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ON ABSOLUTE CONVERGENCE OF
FOURIER INTEGRALS

Abstract

New sufficient conditions for representation of a function as an ab-
solutely convergent Fourier integral are obtained in the paper.

1 Introduction

If

f(x) =

∫
R

g(t)eixtdt, g ∈ L1(R),

we write f ∈ A(R), with ||f ||A = ||g||L1(R). The possibility to represent a
function as an absolutely convergent Fourier integral was studied by many
mathematicians and is of importance in various problems of analysis. For
example, in [2] (see also [8, Ch.4, 7.4]) this problem was studied, in connection
with multipliers, for the following function:

m(x) = θ(x)
ei|x|

α

|x|β
, (1)

where θ is a C∞ function on R, which vanishes near zero, and equals 1 outside
a bounded set, and α, β > 0. In is known that

I) If β
α >

1
2 , then m ∈ A(R);

II) If β
α <

1
2 and α 6= 1, then m 6∈ A(R).

Various sufficient conditions for absolute convergence of Fourier integrals
were obtained by Titchmarsh, Beurling, Karleman, Sz.-Nagy, and many oth-
ers. One can find more or less comprehensive and very useful survey on this
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problem in [7]. It is worth mentioning that the problem descends from the
study of absolute convergence of Fourier series, see, e.g., [3].

New sufficient conditions of belonging to A(R), are obtained in this paper.
Multidimensional generalizations will appear elsewhere.

Let us unite certain of known results closely related to our study in the
following theorem. First, it is natural to consider functions f ∈ A(R) that
satisfy the condition

(N) Let f ∈ C0(R), that is, f ∈ C(R) and lim f(t) = 0 as |t| → ∞, and
let f be locally absolutely continuous on R.

Theorem A. Let f satisfy condition (N), f ∈ Lp(R) with 1 ≤ p ≤ 2, and
f ′ ∈ Lq(R) with 1 < q ≤ 2. Then f ∈ A(R).

After fixing certain notation and conventions we formulate the results. The
main one extends the range of p and q in Theorem A. In the next section we
give the proofs.

We shall denote absolute constants by c or maybe by c with various sub-
scripts, like c1, c2, etc., while γ(...) will denote positive quantities depending
only on the arguments indicated in the parentheses.

Our main result reads as follows.

Theorem 1.1. Suppose a function f satisfies the condition (N).

a) Let f(t) ∈ Lp(R), 1 ≤ p < ∞, and f ′(t) ∈ Lq(R), 1 < q < ∞. If
1
p + 1

q > 1, then f ∈ A(R).

b) If 1
p + 1

q < 1, then there exists a function f satisfying (N) such that

f(t) ∈ Lp(R) and f ′(t) ∈ Lq(R) but f 6∈ A(R).

As a corollary, we present a different proof of I) for the main range of the
parameters α and β.

Corollary 1.2. If β
α >

1
2 with β > 0 and α < 2, then m ∈ A(R).

2 Proofs

We give, step by step, proofs of the results formulated in the introduction. We
need certain auxiliary results.

2.1 Auxiliary results.

One of the basic tools is the following lemma (see Lemma 4 in [9] or Theorem
3 in [1], in any dimension).
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Lemma B. Let f ∈ C0(R). If

∞∑
ν=−∞

2ν/2

∫
R

|f(t+ h(ν))− f(t− h(ν))|2dt

1/2

<∞,

where h(ν) = π2−ν , ν ∈ Z, then f ∈ A(R).
This lemma is a natural extension of the celebrated Bernstein’s test for the

absolute convergence of Fourier series (see [3, Ch.II, §6]).
We also need the following Hardy type inequality (see [4, Cor.3.14]):
For F ≥ 0 and 1 < q ≤ Q <∞

(∫
R

 t+h∫
t−h

F (s) ds

Q dt

)1/Q

≤ ch1/Q+1/q′
(∫

R

F q(t) dt

)1/q

. (2)

Here 1
q + 1

q′ = 1. Similarly 1
p + 1

p′ = 1.

2.2 Proof of Theorem 1.1.

The proof will be divided into several steps.
Step 1. To prove b) of the theorem, let us consider the function m from the
introduction. Suppose that pβ > 1 and q(β − α+ 1) > 1, with α 6= 1. Simple
calculations show that m ∈ Lp(R) and m′ ∈ Lq(R). If β

α <
1
2 , then m 6∈ A(R).

The last inequality is equivalent to 2β − α+ 1 < 1. Therefore,

1

p
+

1

q
< 2β − α+ 1 < 1,

and the considered m delivers the required counterexample.

Step 2. Let p, q ≤ 2, the known case from Theorem A. In order to make the
presentation self-contained and show the difference in the methods, let us give
a simple proof. In this case the Fourier transforms of f :

f̂(x) =

∫
R

f(t)e−ixt dt (3)

can be understood in the sense of mean convergence of

f̂M (x) =

M∫
−M

f(t)e−ixt dt, (4)
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and hence for almost every x there is a convergent subsequence f̂Mk
(x) of (4).

The same is true for the Fourier transform f̂ ′ of the derivative f ′.
We will prove that f̂ ∈ L1(R). Indeed, let us estimate∫

R

|f̂(x)| dx.

We split this integral into the two, with |x| ≤ 1 and otherwise. Applying
Hölder’s inequality and then the Hausdorff-Young theorem, we get∫

|x|≤1

|f̂(x)| dx ≤ 21/p
(∫

R

|f̂(x)|p
′
dx

)1/p′

≤ γ(p)‖f‖p.

Further, let |x| > 1. Integrating by parts in the integral (3), we derive that
for almost every x

|f̂(x)| ≤ |f̂
′(x)|
|x|

,

the Fourier transform on the right exists when f ′ ∈ Lq, q ≤ 2.
As above, applying Hólder’s inequality and then the Hausdorff-Young the-

orem, we obtain∫
|x|>1

|f̂(x)| dx ≤
∫
|x|>1

|f̂ ′(x)|
|x|

dx

≤
(

2

q − 1

)1/q(∫
R

|f̂ ′(x)|q
′
dx

)1/q′

≤ γ(q)‖f ′‖q.

Contrary to Step 2, for p > 2 or q > 2 we are not able to make use of the
Hausdorff-Young inequality. Thus, for more difficult cases of a), we will apply
the tools given in Subsection 2.1. Denoting

∆(h) =

∫
R

|f(t+ h)− f(t− h)|2dt

1/2

, (5)

we are going to prove that

∞∑
ν=1

2−ν/2∆(h(−ν)) +

∞∑
ν=0

2ν/2∆(h(ν)) <∞. (6)
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It is obvious that for h > 0

|f(t+ h)− f(t− h)| = |
t+h∫
t−h

f ′(s) ds|. (7)

Step 3. Let start with the first sum in (6) which is

∞∑
ν=1

2−ν/2
(∫

R

|f(t+ h(−ν))− f(t− h(−ν)|2dt
)1/2

. (8)

Using (7), we represent the integral as

(∫
R

|f(t+ h(−ν))− f(t− h(−ν)|

∣∣∣∣∣∣∣
t+h(−ν)∫
t−h(−ν)

f ′(s) ds

∣∣∣∣∣∣∣ dt
)1/2

.

By Hölder’s inequality, it is estimated via

(∫
R

|f(t+ h(−ν))− f(t− h(−ν)|pdt
) 1

2p
(  t+h(−ν)∫

t−h(−ν)

|f ′(s)| ds


p′

dt

) 1
2p′

.

Since p′ > q, we use (2) with F (s) = |f ′(s)| and Q = p′. Therefore, the first
sum in (6) is controlled by

‖f‖1/2p ‖f ′‖1/2q

∞∑
ν=1

2
− ν2 (1−

1
p′−

1
q′ ),

and is bounded since

1− 1

p′
− 1

q′
=

1

p
+

1

q
− 1 > 0.

Step 4. In order to estimate the second sum in (6), equal to

∞∑
ν=0

2ν/2
(∫

R

|f(t+ h(ν))− f(t− h(ν)|2dt
)1/2

, (9)

we observe that the integral can be represented as (see (7))

(∫
R

|f(t+ h(ν))− f(t− h(ν)|1−δ

∣∣∣∣∣∣∣
t+h(ν)∫
t−h(ν)

f ′(s) ds

∣∣∣∣∣∣∣
1+δ

dt

)1/2

(10)
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for any 0 < δ < 1. We will specify δ later on. Applying Hölder’s inequality
with the exponents p

1−δ > 1 and p
p−1+δ , we estimate (10) via

(∫
R

|f(t+ h(ν))− f(t− h(ν)|pdt
) 1−δ

2p

×
(∫

R

 t+h(ν)∫
t−h(ν)

|f ′(s)| ds


p(1+δ)
p−1+δ

dt

) p−1+δ
2p

. (11)

The first integral in (11) is controlled by ‖f‖
1−δ
2

p . To estimate the second one,

we use (2) with F (s) = |f ′(s)| and Q = p(1+δ)
p−1+δ . With these in hand, we

estimate the second factor in (11) via

c1[h(ν)]
( 1
Q+ 1

q′ )
1+δ
2 ‖f ′‖

1+δ
2

q .

To ensure the finiteness of (9), one must have

(
1

Q
+

1

q′
) (1 + δ) > 1.

This is equivalent to the inequality

p

q′
>

1− δ
1 + δ

. (12)

Since p
q′ < 1, an appropriate choice of δ completes the proof.

2.3 Proof of Corollary 1.2.

We have m ∈ Lp(R) for any p such that pβ > 1, and m′ ∈ Lq(R) for any q
such that q(β − α+ 1) > 1 and

β − α+ 1 > 0. (13)

If β < 1, then it follows from α < 2β that

β − α+ 1 > β − 2β + 1 > 0.

If β ≥ 1, then α < 2 ensures (13). Thus, there holds

2β − α+ 1 >
1

p
+

1

q
. (14)
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Further, β
α >

1
2 yields 2β − α+ 1 > 1. Now, we can choose p and q such that

the right-hand side of (14) be so close to the left-hand side of (14) that also
1
p + 1

q > 1. By Theorem 1.1, this gives m ∈ A(R).
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