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THE DISTRIBUTION FUNCTION AND
MEASURE PRESERVING MAPS

Abstract

Existence of measure preserving maps has been discussed in books
on real analysis where the Axiom of Choice is instrumental. In this note
we introduce a method to construct such maps. For our construction we
use the distribution function and elementary differential equations.

1 Introduction.

The subject of measure preserving maps is addressed, for example, in [7], where
existence of such maps between complete separable metric spaces is proved by
applying the Axiom of Choice. So actual formulas of measure preserving maps
are not given, hence this would not be very appealing to students. In this
note, however, we introduce a method to construct infinitely many measure
preserving maps from Ω ⊆ Rn onto [0, 1]. Here Ω denotes a smooth and
bounded domain satisfying Ln(Ω) = 1, where Ln denotes the n-dimensional
Lebesgue measure in Rn. The tools we use are the distribution function in
conjunction with elementary differential equations.

The significance of measure preserving maps is partially due to their natu-
ral presence in real world phenomena. Here is an example from fluid mechan-
ics. Let us consider an incompressible fluid occupying a bounded region D in
R2. Denoting the velocity field of the flow by V , the motion of the flow is
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mathematically formulated by the following initial value problem:

(IV P ) :

{
d
dtφt(x) = V (φt(x)), in D
φ0(x) = x ∈ D.

The solution of the (IVP), φt(x), represents the trajectory along which the
fluid particle initially located at x travels. It is well known that φt : D → D
is a measure preserving map. In addition, φt is a diffeomorphism, if V is
smooth. It is also known that the vorticity function associated to the flow,
denoted ωt(x), is constant along the trajectory φt(x). As a consequence, ωt(x)
and ω0(x), the initial vorticity function, are equimeasurable in the sense that
they verify:

L2(ω−1
t (U)) = L2(ω−1

0 (U)),

for every Borel measurable set U in R. For a thorough discussion on measure
preserving maps in fluid mechanics the reader is referred to [1].

Another reason for the importance of measure preserving maps is that they
appear in polar factorization of integrable vector valued functions, a concept
that was introduced by Brenier, see [3] and [4], and may be interpreted as a
generalization of an idea due to Ryff [8]. Here we briefly describe the polar
factorization in a setting relevant to our purpose. Let u ∈ L1(X,µ;R) be an
integrable function defined on the measure space (X,µ), which is a measure-
interval, see [2] for definition. Let Y ⊆ R be a Lebesgue measurable set
satisfying L1(Y ) = µ(X). The monotone rearrangement of u on Y , denoted
u], is the function u] : Y → R that is a rearrangement of u, and satisfies
u] = ∇ψ, for some convex function ψ : R → R. Let us note in passing that
recently McCann [6] proved the uniqueness of the monotone rearrangement
u]. We say u has a polar factorization through Y if there exists a measure
preserving map s : (X,µ) → (Y,L1) such that u = u] ◦ s, almost everywhere
in X. An interesting result of Burton and Douglas [2] states that if u] is almost
injective then u has a unique polar factorization.

2 Preliminaries.

As mentioned above Ω is assumed to be a fixed smooth and bounded domain
in Rn with Ln(Ω) = 1. In case n = 1, we set Ω = [0, 1]. We begin by recalling
the following:

Definition. We say σ : Ω→ [0, 1] is a measure preserving map if

Ln(σ−1(A)) = L1(A),
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for every Borel set A ⊆ [0, 1]. Here σ−1 denotes the pre-image.
The following result is well known.

Proposition 1. Every measure preserving map σ : Ω → [0, 1] is surjective,
modulo sets of measure zero.

Proof. Observe that σ−1([0, 1] \ σ(Ω)) = ∅, hence Ln(σ−1([0, 1] \ σ(Ω)) = 0.
On the other hand, since σ is measure preserving, we have Ln(σ−1([0, 1] \
σ(Ω)) = L1([0, 1] \ σ(Ω)). Thus we obtain L1([0, 1] \ σ(Ω)) = 0. Whence
[0, 1] = σ(Ω), modulo a set of L1-measure zero.

For a (Lebesgue) measurable function u : Ω → R+ ≡ [0,∞), the function
λu(t) defined by

λu(t) = Ln({x ∈ Ω : u(x) ≥ t}), ∀t ≥ 0,

is called the distribution function of u. It is clear that λu(t) is non-increasing
and left continuous. Moreover, if u has no flat sections then λu(t) is continuous.

Definition. We say u : Ω → R+ has no flat sections if the graph of u
has (Lebesgue) negligible flat sections; that is,

Ln({x ∈ Ω : u(x) = α}) = 0, ∀α ≥ 0.

Lemma 1. Suppose u : Ω → R+ is continuous and has no flat sections.
Then λu : [um, uM ] → [0, 1] is a continuous bijection. Moreover, we have the
following ∫ 1

0

χE ◦ λ−1
u (t) dt =

∫
Ω

χE ◦ u(x) dx, (1)

for every E ⊆ [0, 1]. Here, um and uM denote the minimum and maximum
values of u over Ω, respectively. Also, χE indicates the characteristic function
of E; that is,

χE(t) =

{
1 t ∈ E
0 t /∈ E.

Proof. Since u has no flat sections it follows that λu(t) is continuous. On the
other hand, since u is continuous, we infer that λu(t) is decreasing. Finally,
observe that λu(um) = 1 and λu(uM ) = 0, hence λu(t) is a continuous bijection
from [un, uM ] onto [0, 1].

Now we prove (1). Consider E ⊆ [0, 1] and observe that χ
E
◦ λ−1

u (t) =
χ
λu(E)

(t). Thus, ∫ 1

0

χ
E
◦ λ−1

u (t) dt = L1(λu(E)). (2)
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Case 1. E = (a, b).

In this case L1(λu(E)) = L1([λu(b), λu(a)]), since λu(t) is continuous and
decreasing. Thus,

L1(λu(E)) = λu(a)− λu(b) = Ln({u ≥ a})− Ln({u ≥ b})
= Ln({a ≤ u < b}) = Ln({a < u < b}),

where in the last equality we have used the fact that u has no flat sections.
We now obtain

L1(λu(E)) = Ln(u−1((a, b))) =

∫
Ω

χ
u−1((a,b))

(x) dx

=

∫
Ω

χ
(a,b)
◦ u(x) dx =

∫
Ω

χ
E
◦ u(x) dx.

Therefore, from (2), we deduce (1).

Remark. It is clear from the above argument that the assertion in the lemma
also holds when E is any interval of the form [a, b), (a, b] or [a, b].

Case 2. E is an open subset of [0, 1].

Since any open subset of [0, 1] can be written as a disjoint union of inter-
vals of the form (a, b), [a, b), (a, b) and [a, b], the assertion follows immediately
from Case 1, and the proceeding remark.

Case 3. E is a Borel subset of [0, 1].

In this case we consider S = {F ⊆ [0, 1] : (1)is valid}. It is easy to see
that S is a σ-algebra. Hence, since S contains open sets, it must also contain
the Borel sets as well. This completes the proof of the lemma.

3 Main results.

Our main result is the following:

Theorem 1. Suppose u ∈ C(Ω) is a positive function that has no flat sections.
Then σ := λu ◦ u is a measure preserving map from Ω onto [0, 1].

Proof. Let us fix A ⊆ [0, 1]. Then

Ln(σ−1(A)) = Ln(u−1(λ−1
u (A))) =

∫
Ω

χ
u−1(λ

−1
u (A))

(x) dx,
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where u−1 denotes the pre-image. Thus,

Ln(σ−1(A)) =

∫
Ω

χ
λ
−1
u (A)

◦ u(x) dx =

∫
Ω

χ
λ
−1
u (A)

◦ λ−1
u (x) dx, (3)

where in the last equality we have used Lemma 2, which is applicable since
λ−1
u (A) is a Borel set, thanks to the continuity of λu. Note that χ

λ
−1
u (A)

◦
λ−1
u (x) = χA(x), hence∫

Ω

χ
λ
−1
u (A)

◦ λ−1
u (x) dx = L1(A). (4)

from (3) and (4) we infer Ln(σ−1(A)) = L1(A), hence σ is measure preserving.

Now using Theorem 1 we construct measure preserving maps. Let us first
consider the case n = 1, so Ω = [0, 1]. The following simple boundary value
problem helps us to construct infinitely many measure preserving maps from
[0, 1] onto [0, 1]:

(Pα,β)

{
−u′′ = 1 in (0, 1)
u(0) = α, u(1) = β,

where α, β are non-negative constants. Note that (Pα,β) has a unique solution
uα,β ∈ C2([0, 1]), which is non-negative and has no flat sections.

Example 1. Let α = 1, β = 0. In this case u(x) := u1,0(x) = −x2/2−x/2+1,
and λu(t) = (−1 +

√
9− 8t)/2, for t ∈ [0, 1]. Hence, σ(x) = x.

Example 2. Let α = 0, β = 1. In this case u(x) := u0,1(x) = −x2/2 + 3x/2,
and λu(t) = (−1 +

√
9− 8t)/2. Hence, σ(x) = 1− x.

Example 3. Let α = β = 0. In this case u(x) := u0,0(x) = −x2/2 + x2/2,
and λu(t) =

√
1− 8t, for 0 ≤ t ≤ 1/8. Hence, σ(x) = |1 − 2x|. Indeed, for

every Borel set A ⊆ [0, 1], we have

L1(σ−1(A)) =

∫
σ−1(A)

dx = 2

∫
σ−1
1 (A)

dx,

where σ1(x) = 1−2x. On the other hand, using the change of variable formula,
we obtain

∫
σ−1
1 (A)

dx =
∫
A

1
2 dx. Thus, L1(σ−1(A)) =

∫
A
dx = L1(A).

Clearly every pair (α, β) induces a measure preserving map σα,β . Our next
result shows that there are only two monotone measure preserving maps from
[0, 1] onto [0, 1]; namely, σ1(x) = x and σ2(x) = 1− x.
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Theorem 2. Suppose σ is a measure preserving map from [0, 1] onto [0, 1].
In addition, suppose σ is continuous and monotone, then either σ = x or
σ = 1− x.

Proof. We first assume σ is increasing. Since σ is surjective it follows that
σ(0) = 0 and σ(1) = 1. Consider x ∈ (0, 1), and let 0 < t be small enough to
ensure x+ t ∈ [0, 1]. Then clearly we have

σ(x+ t)− σ(x)

t
=

1

t
L1(σ([x, x+ t])) =

1

t
L1([x, x+ t]) = 1,

where in the second equality we have used the fact that since σ is bijective,
σ−1 is measure preserving from [0, 1] onto [0, 1] as well. Thus,

lim
t→0+

σ(x+ t)− σ(x)

t
= 1.

Similarly one can show

lim
t→0−

σ(x+ t)− σ(x)

t
= 1.

Hence σ′(x) = 1 in (0, 1). So, σ(x) = x + C. Recalling σ(0) = 0, we infer
C = 0, hence σ(x) = x, as desired. For the case when σ is decreasing, one
uses similar arguments as above and shows that σ′(x) = −1, so using the fact
that this time σ(0) = 1, we infer σ(x) = 1− x.

Example 4. Let B(0, R) denote the n-dimensional ball, n ≥ 2, centered
at the origin with radius R. We construct a measure preserving map from
B(0, R) onto [0, 1]. Let u be the unique solution of the following Saint-Venant
boundary value problem:{

−∆u = 1, in B(0, R)
u = 0, on ∂B(0, R),

where ∆ denotes the standard Laplacian operator; that is, ∆ =
∑n
i=1

∂2

∂x2
i
.

It is easy to see that u(x) = (R2 − ‖x‖2)/(2n), where ‖ · ‖2 stands for the
usual n-dimensional Euclidean distance. Note that u ≥ t is the ball centered
at the origin with radius

√
R2 − 2nt. Whence, λu(t) = ωn(R2 − 2nt)n/2,

where ωn denotes the volume of the unit n-ball. Thus λu ◦ u(x) = ωn‖x‖2.
To check that σ indeed is a measure preserving map, it suffices to show that
Ln(σ−1((a, b))) = b− a. But this follows from

Ln(σ−1((a, b))) = Ln
(
B(0, (

b

ωn
)1/n) \B(0, (

a

ωn
)1/n)

)
= b− a,
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as desired.

The above example can be generalized as follows.

Example 5. Let f(x) be a radial function on B(0, R); that is, f(x) = φ(r),
where r = ‖x‖2. We also assume f(x) is positive and smooth. Consider the
following boundary value problem:{

−∆u = f(x), in B(0, R)
u = 0, on ∂B(0, R).

It is well known, see for example [5], that

u(x) =
1

(nω
1/n
n )2

∫ ωnR
n

ωnrn
ξ

2
n−2

(∫ ξ

0

f∆(s) ds

)
dξ,

where f∆(s) is defined by

f∆(s) = inf{α ≥ 0 : λf (α) ≤ s}.

Therefore σ(x) = λu ◦ u(x) defines a measure preserving map from B(0, R)
onto [0, 1].

Remark. Note that the positiveness of f(x), in Example 5, guarantees that
u(x) has no flat sections.
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