consider any lower semicontinuous function f that is
Darboux, f(0) = 0 and is f = 1 on rational numbers in (0, 1]. (Sketch of
the proof.) Again, it is enough to prove that the graph of f intersects every
compact set L ⊂ [0, 1]2. Divide [0, 1] in two intervals of length 1

2 . In at least
one of these intervals there is an x such that f(x) is not greater than max{u :
(x, u) ∈ L} (0 is always such point). Choose the interval with this property
which is most to the right. Now, do the same procedure with four intervals
of length 1

4 , eight intervals of length 1
8 and so on. The chosen intervals form

a monotone sequence with one point z in its intersection. It is not difficult to
observe that (z, f(z)) ∈ L.

Note that in the second case it is simple to observe that f could not have
purely unrectifiable graph, since φ : y → max(f−1([0, y]) is strictly monotone
function from [0, 1] to [0, 1] whose graph (in the y-coordinate) lies on the graph
of f . We use the fact that graph of any monotone function lies on some Lip-
schitz curve and also that 1 = H1([0, 1]) = H1(Py(graph f)) ≤ H1(graph f),
where Py is orthogonal projection to the y-axis.

We will need the following notation:
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We will use B(z, r) for the open ball in R2 with center z and radius r and
I will be used for the unit interval [0, 1]. For a set A ⊂ R we will use |A| for
(one-dimensional) Lebesgue measure of A.

For t ∈ {0, 1}<ω we will denote |t| the length of t, and ≺ will be used for
classical lexicographic ordering (the same symbol will be used for lexicographic
ordering on {0, 1}ω).

For t ∈ {0, 1}<ω or t ∈ {0, 1}ω and n ∈ N denote t(n) the n-th coordinate
of t and define t|n ∈ {0, 1}n as t|n(i) = t(i) for i = 1, .., n.

For t, u ∈ {0, 1}<ω define t∗u ∈ {0, 1}|t|+|u| as t∗u(i) = t(i) for i = 1, .., |t|
and t∗u(|t|+ i) = u(i) for i = 1, .., |u|.

We will write u / t if there is n ∈ N such that u = t|n.
For t ∈ {0, 1}<ω we will use It for the dyadic interval

It = [at, bt] =
[ |t|∑
i=1

t(i)2−i, 2−|t| +

|t|∑
i=1

t(i)2−i
]
.

We will use Px or Py for the orthogonal projection to the x or y-axis.
For A ⊂ I2 and w ∈ I put Aw = {z ∈ I : (w, z) ∈ A}. For B ⊂ I denote B◦

the interior relative to I of B. We will use K(I2) for the system of all compact
subsets of I2.

2 Proof of the theorem

Throughout the whole section fix ε > 0 and a lower semicontinuous function
f : I → I with the property that there is no open, relatively in I2, set U with
graph f ⊂ U ⊂ I2 with |Uz| < ε for any z ∈ I. Put α = 1− ε.

Since f is lower semicontinuous, we can find for every z ∈ I and δ > 0
some β(z, δ) > 0 with minv∈[z−β(z,δ),w+β(z,δ)] f(v) ≥ f(z)− δ. Fix some such
β(z, δ) for every such z and δ.

For z ∈ I and J ⊆ I interval define K(s, z, J) ⊂ K(I2) as a system of all
K ∈ K(I2) with PyK ⊆ J, z ∈ PxK◦ and for all w ∈ PxK we have |Kw| ≥ s
and K ∩ graph f = ∅. Then define

s(x, J) = sup{s : K(s, z, J) 6= ∅}.

Lemma 2.1. 1. there is z ∈ I with s(z, I) ≤ α.

2. if ρ, δ > 0 and s(z, J) < |J | − δ then there is a zρ,δ ∈ I with 0 <
|z − zρ,δ| ≤ ρ, s(zρ,δ, J) < s(z, J) + δ and f(zρ,δ) ∈ J.

3. if Ji = [ai, bi], i = 1, 2 are two intervals with b1 = a2 then for J = J1∪J2
we have s(z, J1) + s(z, J2) ≤ s(z, J).
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Proof. 1. Suppose for contradiction that for every z ∈ I there is s(z, I) > α.
This means that for any z ∈ I there is a compact set Kz ∈ K(sz, z, I) with
sz > α. Since I is a compact set there is k ∈ N and z1, ..., zk such that
I ⊂ ∪ki=1PxK

◦
zi . But then U = I2 \ ∪ki=1Kzi is an open (relatively to I2)

superset of graph f with |Uw| ≤ 1 −mini szi < ε for every w ∈ I, which is a
contradiction with the definition of f.

2. Let J = [a, b]. Suppose that for some δ > 0 and ρ > 0 there is no such
zρ,δ. This means that for any w ∈ I with 0 < |w − z| ≤ ρ and f(w) ∈ J we
have s(w, J) ≥ s(z, J) + δ.

Now, since f is lower semicontinuous, the set f−1([0, a]) is compact. Which
means that the set V = [z−ρ, z+ρ]\f−1([0, a]) is open relatively in [z−ρ, z+ρ],
in particular, can be written in the form V = ∪n∈NKn for Kn compact and
Kn ⊂ Kn+1 for every n ∈ N.

Now observe that s(w, J) ≥ s(z, J) + δ for any w ∈ V. We assumed this for
w with f(w) ∈ J and for w with f(w) > b we can find κ > 0 with f(w)−κ > b
and then [w − β(w, κ), w + β(w, κ)]× J ∈ K(s(z, J) + δ, w, J).

As in the previous case find kn ∈ N, sn1 , ..., snkn ≥ s(z, J)+3δ/4, zn1 , ..., z
n
kn
∈

Kn and Kzni
∈ K(sni , z

n
i , J) with Kn ⊂ ∪kni=1PxK

◦
zni

for every n ∈ N. Put

L̃n =

kn⋃
i=1

Kzni
, K̃n = Kn \

n−1⋃
i=1

K◦i and Ln = {(u1, u2) ∈ L̃n : u1 ∈ K̃n}

and define

K =
⋃
n∈N

Ln \ ((I × [a, a+ δ/4)) ∪B((z, f(z)), δ/8)).

It is easy to verify that K ∈ K(s(z, J) + δ/4, z, J) which contradicts the defi-
nition of s(z, J).

3. For every sufficiently small δ > 0 find Ki
δ ∈ K(s(z, Ji)−δ, z, Ji), i = 1, 2.

Put Kδ = (K1
δ ∪K2

δ )∩ ((PxK
1
δ ∩ PxK2

δ )× I). Then Kδ ∈ K(s(z, J)− 2δ, z, J)
and it is sufficient to let δ → 0.

Lemma 2.2. For every t ∈ {0, 1}<ω there is a point zt ∈ I such that:

1. if s(zt, It) < |It| then f(zt) ∈ It.

2.
∑
|t|=n s(zt, It) ≤ α+ ε

∑n
k=1 2−(k+1)

3. if |t| = |t′| then t ≺ t′ if and only if zt < zt′ .

4. |zt|(|t|−1) − zt| ≤ 1/5 min|t′′|=|t′|=|t|−1,t′′ 6=t′ |zt′ − zt′′ |.
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5. if t′ / t then zt ∈ (zt′ − β(zt′ , 2
−|t|), zt′ + β(zt′ , 2

−|t|))

Proof. We will proceed by induction by |t|. For |t| = 0. By property 1 in
Lemma 2.1 there exists a point z with s(z, I) ≤ α. Put z∅ = z. The fulfiment
of all properties 1–5 is trivial.

Induction step: Suppose that we have zt constructed for every |t| ≤ n− 1.
We have {0, 1}n−1 = T1 ∪ T2, where

T1 = {t ∈ {0, 1}n−1 : s(zt, It) < |It| − ε2−2n}

and

T2 = {t ∈ {0, 1}n−1 : s(zt, It) ≥ |It| − ε2−2n}.

Fix some t ∈ {0, 1}n−1, we will construct t∗{0} and t∗{1} by the following
procedure:

Case 1. t ∈ T1.
Put d = 1/5 min|t′′|=|t′|=n−1,t′′ 6=6t′ |zt′−zt′′ |. Using property 2 in Lemma 2.1

countable many times for z = zt, δ = ε2−(2n+1) and ρ = ρj for a suitable
sequence ρj → 0 there is a sequence wi → zt in I satisfying |wi − zt| ≤ d,
s(wi, It) < s(zt, It) + ε2−(2n+1), f(wi) ∈ It and wi ∈ (zt − β(zt, 2

−|t|), zt +
β(zt, 2

−|t|)) for all i ∈ N. Since 0 ≤ s(wi, It∗{0}) ≤ 2−n there is a subsequence
{wil}∞l=1 and s ∈ [0, 2−n] such that s(wil , It∗{0}) → s. So we can choose l0
and l1 with |s(wil0 , It∗{0})− s(wil1 , It∗{0})| ≤ ε2−(2n+1) and wil0 < wil1 . Put
zt∗{0} = wil0 and zt∗{1} = wil1 . By property 3 in Lemma 2.1 we have

s(zt∗{0}, It∗{0}) + s(zt∗{1}, It∗{1}) = s(wil0 , It∗{0}) + s(wil1 , It∗{1})

≤ s(wil0 , It∗{0}) + s(wil1 , It)− s(wil1 , It∗{0})

≤ s(zt, It) + ε2−(2n+1) + ε2−(2n+1)

= s(zt, It) + ε2−(2n).

Case 2. t ∈ T2.
Choose zt∗{0} < zt∗{1} as arbitrary two points of continuity sufficiently

close to zt to satisfy conditions 4 and 5.

Property 1 in case 1 follows directly from the construction and in case 2 it
is sufficient to observe that if w is a point of continuity of f, then s(w, J) = |J |
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for every J. Properties 3–5 are clear. To verify the validity of property 2 write∑
|t|=n

s(zt, It) =
∑
t∈T1

s(zt∗{0}, It∗{0}) + s(zt∗{1}, It∗{1})

+
∑
t∈T2

s(zt∗{0}, It∗{0}) + s(zt∗{1}, It∗{1})

≤
∑
t∈T1

s(zt, It) +
∑
t∈T1

ε2−(2n+1) +
∑
t∈T2

(|It| − s(zt, It))

≤
∑
|t|=n−1

s(zt, It) + 2nε2−(2n+1) ≤ α+ ε

n∑
k=1

2−(k+1).

Proposition 2.3. The graph of the function f is not a purely unrectifiable
set.

Proof. Let zt, t ∈ {0, 1}<ω be points from Lemma 2.2. For u ∈ {0, 1}ω
denote zu = limn→∞ zu|n. This limit exists due to property 4 and by the same
property together with property 3 we have zu < zu′ whenever u ≺ u′. Denote
hu as the only number that lies in ∩nIu|n. For n ∈ N put

Tn = {t ∈ {0, 1}n : s(zt, It) < |It|} and Hn =
⋃
t∈Tn

It

and define
U = {u ∈ {0, 1}ω : Iu|n ∈ Tn for every n ∈ N},

C = {zu : u ∈ U} and H = {hu : u ∈ U}. Note that Hn+1 ⊂ Hn for every
n ∈ N and H = ∩n∈NHn. So, since by property 2 we have |Hn| ≥ ε

2 for each
n ∈ N, we have |H| = limn→∞ |Hn| ≥ ε

2 . Moreover, since

hu = lim
n→∞

au|(n) − 2−n ≤ f(zu) ≤ lim
n→∞

f(zu|(n)) = hu,

where the first inequality is by property 5 and the second one by lower semi-
continuity of f together with property 1 we obtain f(zu) = hu for every u ∈ U.
Due to this fact and property 4 we obtain that f is monotone on C.

Now, since

|H| = |f(C)| = H1(Py graph f |C) ≤ H1(graph f)

and since graph of every monotone function lies on the graph of a Lipschitz
curve, we are done.
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