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MAXIMAL CLASSES FOR THE FAMILY OF
I\, o]-CONTINUOUS FUNCTIONS

Abstract

In this paper we give the definition of [\, g]-continuity of real-valued
functions defined on an open interval, which is an example of path con-
tinuity. We give some properties of [, g]-continuous functions. The
aim of the paper is to find the maximal additive class and the maximal
multiplicative class for the family of [\, g]-continuous functions.

1 Preliminaries

First, we shall collect some of the notions and definitions which appear fre-
quently in the sequel. We apply standard symbols and notations. By R we
denote the set of real numbers, by N we denote the set of positive integers.
The symbol |- | stands for the Lebesgue measure on R. Let f be a real-valued
function defined on a open interval I = (a,b). We will denote by Dg,(f),
(D,‘l“p( )y Dgy( f)) the set of all point at which function f is not approxi-
mately continuous (at which f is not approximately continuous from the right
or the left, respectively).
Let F be a measurable subset of R and let € R. The numbers

FE t _ E ;
d"(E,z) = lim inf M and d+(E» x) = lim sup M
oo t t—0+ t
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are called the right lower density of F at x and right upper density of F
at x, respectively. The left lower and upper densities of E at x are defined
analogously. If

d*(E,2)=d (E,z) (d(E,z)=d (E,z)),

then we call this number the right density (left density) of E at x and denote
it by d*(E,z) (d~(F,z)). The numbers

|[EN[z—tx+ kK] |[EN[z—tz+ kK]

d(E, x) = limsup

and d(F,z) =liminf

t—ot k +t t—)O‘: k +1
k—0F k—0
t+k£0 t+kz£0

are called the upper and lower density of E at x, respectively. If d(E, z) = d(FE, z),
we call this number the density of E at = and denote it by d(E, ).
Let us observe that

d(E,z) =max{d (E,z),d (E,z)} and d(F,z)=min{d"(E,z),d (E,z)}.
Moreover, it is clear that
d(E,z)=1-d"(R\ E,z) and d'(E,z)=1-d (R\E,z).

Similarly,

d (E,x)=1—d (R\E,r) and d (E,z)=1-d (R\E,xz).

A.M.Bruckner, R.J. O'Malley and B.S.Thomson in [1] investigated the
notion of path system and developed a framework within which a number of
generalized derivatives can be expressed. We use this idea for studying some
notion of generalized continuity.

Definition 1.1. [3] Let E be a measurable subset of R and 0 < A < p < 1.
We say that a point x € R is a point of [\, o]-density of E if d(E,x) > A and
d(E,z) > o.

Definition 1.2. [3] Let 0 < XA < o < 1. A real-valued function f defined on
an open interval I is called [\, o]-continuous at x € I, provided that there is a
measurable set E C I such that x is a point of [\, o]-density of E, x € E and
f|E is continuous at x. If f is [\, o]-continuous at each point of I, we say that
f s [A, o]-continuous.

We will denote the class of all [\, g]-continuous functions by Cpy -
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Definition 1.3. [1] A real-valued function f defined on an open interval I is
called approximately continuous at x € I provided that there is a measurable
set £ C I such that d(E,z) =1, v € E and f|g is continuous at x. If f is
approximately continuous at each point of I we say that f is approximately
continuous.

By A we denote the class of all real-valued approximately continuous func-
tions defined on an open interval I.

Corollary 1.1. A CCpy g for each 0 <A <o < 1.

2 Auxiliary lemmas
First we recall some standard properties of the density of a set at a point.
Lemma 2.1. Let E and F be any measurable subsets of R and x € R. Then
1. d"(E,z) +dY(F,z) <d"(ENF,z) + 1.
2. d(B,2)+d (Fz)<d (ENF,z)+1.
3. d"(EUF,z) <d"(E,z)+d (F,z).
4. IfF CE and d"(E,x) =d (E,z), then

dY(E\F,z) = d*(E,z)—d (F,z) and d (E\F,z)=d"(E,z)—d"(F,x).

5. Ifd (BE,x) =0, thend (EUF,z) = d (F,z) = d (F\ E,z) and
d+(EUF,£E) :d+(F,$) :d+(F\E71')

6. Ifd (E\F,z) =d (F\E,z) =0, then d"(ENF,z) = d"(E,z) =
dt(F,z) andd (ENF,z)=d (E,z)=4d (F,z).

PROOF. We prove only the first inequality. The rest of the proofs are similar.
Given measurable sets A, B C R the equality |[AU B| = |A|+ |B|—|AN B
is true. Therefore
|z, +1)| > (EUF)N[z,a+t]| = |ENn(z,z+ )|+ |[FN[z,z+t]| - |ENFN[z,z+1]|
Hence

= (EUF)N[z,x+1]| }Em[x,x+t}|+|Fm[x,x+t]\ |[ENFN[z,z+1
= t - t t a t
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for each t > 0. It implies that

ENFnlz, t
d+(EﬂF,$)+1—limir+1f(1+’ [z, 2 + ”)2
t—0

t
Eﬁ 5 t Fr\l 5 t Em , t
Zhmmf<| el ke ”)zhmmﬂ[m“]!
t—0+ t t P 7
Fnlx, t
+hminfw=d+(E,x)+d+(F,x),
t—0+ t

Certainly, similar lemma holds for the left densities.
Afterwards, we will need same auxiliary lemmas.

Lemma 2.2. Letx € R,0 < a <1 and let E be a measurable set. For each k €
N such that ¢ < a there is a sequence of intervals {I,, = [an,by]: n > 1} such

that © < ... <bpt1 <ap <... d*(U In,:zr> aandd+(Eﬂ U In,x) >
n=1

n=1
—+

+d (B, ).
PROOF. Observe, that if

—+ > 1+

d(En||1,2)>-d (B,

(o) sisies

for some k, then for every ki > k we get d (EN J Ln,a | > ﬁEJr(E,x),

n=1
too. Therefore we may assume that k is the smallest natural number for which
%<a. Thena<%.

. [ent1,¢n] . FcEs)
Let ¢, = x + £ for n € N. Hence lim = lim 2*D — (. Let
n n—00 |[z,cnt1] n—00 nfl

Ul = [ent1 + 52 (en — cng1), o + (a+ 52 (en — cnt1)]

fori=1,....,k—1and UF = [cn—a(cn —cn+1),cn].
It is obvious that

Ual = U2 = ... = U} = a[[ent, call
and

k
[ent1,cn] = U Ufl.
i=1
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Hence
IENUN+|ENU +...+|ENUX > |EN[cng1,cnll-

Therefore for each n > 1 there exists a closed interval J,, C [cn+1,¢p] such
that

1
|Jn] = a-|[ent1,cn]] and |J, NE| > %\Eﬂ [n+1,Cn]l-

(o)
First, we shall show that d*( U Jn, sc) =a.
n=1
Let z € (x,c¢1). There is n > 1 such that z € [¢y11,¢p]. Then
‘U J; N [J;,ZH = ‘U J; N [m,anH + |U J; N [cn+1,z]’ =
i=1 i=1 i=1

= U |+ ]I 0 lensr, 2] < a2 cnpal] + [lensn, enll
i=n+1

and

’_leiﬂ[x,z]’ ’_leiﬂ[x,z]’

< <a ch+1,cn]|.
Z—=T Cn+1 — [, cny1]|
On the other hand,
o0 o0
Ui fe.2l] 2 U 0 s ewnl] 2 0 ([ el = alle, 2]~ lleasn.cal)
i=1 i=1
and
’ B JiN [z z”
iz el A = lensenll o Hlents enll
. P =7 | enral

Suppose that lim z,, =z and z,, € [cn,,+1,Cn,,] form > 1. Then lim n,, =
m— o0 m—0o0
G JnN[T,2m]

n=1

0. Since lim ermt1cnnll 0, we obtain that lim
m— oo [[z,cnm +1]1 m—00 2T

it follows that d+( I, m) = a.
1

= a, and

n=

At the end, we will prove that a (Eﬂ U Jn, x) > %EJF(E, x). Again, let

n=1
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z € (z,c1) and 2z € [¢p41,¢,). Then

1=

U JinEN]z,z]
=1

- E'Zﬁn+1|[ci+1,ci]ﬁE| _ 1 ’[m,cn+1]ﬁE’ S
zZ—T ~— k zZ—T ok Z—T -
>£Hx,z]ﬂE|_£cn—cn+1>l|[m,z}ﬂE|_%—%ﬂ:1.|[x,z]ﬂE|_ 1
— k z—x k z—xz ~ k zZ—T kz-% k

z2—x k(n+1)

E m
There is a sequence (Y, )°_; converging to  from right such that lim M

m— o0 Ym—T
EJF(E,:E). For each m there is ng such that y,, € [cn,,+1,Cn,,].- Certainly,
lim n,, = co. Hence

m—0o0
JoNEN|z,ym
. nL:J1 [,y ]’ . 1 |[$,ym]ﬂE| 1 1—+
lim > lim [ —- — =—-d (E,x)
m—00 Ym — T m—oo \ k Ym — X E(nm +1) k
—+ o 15+
Therefore d (E NU Jnz)>3d (B ).
n=1
We have proved that d"‘( U Jns x) —aandd’ (E N U Jns ac) > %8+(E7 x),
n=1 n=1
but the elements of the sequence do not have to be disjoint.

Let {I,,: n > 1} be a sequence of closed disjoint intervals such that I,, C

intJ, for all n € N and d+< U (Ju \ 1), x) = 0. By Lemma 2.1, property 5,
n=1
it is immediate that L
d*(U In,x) =d+(U o\ (U(Jn\fn))w) =d+(U me) =a
n=1 n=1 n=1 n=1
and

a (@1 I, x> =d" <@1 T\ (}O:jlun \ In)>,x> =d" ( Ej Jn,x) =a.
Hence, d* (El I, x) —a

=+ e =+ o 15+
Furthermore, d | EN |J In,z | =d (EN J Ju,2z | > zd (E,z). We
n=1 n=1

thus get a required sequence of closed disjoint intervals {I,: n > 1} which
completes the proof of the lemma.

O
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Lemma 2.3. Let F' be a measurable set and let x € R. There is a sequences
of intervals {I, = [an,bp]: x < ... <bpy1 < ap <...,n >1} such that

d+<F\ G In,x> :d+<[j In\F,x> = 0.

Proor. Let z,, = = + 2% and F,, = F N (Zm41,Zm). For each m € N

there exists a closed set F,, such that F,, C F,, and |Fm \ fm| < ﬁ. Let

{U# 122, be the set of all connected components of the set (Zm 41, Zm) \ Fpn.

For every m there exists i,, such that Ufiimﬂ Ufn‘ < . Therefore, the

477l
set [Tm41, Tm] \ Uﬁzl_l Ut, is a union of a finite number of closed intervals
1 2 i I im i im i A 1
F,.. F;,...,Fy such that F,, C |J;” F}, and ’Ui_l F)\Fp| < 5= As

required sequence {I,: n > 1} we take the family of all intervals {F! : 1 <
i < 4m, m > 1} enumerated according to their natural order in R from the
right to the left. We have

tm

L~ 1
ZulFﬁn\Fm‘ <

im

UF&\Fm‘ <
=1

On the other hand,

- o imo - 1
< 1B\ Fol 4 B\ U B = 1P\ Bl <

=1

Fa\|JFL

’ i’nl
i=1

Fix any y € [z, x1]. There is mg € N such that y € [mmﬁl, a:mo]. Then

’(F \ Uff:l In) Nz, y” < ’U:nozmo (F\ UZ& szm) n [xm+1>$m” < m;:no a

y—w y—x = Tmgt1 — @
. A

1 1y — . Amo—1"
omo+1 (1 - Z) 3 4 0

Hence d(F \ G I, z) = 0.
n=1



314 STANISEAW KOWALCZYK AND KATARZYNA NOWAKOWSKA

Besides,

U 2\ ) A ]| _ U (U2 B\ Fo) Ol g ™

y—x y—x C Tmet1 T
w2t
Cogmer(l—g) 3-dment
~
Hence E(ngl I, \ F,z) = 0 and the proof is completed. 0O

At the end, we present the equivalent condition for a function to belong to

Cirgl-
Theorem 2.1. [3, Theorem 2.1] Let 0 < A< o<1, and let f: I - R be a
measurable function. Then f is [\, o]-continuous at x if and only if

lim d({y € I+ |f(2) = F(y)] < e}, 2) > A

and B
lim d({y € I+ |f(z) = J()| < e} @) > 0.

Corollary 2.1. N Cpo=A
0<A<p<1

3 The maximal additive class

Definition 3.1. Let F be a family of real functions defined on an open interval
I A set Mo(F)={g: I = R:V¢cr f+g € F} is called the mazimal additive
class for F.

Remark 3.1. Let f: I — R, f(z) = 0 for x € I be a constant function.
Clearly, if f € F then My(F) C F.

In [1] maximal additive classes and maximal multiplicative classes for Dar-
boux functions and for Darboux Baire 1 functions are described.
In this section we characterize the maximal additive class for Cpy -

Theorem 3.1. Let 0 <A< o<1 and I = (a,b). Ifg: I =R, g€ Cpq\A
then there exists a function f € Cpx 4 such that f + g & Cjx o
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PROOF. Let g € Cpy o) \ A and 2 € Dyp(f). Without loss of generality we
may assume that g is not approximately continuous at right at x. Then
E+({y €I:|g(x) —g(y)] > e},x) = ¢ > 0 for some € > 0. There is a positive
integer k such that A + 5= < 1 and 227: < A. Then % < A+ 5. Applying
Lemma 2.2 to {y: [g(y) — g(z)| > €} and a = A + 57, we can find a sequence
of intervals {I,, = [an,bp]: ¢ > 1} such that © < ... < b,y1 < a, < ... <D,

o0 c —+ oo c
d( L_Jlln,ac) =X+ 5 and d ({y lg(y) —g(x)| >e}n U In,a:) > £. Let

n=1
{K,, = [cn,dn]: n > 1} be a sequence of intervals such that I,, C intK,, for all
o0

n € N and d+< U (K \ In)m) = 0. Let a function f: I — R be defined by

n=1

0 ifyG(a,x]U[dl,b)U U Ina

n=1

fly) = —9(y) +g(x) +e ifye [.:jl[dn-i-lacn];

oo o0
linear in each connected component of |J K, \ | intl,.
n=1 n=1

Since g € Cjy g, it is obvious that f is [\, g]-continuous at every point
except at . From inequalities

d({y e I f(y) = f(z) = 0},) Zd(w,x] U Glfn,x) :d+( °_°1x) S A+ £ > A

n= n

and
a({y €l: fly)=f(x) = O}vx) > 8((&1‘] UnL:Jlex) :87((0'7‘%']71') =1>p,

we deduce that f is [\, g]-continuous at x. Hence f € Cy 4.

On the other hand, we have (f + g)(z) = g(z) and

{yel: |/ + 9w — 9@ < e} n (le.0)\ |J Ka) = 0.
n=1

We will show that f + g is not [A, g]-continuous at x. Set E = {y: |(f +
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9)(y) — g(z)| < e}. Then we obtain

. . .
dH(B,z) < d* (E N nL:Jl In,x> +d (E N U (Ea\ In),x)—i—

n=1

+d" (Emf_j s, cn],x) —dt ({y e I: |g(y)—g(z)] < )N D In,x) 040 =

n=1

— d+( U In,x)—EJr({y e1:[g(y)—g(z)| > en In,l“) < M_i_% -
n=t n=1

Therefore f 4 g is not [, g]-continuous at x. Hence f + g & C[», and the
proof is completed.
O

Lemma 3.1. Let f,g: I — R and x € I. If both functions, f and g, are
[, o]-continuous at x and at least one of them is approzimately continuous at
x then f+g, fg, min{f, g} and max{f, g} are [\, o]-continuous at x.

PrOOF. Without loss of generality we may assume that f is approximately
continuous at x. Therefore there exists a measurable set E such that x € F,
d(E,x) =1 and f|g is continuous at x. Since g is [, g]-continuous at x, there
is a measurable set F' such that x € F, z is a point of [\, g]-density of F' and
g|r is continuous at x. Therefore functions f+g, fg, min{f, g} and max{f, g}
restricted to £ N F' are continuous at z, N F' is a measurable set,

dENF,z) >dE,z)+dF,z)—1>14+A—-1=AX
and 3 3
d(ENF,z)>dE,z)+d(F,z)—1>1+90—1=0p.
It follows that f + g, fg, min{f,¢g} and max{f, g} are [\, g]-continuous at
x. O
Corollary 3.1. If f,g: I — R, f,g € Cp55) and Dup(f) N Dap(g) =0, then
f+g, fg, min{f, g} and max{f, g} belong to C}5 ,.
Corollary 3.2. If f,g: I = R, f € Cpp ) and g € A, then f+g, fg, min{f, g}, max{f, g} €
C[)‘NQ]'
Theorem 3.2. M,(Cpy o) = A.
PROOF. By Theorem 3.1, we get Cp\ o) "Ma(Cpp,o)) C A. By Corollary 3.2, we

conclude that A C My (Cp»,0)). The last needed inclusion, My (Cp,0)) € Cpa g
follows from Remark 3.1. ]
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4 The maximal multiplicative class

Definition 4.1. Let F be a family of real functions defined on an open interval
I. A set My (F) ={g:Vyer fg € F} is called the mazimal multiplicative
class for F.

In this section we characterize the maximal multiplicative class for C[y 4

Lemma 4.1. Let g € Cpy 5 \ A and x € Dqp(g). If g(x) # 0 then there exists
J €Cpr,q such that fg & Cp g-

PRrROOF. Without loss of generality we may assume that g is not approximately
continuous from the right at x. Let g(x) = ¢ # 0. Choose 0 < ¢ < |¢| such
that d ({y: lg(y) —t| > €},x) = ¢ > 0. There exists a positive integer k such
that A+ 55 < 1 and Z;¢ < A. Then + < A+ 5. Applying Lemma 2.2, we can
find a sequence {I,, = [an,by]: z < ... < bpy1 < ap < ... < bn > 1} such

that d"‘( U In,x) = A+ 57 and E+({y: lg(y) —t| > e} N L_JlImx) > £

n=1
Let {K,, = [cn,dn]: n > 1} be a sequence of pairwise disjoint intervals
satisfying conditions I,, C intk,, for n € N and EJF( U (Kn \ 1), m) =0. A
n=1
function f: I — R is defined in the following way
1 ity (aa]uldb)u U L,
n=1

fy)={ 0 ifye Ql[dn+hcn1,

[e.9] o0
linear in each connected component of |J K, \ | intZ,.
n=1 n=1

Certainly, f is continuous at each point except x. Since
d(ly: f9) = 1) = 1)) = (=000 U Kow) =d*( 0 Lw) =0+ 5
and -
d({y: fy) = f@) = 1}2) = d((a,2]U U Knoo) = d((a,2),2) = 1> p,

n=1
we obtain that f € C[y -
On the other hand, we have (fg)(z) = g(z) and

o0

{y €l |(f9)(y) —g(@)] < 5} N U [dn+1, 0] = 0.

n=1
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We will show that fg is not [\, g]-continuous at z. Set E = {y € I: |(fg)(y) — g(z)| < €}.
Then we obtain

d*(B,z) < cf(Em G In,x> +E+(Em D(Kn\ln),x)—i-

n=1 n=1

vdt (Eﬂ U [+, cn},x) =dt ({y el:|g(y)—g(x)| <en U In,x) +04+0 =
n=1

n=1

= d+( G Imff)*T({y e1:|gly)—g(x)| > s}mD In,x) < Mi’% <
n=1 net

Therefore fg is not [\, g]-continuous at z. Thus fg & C}5 5, and the proof is
completed. O

Definition 4.2. Let 0 < A < p < 1. Let P(\,0) be a set of all functions
f: I — R satisfying the following conditions

(P1) Dgy(f) C Ny, where Ny ={z € I: f(x) =0},
(P2) for each x € Dgp(f) and for each measurable set E such that E O Ny

and d(E,x) > A,
d(E, ) > o we have

lim d(B N {y: 1/(0) — f(@)] < 2}a) > A

and
lim d(En{y: [f(y) - f(x)] <e},z) > o

e—0+

Corollary 4.1. Let 0 <A< o< 1. Then A C P(}, ).
Theorem 4.1. M,,(Cp\ ) = P(A, 0) for each 0 <A <o < 1.

PROOF. Let g € P(\,0) and f € Cp\ . Fix any € I. There exists a
measurable set E such that z € E, d(E,z) > A, d(E,x) > o and fig is
continuous at z. First, assume that g is approximately continuous at z. Then,
by Lemma 3.1, fg is [\, g]-continuous at x.

Now, consider the second case, © € Dqp(g). Applying (P1), we obtain
g(z) = 0. Since f|g is continuous at z, we conclude that there exist real
numbers r, M such that |f(y)] < M for y € EN[z —r,z + r]. It follows, in
view of (P2), that

lim d({y: [(f9)(W)] < ehz) = lim d({y: l9(y)| < 57} N B ) =

= lim d{y: |g(v)| <e}NE,z) > A
e—0t
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and

i A{y: [(F) )] < eha) 2 T Al{y: l9(y)| < 5} 0 Ev) =

= lim d({y: lg(y)| <} N E,z) > 0.

e—=0t

By Theorem 2.1, fg is [), g]-continuous at z. Hence fg € C}5 4. Thus we have
proven that P(\, 0) C M, (Cpa,g))-

Now, let us assume that g € M., (Cpx o). If 2 € Dyp(g) then, by Lemma 4.1,
we get g(z) = 0. Therefore ¢ fulfils condition (P1). Take any measurable
set E such that d(F,z) > A and d(E,z) > o. By Lemma 2.3 (and corre-
sponding lemma for left-sided density) we can find two sequences of intervals
{In = [an,bn]: .. <bp <apy1 <...<...z,n>1}and {Jp = [ek, di]: 2 <
coo < dgg1 < cp <...,n>1} such that

a(e\ (gfnugjk),x) d((TQIInUQIJk) \E.x) =0

Let I, = [Gn,b,] and Jy = [Gk,d)] be pairwise disjoint closed intervals such

that I,, C int I,,, J, C int J; for all n,k € N and E( U I, \ I,) U kUI(j;C \
n =

=1

Jk),x> = 0. By Lemma 2.1, we have d( U Luy Jk,x) =d(E,z) > X and
n=1 k=1

n=1 =

d( I,uy Jk,x) =d(E, ) > o. Since for each k € N
k=1

Jim [([dirr, el N {y: lg(y) - o <11\ N[ =0,
we get that for each & € N there exists a number «g, such that

— dpy1 —
({1, N {y: o) - aul <11\ N < F—=
Moreover,
Ny [ Jldrsr.en) € EN | i (2)
k=1 k=1

From (1) and (2), it is easy to verify that

(01,6611 0 o) o] < 1)\ Nz ) 0.
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Similarly, we can find a sequence {f3,: n > 1} such that

d_(Udbn,anﬂ] N {y: l9(y) - Bl < 1})\Ng,x) 0,

k=1

Let a function f: I — R be defined by

1 ifye U Liu U JpUl(a,a]Uldy,b) U {z},
n=1 k=1
fly) = o ify € [dys1,en], k=1,2,...,
ﬁn 1fy€ [bn7an+1]Ln:1727'
linear in [@y, an], [bn, bnl, [Ck, ck] and [d,di], k=1,2,...., n=1,2,....

Directly from the deﬁmtlon of f, it follows that it is continuous at each point

except z. If By = U I, U U Jy U (—00,a1] U[dy,00) U{x} then f restricted
n=1 k=1
to Ej is constant, so in particular, it is continuous at x. Moreover,

oo

d(El,m)zd(U UUJk, 7) = d(B,x) > A

and
d(Ey, ) (UI UUJk,)dex)

Therefore f is [A, g]-continuous at z. Hence f € Cjy 4. Moreover, fg(x) = 0.

Put E. ={y € I+ |(f9)(y) = (f9)(z)| <e} ={y € I: |(fg)(y)| < e} for 0 <
e < 1. Since g € M, (Cpy,q)), We get lir(r)1+ d(E.,x) > X and lirg+ d(E.,x) > .
e— e—

On the other hand,

d(B.x) < d(E m( U I, UU Jk) )+E(Egm( [j [, 1)U [j dkﬂ,ck) )+
n=1 n=1 k=1

(e (0 i) - (100 .-

oo

:d({yg[:w |<5}n([jlnu Jk), ) d({y € I: [g(y)| < e}NF, )

n=1 k=1
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and

d(E.,x) < (Em(UIUUJk) )+&(E€m([jbn,an+1 @dkﬂ,ck) z)+
ez (U oY) «) =a(e0 (U no U s).o) -

oo

—a({y e I: loty |<e}m(U nuUJk) z) =d({y € I: lg(y)| < £}nF, )

for each 0 < e < 1. Hence lim d({y € I: |g(y)| < e}NF,z) > lim d(E.,z) >
. e—0t _ e—0*+
Aand lim d({y € I: |g(y)] <e}NF,z) > lim d(E.,z) > . It follows that
e—0t e—0t
condition (P2) is fulfilled. O

Corollary 4.2. If a function g satisfies condition (P1) and for each x €
Dap(g) we have d(Ng,x) > X and d(Ng,x) > o then g € My (Cpa,q))-

Corollary 4.3. A G M,,,(Cpx,0)-

Example 4.1. Fix any A € (0,1). We will show that the sharp inequality
d(Ng,x) > Xin Corollary 4.2 is essential. We will construct a function g: R —
R such that g is discontinuous only at x = 0 belongs to C[ , and does not
belong to M, (Cpa ). Let {I, = [an,bn]: 0 < ... <bpy1 <ap <...,n>1}

be a sequence of intervals such that d*( U Isn, 0> = ) and
n=1

d*(U Ign_l,O) = d*(U Ign_g,()) ==
n=1 n=1

Then
d (U 1:0) 2" (U 10:0) +¢" (| Tan-1,0) +a* (| Fn-2,0) = 1.
n=1 n=1 n=1 n=1
Thus d+( U In,()) = 1. Define a function g: R — R by
=1

0 ifze(—00,0]U[br,00)U |J Iz,

n=1

g(x) _ 1 ifxe n! I3, 1,

ifx e U I3, o,

linear on the 1nterva1s bnt1,an], n=1,2,....
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It is clear that g is continuous at each point except 0 and Ny = (—o0,0] U

oo _ 00
U Isn. Hence d(Ny,0) = X and d(Ng,0) = 1. Let E = (—o00,0] U |J (I3, U

n=1 n=1

I3,—2). Then g p is continuous at 0, d(E,0) =d ((—o0,0],0) =1 and

d(E,0) = d+( Ej (IBnUI:an—2),0> > d+( Ej Ign,0)+d+( [j Ign_z,()) _ 1 JQF A
n=1 n=1

n=1
Hence g is [, o]-continuous at 0 and g € C 4. Besides, Dgp(g9) € Ny On
the other hand, let F' = (—o0, 0] U U (I3 U I3p—1). Then N, C F, d(F,0) =

n=1

d ((—0,0],0) =1 and

- > > 1+
d(F,0) = d* (| (Tn0lsn 1), 0) = & (| Ton, 0) 4" (| Ton-1,0) = 2=
n=1 n=1

n=1
But -
d(F N {z € R: [g(@)] < e},0) =d* (| T3n,0) = A
n=1
for each 0 < & < 1. Tt follows that condition (P2) is not fulfilled. Hence
g¢é Mm(c[z\,g])-

5 Minry and Maxr

Definition 5.1. Let F be a family of real functions defined on an open interval
I. Then we define Ming = {g: I — R: Vjcrmin{f,g} € F} and Maxr =
{9: Vsermax{f,g} € F}.

Lemma 5.1.
1. Min¢, , = {-f: f€ Maxcu‘g]}.

2. Min¢ C C[)\7g] and Max¢ - C[A,Q]'

A0l x50l
Proor. 1. It follows immediately from equality max{ f, g} = — min{—f, —g}

and property f € Cy g = —f € Cx o-

2. Let f € Ming, , and fix € I. Take the constant functions 9(y
f(z)+1fory € I. Then g € Cjy 4, min{f, g} € Cpx o and min{f(x), g(
f(z). Moreover,

{y e It [min{f(y), 9(v)} — f@)| <e} ={y e I: [f(y) — f(2)] <&}

) =

)} =

> A

> A
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for all 0 < e < 1. Hence f is [\, g]-continuous at & which gives an inclu-
sion Ming, , C Cx . Moreover, Maxc,, , = —Ming, , C —Cpx o =
Ciael-

) X, o]

]

O

Theorem 5.1. Maxc, , = A.

Proor. By Corollary 3.2, we get A C Maxc,, , -

Let ¢ ¢ A and g is not approximately continuous at =z € I. With-
out loss of generality we may assume that ¢ is not approximately contin-

uous at right at z. Therefore d ({y € I:|g(y) — f(z)| = eha) = ¢ >
0 for some 0 < & < 1. As earlier, we choose a positive integer k such
that A + 57 < 1, 22_; < X and % < A+ 5. Applying Lemma 2.2 to

{y: 19(y) —g(x)| > e} and @ = A+ 5%, we can find a sequence of intervals {1,, =

[@n,by]: i > 1} such that # < ... < bpy1 < an < ..., d" (U Ln, ) = A+ 5
1

and 4" ({y: lg(y) — 9(@)| = e} 0 U L,w) = . Tet {Ky = [en,da)in > 1}
n=1
be a sequence of pairwise disjoint intervals such that I,, C intK,, for alln € N
and E+( U (Kn \ In),:z:> = 0. Let a function f: I — R be defined in the
1

n=

following way

g@) =1 ifye(aa)Uld,b)u U I,

n=1

f=q s@+1 ifye Uldiel

oo} o0
linear in every connected component of |J K, \ |J intl,.
n=1 n=1

It is obvious that f is [\, g]-continuous at each point except z. Inequalities

d{y e I: f(y) = f(x) = 0},z) > d<(a,x] U nﬁj; Imx) —d* <nfjl In,x) S At S > A
and

Aty e I+ 1) = ) =0),0) > 0010 U fw) =T ((@alr) =150,
n=1
imply that f is [A, g]-continuous at x. Hence f € Cjy 4.

We will show that max{f,g} is not [\, g]-continuous at z. Certainly,
max{f(z),g(x)} = g(z). Set E = {y € I: |max{f(y),g9(y)} — g(z)| < e}.
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Then EN U [bn+t1, cn] = 0. Moreover,

n=1

(@

dH(E,z) <d* (Em G In,x) var (Em (Kn\ln),x)Jr

n=1 n=1
+at (E nU [dn+1,cn},w) - d+<{y €1:|g(y) - g(x)| <eyn | In,x) -
n=1 n=1
= d+( U Imx)—EJr({y el:|gly)—g(x)| > E}OU In,m) < )\—&—i—% <A
n=1 n=1

Therefore max{f, g} is not [\, g]-continuous at x. Hence max{f,g} & Cpx
which completes the proof.

Corollary 5.1. Min¢, , = —Maxc, , = A.
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