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THE POINTWISE LIMIT OF SEPARATELY
CONTINUOUS FUNCTIONS

Abstract

The motivation for this paper is due to a question from Z. Piotrowski
on whether or not the “salt-and-pepper” function in the plane was the
pointwise limit of separately continuous functions. In this paper we an-
swer that question and then go on to investigate the sets D in the plane
such that χD is the pointwise limit of separately continuous functions.
We also look at all pointwise limits of separately continuous functions
and their place in the space of Baire Class 2 functions.

The functions we will deal with in this paper will be real functions, but we
note here that all the definitions apply in more general metric spaces.

Definition 1. Let f : R×R→ R. For a fixed value x, we define the x−section
of f by the function fx (y) = f (x, y). Similarly we can define the y−section of
f . We say a function f : R×R→ R is separately continuous if each x−section
and y−section is a continuous function.

This is not the same as continuity in the ordinary sense (referred to as
joint continuity) with the first counterexample appearing in the literature in
1873. This example is

f (x, y) =
{ 2xy

x2+y2 (x, y) 6= (0, 0)
0 (x, y) = (0, 0)

.

Another type of function we will use is the quasi-continuous function.
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Definition 2. We say f : R× R→ R is quasi-continuous at the point (x, y)
if for every ε > 0 and any nonempty open sets U and V with x ∈ U and y ∈ V
there exists open sets U0 ⊆ U and V0 ⊆ V with

f (U0 × V0) ⊆ (f (x, y)− ε, f (x, y) + ε) .

Furthermore, f is quasi-continuous if it is quasi-continuous at every point.

We will shortly use the following lemma.

Lemma 3. If a function f : R × R → R is separately continuous, then it is
quasi-continuous.

Our original papers on this subject were joint work with Z. Piotrowski (see
[5], [6], and [7]). Early on we defined planar approximable function and looked
at some characteristics of them. In the course of this, the following question
was asked:

Question: Can something like the “salt-and-pepper” function in the plane
be the pointwise limit of separately continuous functions? (By “salt-and-
pepper” for f : R× R→ R we mean χQ×Q.)

In this instance, the answer is, “No.” If that was true, then there exists
fn : R× R→ R each separately continuous such that fn (x, y) converges to 1
if x, y ∈ Q and 0 otherwise. But then if we let gn : R→ R be the restriction of
fn along the line y = 0 we have a sequence of continuous functions converging
to χQ, This is a contradiction since it is well-known that the characteristic
function of the rationals is not in Baire class one.

The problem above arises from the fact that for any horizontal or vertical
line in R × R, the intersection of the line and Q × Q is dense and co-dense.
There are many sets which are dense and co-dense in the plane yet meet every
line in exactly n (a fixed number) points. For more on n–sets see [1] and [2].
Could we construct such a sequence of functions for the characteristic function
of a dense n–set? Unfortunately the answer is no.

Theorem 4. Let D be a countable set dense in the plane. There does not
exist a sequence of separately continuous fn such that fn converges pointwise
to χD.

Proof. Let us enumerate D as {(ak, bk)} and assume there exists a se-
quence of separately continuous (hence quasi-continuous) fn such that fn con-
verges pointwise to the characteristic function of D. Look at (a1, b1). Since
fn (a1, b1)→ 1 there exists a natural number n1 such that for n > n1 we have
fn (a1, b1) > 1/2. Since fn1 is quasi-continuous there exists an open set E1

such that for all points (x, y) in the set fn1 (x, y) > 1/2.
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Now let (aj , bj) be the first element of D with j > 1 in the set E1. For
this point there exists a natural number n2 such that fn2 (aj , bj) > 1/2 and,
again, quasi-continuity implies there is an open set E2 ⊂ E1 such that for
all (x, y) ∈ E2, fn2 (x, y) > 1/2. Continuing in this manner we generate a
sequence of open sets En where En is open and there exists increasing mn

such that (aj , bj) /∈ En if j < mn and f (x, y) > 1/2, if (x, y) ∈ En. By the
Baire Category Theorem ∩En, where A denotes the closure of A, is non-empty.
Let (s, t) = ∩En. By our construction (s, t) /∈ D, but also by construction
fn (s, t) 9 0, a contradiction. Hence no such sequence exists.

We can rephrase this as follows. The proof is an application of 5.1.1 in [3].

Theorem 5. If f : R×R→ R is the pointwise limit of separately continuous
functions, then D (f), the set of points of discontinuity of f is of first category.

As is well-known ([9]), separately continuous functions are in the first class
of Baire (B1). So the pointwise limit of separately continuous functions that
we are looking at must be in Baire class two (B2). However, we would like to
be more precise. If we denote by S the pointwise limit of separately continuous
functions, is S really a subset of B2 or is it possible that we really have a subset
of B1? If S ⊂ B2 how big is it in the space of the B2 functions? Since the
original problem dealt with a characteristic function of a set, how are these
questions answered if we insist the limit function is χA for some set A ⊂ R×R?

Example 6. There exists a function F : R × R → R which is the pointwise
limit of separately continuous functions, but is not Baire class one.

Proof. In order to create this function we need to define a few tools. First,
define the function gr : R× R→ R by

gr (x, y) =

 exp
(

x2 + y2

x2 + y2 − r2

)
x2 + y2 < r2

0 otherwise

where r > 0. This function g is continuous and reaches it’s maximum (one)
at the origin. Secondly, let A ⊂ R be the set [−5π/6,−2π/3]∪ [−π/3,−π/6]∪
[π/6, π/3] ∪ [2π/3, 5π/6] . We’ll have C denote the Cantor ternary set in the
real line and K = {kn}, the set of endpoints of the intervals removed in
constructing C. Lastly, define the function f : R×R→ R as follows: if x = 0
or y = 0, then f (x, y) = 1, if arctan (y/x) ∈ A, then f (x, y) = 0, on the rest
of the plane, continuously connect the graph to previously defined pieces using
horizontal and vertical lines. Thus we have a function f which is continuous
everywhere except the origin and there it is separately continuous.
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Now we create a sequence of functions Fn : R × R → R in this manner:
Let F1 (x, y) = gr1 (x− k1, y − k1) · f (x− k1, y − k1) where r1 is chosen so

that the support of f1 does not intersect the x−axis. Assume that Fn has
been defined. Then

Fn+1 (x, y) = Fn (x, y) + grn+1 (x− kn+1, y − kn+1) · f (x− kn+1, y − kn+1)

where rn+1 is chosen so that the support of grn+1 · fn+1 does not intersect the
support of Fn. Each Fn is the finite sum of separately continuous functions,
hence separately continuous. Define F (x, y) as the limit of Fn (x, y). We claim
this function is not separately continuous. We will show this by demonstrating
that it is not in Baire class one. A necessary and sufficient condition for a
function f to be Baire class one is for any perfect set P , the restriction of the
function to P , f |P , has a point of continuity. Let C̃ = {(x, x) |x ∈ C} By our
construction F | eC has no point of continuity since all F (kn, kn) have value one
and all other points have value zero.

Corollary 7. There exists a function F̃ : R × R → R which is the pointwise
limit of separately continuous functions, but is not separately continuous.

Corollary 8. There exists a set D so that χD is the pointwise limit of sepa-
rately continuous functions, but χD is not Baire class one.

Proof. Let F̃n (x, y) =
n∑

m=1
grm/n (x− km, y − km)·f (x− km, y − km). Then

D = {(kn, kn)} .

Because separately continuous functions are automatically quasi-continuous,
we need the following example to show that these pointwise limits escape the
quasi-continuous functions.

Example 9. The function χ(0,0) : R× R→ R which is the pointwise limit of
continuous functions (hence limit of separately continuous functions) which is
not quasi-continuous.

In the other direction, there is a quasi-continuous function which is not the
pointwise limit of separately continuous functions.

Example 10. Define g (x, y) by

g (x, y) =


0 x < 1/2
1 x > 1/2
0 x = 1/2 and y /∈ Q
1 x = 1/2 and y ∈ Q

.
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It is easy to see that since it is constant on the half-planes x > 1/2 and x < 1/2
that it is quasi-continuous and since g|x=1/2 is the characteristic function of
the rationals g is not the pointwise limit of separately continuous functions.

The “obvious” question about these characteristic functions which are the
pointwise limit of separately continuous functions is, “What sets D have χD
as the pointwise limit of separately continuous functions?” We formalize this
below.

Problem 11. Does there exist a characterization of the sets D in the plane
such that χD is the pointwise limit of separately continuous functions?

The answer is not yet known.
We now turn to describing the functions which are the pointwise limit of

separately continuous fn. The plus topology in the plane is found as follows:

Definition 12. The ε-plus at (a, b) of radius ε > 0 is

B+
ε (a, b) = {(x, b) : |x− a| < ε} ∪ {(a, y) : |y − b| < ε} .

Definition 13. A set B ⊂ R×R is separately open if for each point (a, b) ∈ G
there exists ε > 0 such that B+

ε (a, b) ⊂ G. A set is separately closed if its
complement is separately open.

The canonical example of a set which is separately open, but not open in
the usual (Euclidean) metric is the so-called Maltese Cross given by

A = (0, 0) ∪ {(x, y) : |y| > |3x|} ∪ {(x, y) : |y| > |x/3|} .

We will do the obvious and refer to a set as separately Gδ if the set can be
written as the countable intersection of separately open sets and separately
Fσ if it can be written as the countable union of separately closed sets. For
a discussion on separately Gδ versus Euclidean Gδ see [8]. Using the standard
argument that for a real number a and f the pointwise limit of separately
continuous fn

{x : f (x) < a} = ∪∞k=1 (∪∞m=1 (∩∞n=m {x : fn (x) ≤ a− 1/k}))

we can say the following:

Theorem 14. A function f : R× R → R is the pointwise limit of separately
continuous functions if the inverse image of every open set in R is a separately
Fσ set.
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However, this is a little distasteful since separately open/closed is not a
well-known idea. This brings us to the open question

Problem 15. Is there a way to describe the f : R × R → R which are the
pointwise limit of separately continuous functions in terms of f−1 (U) (where
U is an open set in R) in terms of Euclidean open sets?

Our next result shows that in the space of Baire two functions equipped
with the sup norm these limits form a very small set. When we say small
we are talking in terms of porosity which we shall now define for any metric
space.

Definition 16. Suppose (X, d) is a metric space. The open ball with center
x ∈ X and radius r > 0 will be denoted by B (x, r) .Let M ⊂ X, x ∈ X, and
R > 0. Then we denote the supremum of the set of all r > 0 for which there
exists z ∈ X such that

B (z, r) ⊂ B (x,R) and B (z, r) ∩M = ∅

by γ (x,R,M) . The number

p (M,x) = lim sup
R→0+

2γ (x,R,M)
R

is called the porosity of M at x. The value of p (M,x) is between 0 and 1.
If p (M,x) = 0, then M is non-porous at x while if p (M,x) = 1, then M is
strongly porous at x. At set is (strongly) porous if it is (strongly) porous at
each of its points. Sets that are porous are nowhere dense (and measure zero
if X has a measure on it). For more about porosity see [10].

Theorem 17. The set S consisting of pointwise limits of separately continuous
functions is a porous subset of the set of Baire class two functions, B2.

Proof. Let f : R×R→ R be a Baire class 2 function and let ε > 0 be given.
Fix the y−value at y = 0 and look at f0 : R→ R given by f0 (x) = f (x, 0) .

For each x ∈ R define g0 (x) to be 1
2

(
lim sup
t→x

f0 (t) + lim inf
t→x

f0 (t)
)

if the

value is finite and lim sup
t→x

f0 (t) ≥ f (x) ≥ lim inf
t→x

f0 (t), otherwise g0 (x) =

f0 (x). Let A = {x ∈ R|f (x) ≥ g (x)} and let B = {x ∈ R|f (x) ≤ g (x)}.
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Then pick Ã and B̃, both countable and dense in R, such that Ã ⊆ A and
B̃ ⊆ B. Define g : R× R→ R by

g (x, y) =


f (x, y) y 6= 0
f0 (x, y) + ε

4 y = 0, x ∈ Ã
f0 (x, y)− ε

4 y = 0, x ∈ B̃
f0 (x, y) y = 0 and x /∈ A ∪B

.

Then g is Baire class 2 and in the open ball about f with radius ε. However, if
we take h in the ball about g with radius ε

4 we see that h cannot be in the set
S because h (x, 0) is not Baire class 1 since h (x, 0) has no point of continuity.
Thus

p (S, f) ≥ 2
ε/4
ε

> 0.

Corollary 18. The set S is nowhere dense in B2.

Finally, we note here, just to contrast this type of sparseness, that since
there are c many separately continuous functions [4] and c many Baire class
two functions, the cardinality of S is c.
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