Zbigniew Grande, Institute of Mathematics, Pedagogical University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland. e-mail: grande@wsp.bydgoszcz.pl

ON SOME SPECIAL NOTIONS OF APPROXIMATE QUASI-CONTINUITY

Abstract

Some special notions of approximate quasi-continuity and cliquishness are considered. Moreover, uniform, pointwise and transfinite convergence of sequences of such functions are investigated.

Let \mathbb{R} be the set of all reals and let μ_e (μ) denote outer Lebesgue measure (Lebesgue measure) in \mathbb{R} . Let

$$d_u(A, x) = \limsup_{h \to 0^+} \mu_e(A \cap (x - h, x + h))/2h$$

$$(d_l(A,x) = \liminf_{h \to 0^+} \mu_e(A \cap (x-h,x+h))/2h)$$

denote the upper (lower) density of a set $A \subset \mathbb{R}$ at a point x. A point $x \in \mathbb{R}$ is called a density point of a set $A \subset \mathbb{R}$ if there exists a measurable (in the sense of Lebesgue) set $B \subset A$ such that $d_l(B, x) = 1$. The family

$$\mathcal{T}_d = \{A \subset \mathbb{R}; A \text{ is measurable and each } x \in A \text{ is a density point of } A\}$$

is a topology called the density topology [1].

Moreover, let \mathcal{T}_e denote the Euclidean topology on \mathbb{R} . All considered functions will be real and defined on \mathbb{R} . A point x is a continuity point (an approximate continuity point) of a function f if it is a continuity point of f considered as an application from $(\mathbb{R}, \mathcal{T}_e)$ $((\mathbb{R}, \mathcal{T}_d))$ to $(\mathbb{R}, \mathcal{T}_e)$. Denote by C(f) (resp. A(f)) the set of all continuity (approximate continuity) points of f. Define the following families of functions:

Key Words: continuity, strong quasicontinuity, density topology, oscillation, sequences of functions, uniform convergence.

Mathematical Reviews subject classification: 26A15, 54C08, 54C30 Received by the editors December 3, 1996

172 ZBIGNIEW GRANDE

- $f \in \mathcal{A}_1$ ($f \in \mathcal{A}_2$) if for every point x, for every positive real η , and for every set $A \in \mathcal{T}_d$ containing x there is a point $u \in A \cap C(f)$ ($u \in A(f) \cap A$) such that $|f(u) - f(x)| < \eta$;

- $-f \in \mathcal{A}_3$ $(f \in \mathcal{A}_4)$ if for every point x, for every positive real η , and for every set $A \in \mathcal{T}_d$ containing x there is an open interval I such that $I \cap A \neq \emptyset$, $I \cap A \subset C(f)$ $(I \cap A \subset A(f))$ and $|f(u) f(x)| < \eta$ for all points $u \in I \cap A$;
- $-f \in \mathcal{A}_5$ $(f \in \mathcal{A}_6)$ if for every nonempty set $A \in \mathcal{T}_d$ there is an open interval I such that $I \cap A \neq \emptyset$ and $I \cap A \subset C(f)$ $(I \cap A \subset A(f))$.
- $f \in \mathcal{A}_7$ if for each positive real η and for each nonempty set $A \in \mathcal{T}_d$ there is an open interval I such that $I \cap A \neq \emptyset$, $I \cap A \subset A(f)$ and osc $f \leq \eta$ on $I \cap A$.

Moreover, a function f is said to be strongly quasi-continuous [strongly cliquish] (abbreviated s.q.c. [s.c]) at a point x if for every set $A \in \mathcal{T}_d$ containing x and for every positive real η there is an open interval I such that $I \cap A \neq \emptyset$ and $|f(t) - f(x)| < \eta$ for all $t \in A \cap I$ [osc $f < \eta$ on $I \cap A$] ([4]).

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function and let $x \in \mathbb{R}$ be a point. If there is an open set U such that $d_u(U,x) > 0$ and the restricted function $f|(U \cup \{x\})$ is continuous at x, then f is s.q.c. at x.

By elementary proofs, we obtain:

Remark 1. If all functions f_n , n = 1, 2, ..., of some uniformly converging sequence $(f_n)_n$ are s.q.c. at a point x, then its limit f is also s.q.c. at x.

Remark 2. If $f \in A_i$, i = 1, 3, 4, then f is s.q.c. at each point.

Remark 3. The inclusions

$$A_3 \subset A_1 \subset A_2$$
; $A_3 \subset A_4 \subset A_2$; $A_3 \subset A_5 \cup A_4 \subset A_7 \subset A_6$

are true.

Since every function which is s.q.c. at each point is also almost everywhere continuous [4], we can observe that a function $f \in \mathcal{A}_1$ if and only if f is s.q.c. at each point x and that the families \mathcal{A}_i , i = 1, 3, 4, contain only almost everywhere continuous functions. It is obvious also that all functions belonging to the family \mathcal{A}_5 are almost everywhere continuous.

Approximately continuous functions are in Baire class 1, so they belong to $A_7 \cap A_2$. Since there are approximately continuous functions which are not almost everywhere continuous ([1]), in the families A_7 and A_2 there are

functions which are not almost everywhere continuous. However, if $f \in \mathcal{A}_2 \cup \mathcal{A}_6$, then for every positive real η and for every measurable set A with $\mu(A) > 0$ there is a measurable subset $B \subset A$ such that $\mu(B) > 0$ and osc $f \leq \eta$ on B. So, by Davies theorem ([2, 3]), every function $f \in \mathcal{A}_2 \cup \mathcal{A}_6$ is measurable (in the sense of Lebesgue). If $f \in \mathcal{A}_6$, then for every open interval I and for every positive real η there is an open interval $J \subset I$ such that osc $f \leq \eta$ on J. Thus, the set C(f) of arbitrary function $f \in \mathcal{A}_6$ is dense, and consequently it is a residual G_δ set. So, every function $f \in \mathcal{A}_6$ has the Baire property. However, there are functions $f \in \mathcal{A}_2$ which do not have the Baire property. Therefore, we adopt the following definition ([6]).

A function f is called approximately quasi-continuous at a point x if for every positive real η and for each set $A \in \mathcal{T}_d$ containing x there is a nonempty set $B \subset A$ belonging to \mathcal{T}_d such that $|f(t) - f(x)| < \eta$ for all $t \in B$.

Observe that a function f is approximately quasi-continuous at every point if and only if $f \in \mathcal{A}_2$. In [6] it is proved that for every measurable function f there is a sequence of approximately quasi-continuous functions f_n , $n = 1, 2, \ldots$ such that $f = \lim_{n \to \infty} f_n$. So, if f is measurable without the Baire property, then there is an index k such that the function f_k does not have the Baire property. Such function f_k is in the family \mathcal{A}_2 as an approximately quasi-continuous function, but it doesn't have the Baire property. From the above it follows that

$$\mathcal{A}_2 \setminus \mathcal{A}_i \neq \emptyset, \quad i = 1, 3, 4, 5, 6, 7.$$

Since there is an approximately continuous function f with $\operatorname{int}(C(f)) = \emptyset$ ([1]) we obtain $A_7 \setminus A_5 \neq \emptyset$.

The function f(x) = 0 for $x \neq 0$ and f(0) = 1 belongs to $A_5 \subset A_7$, but it is not in $A_2 \supset A_1 \supset A_3$. Moreover, it is not in A_4 . So,

$$\mathcal{A}_5 \setminus \mathcal{A}_i \neq \emptyset, \quad i = 1, 2, 3, 4.$$

If g is an approximately continuous function such that $g(\mathbb{R}) = [0,1]$ and the set $C(f) = g^{-1}(0)$ is dense and its interior is empty ([1]), then the function f(x) = g(x) for $x \neq 0$ and f(0) = 2 belongs to $A_7 \setminus A_i$ for i = 1, 2, 3, 4, 5.

As an example of function $f \in \mathcal{A}_1 \setminus \mathcal{A}_6$ we can take any strictly monotone function which is continuous from the right at every point and which is such that the set $\mathbb{R} \setminus C(f)$ is dense.

So, we obtain the following assertion.

Theorem 1. The inclusions

$$-\mathcal{A}_3 \subset \mathcal{A}_1 \subset \mathcal{A}_2; \quad \mathcal{A}_3 \subset \mathcal{A}_4 \subset \mathcal{A}_2;$$

174 ZBIGNIEW GRANDE

$$- \mathcal{A}_3 \subset \mathcal{A}_5 \subset \mathcal{A}_7; \quad \mathcal{A}_3 \subset \mathcal{A}_4 \subset \mathcal{A}_7;$$

are true. Moreover, each of the above inclusions is strict and

$$\mathcal{A}_1 \setminus \mathcal{A}_6 \neq \emptyset$$
.

The inclusion $\mathcal{A}_7 \subset \mathcal{A}_6$ is evident.

Theorem 2. The relation $A_6 \setminus A_7 \neq \emptyset$ is true.

PROOF. Let $A_1 \subset I_1 = (0,1)$ be a Cantor set of positive measure. In the second step in every component $I_{1,n}$, $n=1,2,\ldots$, of the set $I_1 \setminus A_1$ we find an open interval $J_{1,n}$ having the same centers as $I_{1,n}$ and such that $|J_{1,n}| < 4^{-2}|I_{1,n}|$, where the symbol $|J_{1,n}|$ denotes the length of the interval $J_{1,n}$. Next, in each open interval $J_{1,n}$ we find a Cantor set $A_{1,n} \subset J_{1,n}$ of positive measure.

In general, in the k^{th} step (k > 2) we consider all components $I_{1,n_2,...,n_k}$ of the set $J_{1,n_2,...,n_{k-1}} \setminus A_{1,n_2,...,n_{k-1}}$, $n_i \ge 1$ for $1 < i \le k$, and we find open intervals $J_{1,n_2,...,n_k} \subset I_{1,n_2,...,n_k}$ having the same centers as $I_{1,n_2,...,n_k}$ and such that

(1)
$$|J_{1,n_2,\dots,n_k}| < 4^{-k} |I_{1,n_2,\dots,n_k}|.$$

For $1 < i \le k$ and $n_i = 1, 2, ...,$ let $A_{1,n_2,...,n_k} \subset J_{1,n_2,...,n_k}$ be a Cantor set of positive measure and let

$$B_{1,n_2,...,n_k} = \{x \in A_{1,n_2,...,n_k}; d_l(A_{1,n_2,...,n_k},x) = 1\}.$$

Let f(x)=1 for $x\in B_{1,n_2,\dots,n_k}$, whenever k is even and $n_i\geq 1$ for $1< i\leq k$ and let f(x)=0 otherwise on $\mathbb R$. We shall prove that $f\in \mathcal A_6$. Let $A\in \mathcal T_d$ be a nonempty set. Denote by B the union of all sets B_{1,n_2,\dots,n_k} , where $k=2,3,\dots$ and $n_i=1,2,\dots$ for $1< i\leq k$. Observe that $B\subset A(f)$. So, if $A\subset B$, then for every open interval I such that $I\cap A\neq \emptyset$ we have $I\cap A\subset A(f)$. If A is not a subset B, then there is a point $x\in A\setminus B$. If x is not in $\mathrm{cl}(B)$, where $\mathrm{cl}(B)$ denotes the closure of the set B, then f is continuous at x and for every interval $I\subset \mathbb R\setminus \mathrm{cl}(B)$ containing x we obtain that $I\cap A\neq \emptyset$ and $I\cap A\subset C(f)\subset A(f)$. So, we suppose that $x\in \mathrm{cl}(B)$. If x=0 or x=1, then f is unilaterally continuous at x and there is an open interval $I\subset \mathbb R\setminus [0,1]$ with $I\cap A\neq \emptyset$. Consequently, in this case we have f(t)=f(x)=0 for all $t\in I\cap A$. If there are indexes n_2,\dots,n_k such that $x\in A_{1,n_2,\dots,n_k}\setminus B_{1,n_2,\dots,n_k}$, then, by (1), there is an open interval

$$I \subset J_{1,n_2,\dots,n_k} \setminus A_{1,n_2,\dots,n_k} \setminus \bigcup_{n_{k+1}=1}^{\infty} J_{1,n_2,\dots,n_{k+1}}$$

such that $I \cap A \neq \emptyset$ and $I \cap A \subset C(f) \subset A(f)$. If not, there is a sequence of indexes n_2, \ldots, n_k, \ldots , such that

$$x \in \bigcap_{k=1}^{\infty} I_{1,n_2,...,n_k} = \bigcap_{k=1}^{\infty} J_{1,n_2,...,n_k}.$$

Since $d_l(A, x) = 1$, there is an index m such that for each $k \geq m$ we have

(2)
$$\mu(A \cap I_{1,n_2,\dots,n_k}) > |I_{1,n_2,\dots,n_k}|/2.$$

By (1), there is an index j > m such that for each $k \geq j$ we obtain

(3)
$$4|J_{1,n_2,\ldots,n_k}| < |I_{1,n_2,\ldots,n_k}|.$$

Fix k > j and observe that from (2) and (3) it follows that

$$A \cap (I_{1,n_2,\ldots,n_k} \setminus cl(J_{1,n_2,\ldots,n_k})) \neq \emptyset.$$

Consequently, there is an open interval I such that $A \cap I \neq \emptyset$ and $I \cap A \subset C(f) \subset A(f)$. So, $f \in \mathcal{A}_6$.

For the proof that f is not in A_7 it suffices to observe that $B \in \mathcal{T}_d$ and for every open interval I with $I \cap B \neq \emptyset$ the oscillation osc f on $I \cap B$ is greater than a for every positive real a < 1.

Remark 4. Observe that if $f \in A_6$ is of the first Baire class, then $f \in A_7$. Consequently, every approximately continuous function belongs to A_7 .

For a family Φ let $\mathcal{B}(\Phi)$ ($\mathcal{B}_u(\Phi)$) denote the family of all limits of converging (of uniformly converging) sequences of functions from Φ . Moreover, let Q_s denote the family of all functions which are s.q.c. at every point. By Remark 1 the family $Q_s = \mathcal{A}_1$ is uniformly closed.

Theorem 3. The equality $\mathcal{B}_u(\mathcal{A}_3) = Q_s$ is true.

PROOF. Let $f \in Q_s$ be a function. It suffices to prove that for every positive real η there is a function $g \in \mathcal{A}_3$ such that $|f - g| \le \eta$. Fix a real $\eta > 0$. Let

$$E = \{y; \mu(cl(f^{-1}(y))) > 0\}.$$

Since f is almost everywhere continuous, the set E is countable. There is a sequence $(c_k)_{k=-\infty}^{\infty}$ of reals $c_k \in \mathbb{R} \setminus E$ such that $0 < c_{k+1} - c_k < \eta/2$ for all integers k and

$$\mathbb{R} = \bigcup_{k=-\infty}^{\infty} [c_k, c_{k+1}).$$

If x is such that $c_k \leq f(x) < c_{k+1}$, then let $h(x) = c_k$. If h is not s.q.c. at x and $h(x) = c_k$, then we put $g(x) = c_{k-1}$. Otherwise let g(x) = h(x). Since f is s.q.c. at each point $x \in \mathbb{R}$, the function g is the same on \mathbb{R} . But the image $g(\mathbb{R})$ is a discrete set, so we obtain $g \in \mathcal{A}_3$. Evidently, $|f - g| \leq \eta$.

Since $A_3 \subset A_4 \subset Q_s$, we obtain the following.

Corollary 1. The equality $\mathcal{B}_u(\mathcal{A}_4) = Q_s$ is true.

Remark 5. The equality $\mathcal{B}_u(\mathcal{A}_2) = \mathcal{A}_2$ is true.

PROOF. Fix $f \in \mathcal{B}_u(\mathcal{A}_2)$. There is a sequence of functions $f_n \in \mathcal{A}_2$, $n = 1, 2, \ldots$, which converges uniformly to f. Fix a point x, a positive real η and a set $A \in \mathcal{T}_d$ containing x. Let k be an index for which $|f_k - f| < \eta/4$. Since $f_k \in \mathcal{A}_2$, there is a point $u \in A \cap A(f_k)$ such that $|f_k(u) - f_k(x)| < \eta/4$. But $u \in A(f_k)$, so there is a measurable subset $B \subset A$ such that $\mu(B) > 0$ and $|f_k(t) - f_k(u)| < \eta/4$ for each point $t \in B$. The function f is measurable as the limit of the sequence of measurable functions f_n . Consequently, there is a point $w \in B \cap A(f) \subset A \cap A(f)$. Moreover, we have

$$|f(w) - f(x)| \le |f(w) - f_k(w)| + |f_k(w) - f_k(u)| + |f_k(u) - f_k(x)| + |f_k(x) - f(x)| < \eta/4 + \eta/4 + \eta/4 + \eta/4 = \eta.$$

Let C_{ae} denote the family of all functions f for which $\mu(\mathbb{R} \setminus C(f)) = 0$. We have the following.

Remark 6. The equality $\mathcal{B}_u(\mathcal{A}_5) = \mathcal{C}_{ae}$ is true.

PROOF. It suffices to prove that for every $f \in \mathcal{C}_{ae}$ and for every positive real η there is a function $h \in \mathcal{A}_5$ with $|f - h| \leq \eta$. Fix $f \in \mathcal{C}_{ae}$ and a positive real η . Define the function h the same as that in the proof of Theorem 4 and observe that $h \in \mathcal{A}_5$, because it is almost everywhere continuous and its image $h(\mathbb{R})$ is a discrete set.

Theorem 4. A function $f \in \mathcal{B}_u(\mathcal{A}_7)$ if and only if it is strongly cliquish at each point $x \in \mathbb{R}$.

PROOF. Assume, to the contrary, that there is a function $f \in \mathcal{B}_u(\mathcal{A}_7)$ such that there are a nonempty set $A \in \mathcal{T}_d$ and a positive real η with osc $f > \eta$ on $A \cap I$ for every open interval I such that $I \cap A \neq \emptyset$. Since $f \in \mathcal{B}_u(\mathcal{A}_7)$, there is a function $g \in \mathcal{A}_7$ such that $|f - g| < \eta/4$. For every open interval I such that $I \cap A \neq \emptyset$ we obtain that osc $g > \eta/2$ on the set $I \cap A$. But $g \in \mathcal{A}_7$, so there is an open interval I such that $I \cap A \neq \emptyset$ and $I \cap A \subset A(g)$ and osc $g < \eta/2$

on $I \cap A$. This contradiction shows that if $f \in \mathcal{B}_u(A_7)$, then f is s.c. at each point.

Now, suppose the function f is s.c. at each point $x \in \mathbb{R}$. Fix a positive real η . We shall prove that there is a function $g \in \mathcal{A}_7$ such that $|f - g| < \eta$. Let I_1 be an open interval with rational endpoints such that $\operatorname{osc} f < \eta$ on I_1 . Fix an ordinal number $\alpha > 1$ and suppose that for every ordinal number $\beta < \alpha$ there is an open interval I_β with rational endpoints such that $\mu(I_\beta \setminus G_\beta) > 0$, where $G_\beta = \bigcup_{\gamma < \beta} I_\gamma$, and $\operatorname{osc} f < \eta$ on the set

$$H_{\beta} = \{ x \in I_{\beta} \setminus G_{\beta}; d_l(I_{\beta} \setminus G_{\beta}, x) = 1 \}.$$

Since the function f is s.c. at every point, there is an open interval I_{α} with rational endpoints such that $\mu(I_{\alpha} \setminus G_{\alpha}) > 0$ and $\operatorname{osc} f < \eta$ on the set H_{α} . By transfinite induction we find a transfinite sequence of such open intervals $(I_{\alpha})_{\alpha < \alpha_0}$ with rational endpoints, where α_0 is the first ordinal number for which $\mu(\mathbb{R} \setminus G_{\alpha_0}) = 0$. Since the family of all open intervals with rational endpoints is countable, the ordinal number α_0 is also countable. For every $\alpha < \alpha_0$ we find a point $x_{\alpha} \in H_{\alpha}$ and let $g(x) = f(x_{\alpha})$ for $x \in H_{\alpha}$ and g(x) = f(x) otherwise on \mathbb{R} . If $x \in H_{\alpha}$, then

$$|f(x) - g(x)| = |f(x) - f(x_{\alpha})| < \eta.$$

In the remaining case f(x) = g(x), so $|f - g| < \eta$. For the completeness of the proof it suffices to show that the function $g \in \mathcal{A}_7$. For this, fix a nonempty set $A \in \mathcal{T}_d$ and a positive real ε . There is an ordinal number $\beta < \alpha_0$ such that $I_{\beta} \cap A \neq \emptyset$ and $I_{\alpha} \cap A = \emptyset$ for $\alpha < \beta$. Then $\emptyset \neq A \cap I_{\beta} \subset H_{\beta}$, since otherwise we have $G_{\beta} \cap A \neq \emptyset$, a contradiction. Consequently, $g(x) = f(x_{\beta})$ for each point $x \in I_{\beta} \cap A$. So, osc $f = 0 < \varepsilon$ on $I_{\beta} \cap A$.

Remark 7. The function f from the proof of Theorem 2 is such that $f \in \mathcal{A}_6 \setminus \mathcal{B}_u(\mathcal{A}_7)$, since $\operatorname{osc} f = 1$ on the sets $I \cap B$ for every open interval I with $I \cap B \neq \emptyset$.

Observe that if $f \in \mathcal{B}_u(\mathcal{A}_6)$, then f is measurable and the set $\mathbb{R} \setminus C(f)$ is of the first category. Moreover, if

ap-osc
$$f(x) = \inf\{\operatorname{osc}_A f; \emptyset \neq A \in \mathcal{T}_d, x \in A\},\$$

then we have the following.

Theorem 5. If a function f belongs to $\mathcal{B}_u(\mathcal{A}_6)$, then for every positive real η and for every nonempty set $A \in \mathcal{T}_d$ the set $\{x \in A; \operatorname{ap-osc} f(x) \geq \eta\}$ is nowhere dense in A.

PROOF. Assume, to the contrary, that there are a function $f \in \mathcal{B}_u(\mathcal{A}_6)$, a nonempty set $A \in \mathcal{T}_d$, and a positive real η such that for every open interval J with $J \cap A \neq \emptyset$ there is a point $x \in J \cap A$ at which ap-osc $f(x) \geq \eta$. Since $f \in \mathcal{B}_u(\mathcal{A}_6)$, there is a function $g \in \mathcal{A}_6$ such that $|f - g| < \eta/3$. Observe that if ap-osc $f(x) \geq \eta$, then ap-osc $g(x) \geq \eta/4$. So, for every open interval J with $J \cap A \neq \emptyset$ there is a point $x \in J \cap A$ at which ap-osc $g(x) \geq \eta/4$. But $g \in \mathcal{A}_6$, so there is an open interval J with $J \cap A \neq \emptyset$ and $J \cap A \subset A(f)$. Consequently, for each point $x \in J \cap A$ we obtain ap-osc $g(x) = 0 < \eta/4$, a contradiction. \square

Problem. Characterize the class $\mathcal{B}_u(\mathcal{A}_6)$.

Remark 8. Since every function $f \in A_2$ is measurable and every measurable function is the limit of a sequence of approximately quasi-continuous functions (which belong to A_2) ([6]), we obtain that $\mathcal{B}(A_2)$ is the family of all measurable functions.

In [8] Mauldin shows that $f \in \mathcal{B}(\mathcal{C}_{ae})$ if and only if there are a function g of Baire class 1 and an F_{σ} -set A of measure zero such that $\{x; f(x) \neq g(x)\} \subset A$.

Theorem 6. The equality $\mathcal{B}(A_5) = \mathcal{B}(C_{ae})$ is true.

PROOF. Since every $f \in \mathcal{A}_5$ belongs to \mathcal{C}_{ae} , by Mauldin's theorem we obtain the inclusion $\mathcal{B}(\mathcal{A}_5) \subset \mathcal{B}(\mathcal{C}_{ae})$. Let $f \in \mathcal{B}(\mathcal{C}_{ae})$ be a function. By Mauldin's theorem there are a function g of the first class of Baire and an F_{σ} -set A of measure zero such that $\{x; f(x) \neq g(x)\} \subset A$. Let h = f - g. Then h(x) = 0 for each point x which is not in A. There are closed sets A_n , $n = 1, 2, \ldots$, such that $A_1 \subset \ldots \subset A_n \subset \ldots$ and $A = \bigcup_n A_n$. For $n = 1, 2, \ldots$ let $h_n(x) = h(x)$ for $x \in A_n$ and let h(x) = 0 otherwise on \mathbb{R} . Since every set A_n , $n = 1, 2, \ldots$, is closed and of measure zero, it is nowhere dense and consequently every function $h_n \in \mathcal{A}_5$, $n = 1, 2, \ldots$ For the function g there is a sequence of continuous functions g_n , $n = 1, 2, \ldots$, such that $g = \lim_{n \to \infty} g_n$. Observe that every function $f_n = g_n + h_n$, $n = 1, 2, \ldots$, belongs to \mathcal{A}_5 as the sum of the continuous function g_n and the function h_n belonging to \mathcal{A}_5 . Since

$$f = g + h = \lim_{n} g_n + \lim_{n} h_n = \lim_{n} f_n,$$

the proof is complete.

In [5] the following theorem is proved.

Theorem 7. Let f be a function such that there is a Baire 1 function g such that for every positive real η and for each point x such that $|f(x) - g(x)| \ge \eta$ there is a closed interval I(x) containing x and such that $\mu(I(x) \setminus cl(\{t; |f(t) - g(t)| \ge \eta\})) = 0$. Then there is a sequence of functions $f_n \in Q_s$ such that $\lim_n f_n = f$.

Since every function g from Q_s is the limit of a sequence of functions from A_3 which uniformly converges to g, every function satisfying the hypothesis of the above theorem belongs to $\mathcal{B}(A_3)$.

We can prove the following.

Theorem 8. Let f be a function such that there are a Baire 1 function g and an F_{σ} set B of measure zero such that $\{t; f(t) \neq g(t)\} \subset B$ and for every positive real η and for each point x such that $|fx| - g(x)| \geq \eta$ the upper density $d_u(cl(\{t; |f(t) - g(t)| \geq \eta\}), x) = 0$. Then there is a sequence of functions $f_n \in \mathcal{A}_3$, $n = 1, 2, \ldots$, which converges to f.

PROOF. Let h = f - g and let $B = \bigcup_n B_n$, where every set B_i is closed and $B_i \subset B_{i+1}$ for $i = 1, 2, \ldots$ For $n = 1, 2, \ldots$ let $A_n = \{x; |h(x)| \ge 1/n\}$. Fix a positive integer n. By our hypothesis there is a family of disjoint closed intervals $I_{k,l,i}$, $k \le n$, $l, i = 1, 2, \ldots$ such that

- $-I_{1,l,i} \subset \mathbb{R} \setminus (\operatorname{cl}(A_n) \cap B) \text{ for } l, i \geq 1;$
- $I_{k,l,i} \subset \mathbb{R} \setminus \operatorname{cl}(A_n)$ for $1 < k \le n, l, i = 1, 2, \ldots$;
- for each $k \leq n$ the inclusion

$$I_{k,l,i} \subset A(\operatorname{cl}(A_k) \cap B_k, 1/k) (= \{t; \inf\{|u-t|; u \in \operatorname{cl}(A_k) \cap B_k\} \le 1/n\}$$

is true for l, i > 1;

- if $k \leq n$, $l \geq 1$ and $x \in \operatorname{cl}(A_k) \cap B_k$, then $d_u(\bigcup_{i=1}^{\infty} I_{k,l,i}, x) > 0$;
- for each $k \leq n$ and for each $x \in \mathbb{R} \setminus (A_k \cap B_k)$ there is an open set U containing x such that the set $\{(k, l, i); U \cap I_{k, l, i} \neq \emptyset\}$ is finite.

Next, in every interval $\operatorname{int}(I_{k,l,i}), k \leq n, l, i = 1, 2, \ldots$, we find a closed interval $J_{k,l,i}$ such that if $k \leq n, l \geq 1$ and $x \in \operatorname{cl}(A_k) \cap B_k$, then $d_u\left(\bigcup_{i=1}^{\infty} J_{k,l,i}, x\right)\right) > 0$. Let $(w_{1,l})_{l=1}^{\infty}$ be a sequence of all rationals with $w_{1,1} = 0$ and for k > 1 let $(w_{k,l})_{l=1}^{\infty}$ be a sequence of all rationals belonging to the interval [-1/(k-1), 1/(k-1)] with $w_{k,1} = 0$. Put

$$h_n(x) = \begin{cases} w_{k,l} & x \in J_{k,l,i}, k \le n, l, i \ge 1 \\ h(x) & x \in A_n \cap B_n \\ \text{linear on the components} \\ \text{of the sets } I_{k,l,i} \setminus J_{k,l,i}, & l, i \ge 1, \ k \le n \\ 0 & \text{otherwise on } \mathbb{R}. \end{cases}$$

180 Zbigniew Grande

Evidently, the function h_n is continuous at each point x which is not in $\operatorname{cl}(A_n) \cap B_n$. Fix a positive real η , a point $x \in \operatorname{cl}(A_n) \cap B_n$ and a set $A \in \mathcal{T}_d$ containing x. If there is an integer $k \leq n$ such that $x \in A_k \cap B_k$, then there is a rational $w_{k,l}$ such that $|h(x) - w_{k,l}| < \eta$. Since $d_u(\bigcup_i J_{k,l,i}, x) > 0$, there is an interval $J_{k,l,i}$ such that $J_{k,l,i} \cap A \neq \emptyset$. Every point $t \in A \cap J_{k,l,i}$ is a continuity point of h_n and

$$|h_n(t) - h_n(x)| = |w_{k,l} - h(x)| < \eta.$$

In the remaining case we obtain that $h_n(x) = 0$ and $x \in \operatorname{cl}(A_k) \cap B_k$ for some positive integer k. Since $w_{k,1} = 0$ and since $d_u(\bigcup_i J_{k,1,i}, x) > 0$, there is an interval $J_{k,1,i}$ such that $J_{k,1,i} \cap A \neq \emptyset$. For each point $t \in J_{k,1,i} \cap A$ the function h_n is continuous at t and $|h_n(t) - h_n(x)| = 0 < \eta$. So, $h_n \in \mathcal{A}_3$.

Now we will prove that $\lim_{n\to\infty}h_n=h$. If there is a positive integer n with $x\in A_n\cap B_n$, then $h_k(x)=h(x)$ for $k\geq n$. If not, we have h(x)=0. Fix a positive real η and a positive integer n with $1/n<\eta$. If $x\in\operatorname{cl}(A_m)\cap B_m$ for some positive integer m, then $h_k(x)=0$ for all $k\geq m$. So, we suppose that x is not in $\operatorname{cl}(A_m)\cap B_m$ for $m\geq 1$. Since x is not in the set $\operatorname{cl}(A_n)\cap B_n$, there is a positive integer m>n such that |x-y|>1/m for every point $y\in\operatorname{cl}(A_n)$. Consequently,

$$h_k(x) \le 1/(m-1) \le 1/n < \eta$$

for every $k \geq m$. This completes the proof that $h = \lim_{n \to \infty} h_n$.

Since g is a Baire 1 function, there is a sequence of continuous functions g_n such that $g = \lim_{n \to \infty} g_n$. Evidently, the functions $f_n = h_n + g_n$, n = 1, 2, ..., belong to the family \mathcal{A}_3 and

$$\lim_{n \to \infty} f_n = \lim_{n \to \infty} h_n + \lim_{n \to \infty} g_n = h + g = f.$$

Corollary 2. If the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is almost everywhere continuous, then $f \in \mathcal{B}(\mathcal{A}_3)$.

Denote by \mathcal{P}_s the family of all functions which are s.c. at each point. **Problem.** Is it true that $\mathcal{P}_s \cap \mathcal{B}(\mathcal{C}_{ae}) = \mathcal{B}(\mathcal{A}_3)$?

Now, we will investigate the transfinite convergence of sequences. Let ω_1 denote the first uncountable ordinal number. A transfinite sequence of functions f_{α} , $\alpha < \omega_1$, converges to a function $f(\lim_{\alpha} f_{\alpha} = f)$ if for each point x there is an ordinal number $\beta < \omega_1$ such that $f_{\alpha}(x) = f(x)$ for each countable ordinal $\alpha > \beta$.

Theorem 9. Let K be a family of functions such that if a function f is not in K, then there is a countable set A such that for every function $g \in K$ there is a point $x \in A$ with $g(x) \neq f(x)$. Then the limits of all converging transfinite sequences of functions from the family K belong to K.

PROOF. Let $(f_{\alpha}) \in \mathcal{K}$, $\alpha < \omega_1$, and let $\lim_{\alpha} f_{\alpha} = f$. Suppose, to the contrary, that f is not in \mathcal{K} . Then there is a countable set $A = \{x_1, x_2, \ldots\}$ such that for each function $g \in \mathcal{K}$ there is a point $x \in A$ with $g(x) \neq f(x)$. For each positive integer n there is a countable ordinal number β_n such that $f_{\alpha}(x_n) = f(x_n)$ for $\beta_n < \alpha < \omega_1$. There is a countable ordinal number β such that $\beta_n < \beta$ for all positive integers n. So, $f_{\beta}(x_n) = f(x_n)$ for $n = 1, 2, \ldots$ Since $f_{\beta} \in \mathcal{K}$, we obtain a contradiction.

Remark 9. Observe that the families P_s and A_i , i = 1, 3, 5, satisfy the hypothesis of the above Theorem 9.

PROOF. If f is not in A_i , i = 1 or 3 or 5, then every countable set A such that the set $\{(x, f(x)); x \in A\}$ is dense in the graph of the function f satisfies all requirements.

Theorem 10. Assume the Continuum Hypothesis HC. For every function f there is a transfinite sequence of functions $f_{\alpha} \in \mathcal{A}_2$, $\alpha < \omega_1$, such that $f = \lim_{\alpha} f_{\alpha}$.

PROOF. Let $(x_{\alpha})_{\alpha<\omega_1}$ be a transfinite sequence of all reals numbers. Fix an ordinal number $\alpha<\omega_1$ and let $(t_n)_n$ be a sequence of all numbers x_{β} with $\beta\leq\alpha$ such that $t_i\neq t_j$ for $i\neq j,\, i,j=1,2,\ldots$ For every positive integer n there are closed intervals $I_n,\, J_n$ and a closed set A_n such that

- t_n is an endpoint of I_n and J_n ;
- $-J_n \subset I_n \text{ and } |J_n| = |I_n|/2;$
- $-A_n \subset J_n \setminus \{t_k; k \neq n \text{ and } k = 1, 2, \ldots\};$
- $-I_n \cap A_k = \emptyset$ for k < n;
- $d_u(A_n, t_n) > 0;$
- $-\mu(A_n) < |J_n|/4^n.$

For a construction of such I_n , J_n and A_n it suffices to find a nowhere dense closed set

$$A_n \subset \mathbb{R} \setminus \bigcup_{k \neq n} \{t_k\} \setminus \bigcup_{k < n} A_k$$

such that $d_u(A_n, t_n) > 0$ and next fix some closed intervals I_n and J_n satisfying all requirements.

Denote by B_n the set of all points $t \in A_n$ at which $d_u(A_n, t) > 0$. Let

$$f_{\alpha}(x) = \begin{cases} f(t_n) & \text{if } x \in B_n, n = 1, 2, \dots \\ 0 & \text{otherwise on } \mathbb{R} \end{cases}$$

Then $f_{\alpha} \in \mathcal{A}_2$ and $f = \lim_{\alpha} f_{\alpha}$.

Theorem 11. If functions $f_{\alpha} \in \mathcal{A}_4$ for $\alpha < \omega_1$ and $f = \lim_{\alpha} f_{\alpha}$, then $f \in \mathcal{A}_4$.

PROOF. Assume, by a contrary, that f is not in A_4 . Since by Theorems 1, 9 and Remark 9 the function $f \in \mathcal{A}_1$, there are a positive real η , a point x and a set $A \in \mathcal{T}_d$ such that $x \in A$ and for every open interval I with $I \cap A \neq \emptyset$ and $f(I \cap A) \subset (f(x) - \eta, f(x) + \eta)$ there is a point $t \in I \cap A$ at which the function f is not approximately continuous. Let $(x_n)_n$ be a sequence of points such that the set $\{(x_n, f(x_n); n = 1, 2, ...\}$ is dense in the graph of the function f and for each open interval I with $I \cap A \neq \emptyset$ and $f(I \cap A) \subset (f(x) - \eta, f(x) + \eta)$ there is a point $x_{n(I)} \in I \cap A$ at which f is not approximately continuous. There is a countable ordinal number β such that $f_{\alpha}(x_n) = f(x_n)$ for all countable ordinal numbers $\alpha \geq \beta$ and $n = 1, 2, \ldots$ Consequently, the functions f and f_{β} are almost everywhere equal. Since $f \in \mathcal{A}_1$, there is an open interval I such that $I \cap A \neq \emptyset$ and $f(A \cap I) \subset (f(x) - \eta, f(x) + \eta)$. From the relation $f_{\beta} \in \mathcal{A}_4$ we obtain that there is an open interval $J \subset I$ such that $J \cap A \neq \emptyset$, $f_{\beta}(J\cap A)\subset (f(x)-\eta,f(x)+\eta)$ and the function f_{β} is approximately continuous at every point $t \in J \cap A$. Let a point $u = x_k \in A \cap J$ be such that the function f is not approximately continuous at u. Since $f_{\beta}(u) = f(u)$ and the functions f and f_{β} are equal at almost all points, the function f_{β} must be approximately continuous at u, a contradiction.

Observe that there are Baire 1 functions which are not in \mathcal{A}_6 . Since every Baire 1 function is the limit of a transfinite sequence of approximately continuous functions (see [7]), then the classes \mathcal{A}_i , i=6,7, are not closed under the transfinite convergence. But if a function f is the limit of a transfinite sequence of functions $f_{\alpha} \in \mathcal{A}_6$ ($f_{\alpha} \in \mathcal{A}_7$), then f is pointwise discontinuous (pointwise discontinuous on each nonempty set belonging to \mathcal{T}_d).

Problem. Characterize the functions being the limits of transfinite sequences of functions belonging to A_i , i = 6, 7.

References

[1] A. M. Bruckner, *Differentiation of real functions*, Lectures Notes in Math.659 (1978), Springer-Verlag.

- [2] R. O. Davies, Approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461–465.
- [3] Z. Grande, La mesurabilité des fonctions de deux variables et de la superposition F(x, f(x)), Dissert. Math. **159** (1978), 1–50.
- [4] Z. Grande, Measurability, quasicontinuity and cliquishness of functions of two variables, Real Analysis Exch. 20 No.2 (1994–95), 744–752.
- [5] Z. Grande, On strong quasi-continuity of functions of two variables, Real Analysis Exch. 21 No.1 (1995–96), 236–243.
- [6] Z. Grande, Sur la quasi-continuité et la quasi-continuité approximative, Fund. Math. 129 (1988), 167–172.
- [7] J. S. Lipiński, On transfinite sequences of mappings, Cas. pestovani matem. 101 (1976), 153–158.
- [8] R. D. Mauldin, The Baire order of the functions continuous almost everywhere, Proc. Amer. Math. Soc. 41 (1973), 535–540.
- [9] T. Neubrunn, Quasi-continuity, Real Anal. Exch. 14, No. 2, (1988–89), 259–306.