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Abstract

Let f be an interval map in a neighborhood of the fixed point 0 with
-1 < X = f/(0) < 0. Continuity of f is not assumed at points other
than the fixed point. It is shown that if either

fof(x)>Nzor fof(x) <Nz

for each z in a neighborhood of 0, then the Koenigs’ sequence {¢x}

k
borhood of 0 with ¢(0) = 0 and ¢'(0) = 1. Two examples are presented,
the first of which is a C* map f with f(0) =0 and —1 < f'(0) < 0 hav-
ing a divergent Koenigs’ sequence. The other example is a C'' convex
map g with g(0) = 0 and 0 < ¢'(0) < 1 for which the associated Koenigs’
sequence diverges and which has no orientation-reversing composition
square root that is differentiable at 0.

k
defined by ¢x(z) = ! )\(I) converges uniformly to a limit ¢ in a neigh-

1 Introduction

The Koenigs’ sequence {¢y} associated with an interval map f : I — I with

k
fixed point 0 in I and 0 < |f'(0)] < 1 is defined by ¢y (z) = (‘;/(g;;k for each
x € I, where f* denotes the k’th iterate of f. Our present study concentrates
on an interval map f : I — I with fixed point 0 in [ and —1 < A = f/(0) < 0.
It is well-known that Koenigs’ sequence converges on a local neighborhood

of 0if f € C'*€ for some € > 0. It is also well-known that f € C' is insufficient
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to guarantee convergence of Koenigs’ sequence. We are interested in finding
general conditions on f that ensure convergence of Koenigs’ sequence on a
neighborhood of 0. The limiting behavior of Koenigs’ sequence is dependent
on an interplay of the orbits of f and f2. We show that when either

fof(x)=Naor fof(x) <N

on a neighborhood of 0, then Koenigs’ sequence converges uniformly on a
neighborhood of 0 to a limit ¢ with ¢(0) = 0 and ¢’(0) = 1. Furthermore,
it is shown that ¢ is invertible on each orbit of f in a neighborhood of 0.
Consequently, since ¢ satisfies the Schroder equation

po f(x) = Ap(x), (1)

it conjugates f orbitwise to its linearization Az that is, po fo ¢~ (x) = \x.
Another interest in studying convergence properties of Koenigs’ sequences

is the problem of existence of iterative roots. Consider a map g having fixed

point 0 with 0 < A2 = ¢/(0) < 1 and —1 < X < 0. Suppose g satisfies either

g(x) > Nz or g(z) < Nz

on a neighborhood of 0, and let f be an orientation-reversing iterative square
root of g. A necessary condition for such an f to be differentiable at the fixed
point 0, with A = f7(0), is that the limit ¢ of the Koenigs’ sequence for g
satisfy the Schroder equation as it appears in (1) on a neighborhood of 0.

1.1 Koenigs’ Sequences

Suppose f: X — C' is an analytic function where X is a neighborhood of the
origin in the complex plane, f(0) = 0, and 0 < |f'(0)] < 1. G. Koenigs [3]
showed that the Schréder equation [4], ¢ o f(2) = A ¢(z) where A is a scalar,
has a unique local analytic solution ¢ given by

- fR(2)
:kILH;o Ak

’ (2)

where A = f/(0), ¢(0) = 0, and ¢’(0) = 1. The sequence {¢y} is the Koenigs’
sequence for f. The Schroder equation was introduced in a more general form
by E. Schréder in 1871 [6] and has since been studied extensively ; traditionally
because of its connection with the problem of continuous iteration (see [9], p.
31). The Schroder equation is an eigenvalue equation of a composition opera-
tor. If ¢ is an invertible solution of the Schréder equation, then ¢ conjugates f
to its linearization Az that is, ¢po fop~1(2) = Az. There are numerous results

6(z) = Jlim u(2)
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concerning solutions of the Schréder equation and associated convergence of
Koenigs’ sequences. A number of authors [8], [4], [7], have considered the case
when f is an interval map. These results pertain to maps that are continuous
and strictly increasing on a neighborhood of the fixed point.

There is an independent motivation for investigating the limiting behav-
ior of Koenigs’ sequences [2]. The problem of obtaining smooth solutions of
the Feigenbaum-Cvitanovi¢ functional equation is related to the problem of
determining sufficient conditions on an interval self-map f to ensure conver-
gence of Koenigs’ sequence on a neighborhood of a stable fixed point 0 when
—1 < f(0) < 0. For a good introduction to this equation see [5].

2 Stable Fixed Points

Throughout this paper, I shall denote an interval of the reals of finite positive
length and will be regarded as the underlying topological space. If 0 € I, then a
neighborhood 7(0) shall refer to a subinterval of I having 0 as an interior point,
with corresponding left-neighborhood defined by = (0) = n(0)N{z € I|lz < 0}
and right-neighborhood 1% (0) similarly defined. We begin with a result that
identifies an important class of functions.

Lemma 2.1. Let f: 1 — I with0 €I and f(0) =0. Let A and € > 0 satisfy
—1<A£e<0. Then
f(z)

A—e< 7 <A+e (3)
for each = # 0 if and only if the orbits of f have the following properties :

1. If x <0, then x(\ + )2+ < f28+1(2) < 2(\ — &)?k*! for each k > 0,
and x(\ — €)%k < f2*(z) < 2(\ +€)?* for each k > 0.

2. If x>0, then z(\ — )21 < f2+1(2) < (XA +¢)?**! for each k > 0,
and x(\ + €)%k < f2¢(z) < z(\ — €)?* for each k > 0.

PROOF. Assume that (3) holds for each € T\{0}. It follows from (3), the
f-invariance of I, and the choice of ¢, that

0<z(A+e)< f(z) <z(A—eg) <]z (4)
for each z € I7(0), and
—lz] <z(A—¢) < flz) <z(A+e) <0 (5)

for each z € I(0). Successively applying (4) and (5) yields 1.) and 2.). The
converse follows from 1.) and 2.) with & = 0. O
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If f: 1 — I has a fixed point 0 € I with —1 < f/(0) < 0, then there
is an f-invariant neighborhood 7(0) for which f satisfies the conclusions of
Lemma 2.1 with A = f/(0). We now present a corresponding lemma for in-
terval self-maps where the trajectories converge to the stable fixed point in a
monotonic manner. In the following lemma, if 7~ (0) or I7(0) is empty, then
it is understood that the result is only valid for the one-sided neighborhood of
0.

Lemma 2.2. Let f: 1 — T with0 €I and f(0) =0. Let A and € > 0 satisfy
0<Ate<l Then A—e < @ < A+ ¢ for each x # 0 if and only if the
orbits of f have the following properties :

1. Ifx <0, then x(A +&)* < fk(x) < (X — €)* for each k > 0.
2. If x>0, then z(A\ — )k < fF(z) < z(A + &)k for each k > 0.

PrOOF. For the given 0 < A < 1 and € > 0 assume that (3) holds for each
x € I\{0}. It follows from (3) and the choice of € that

r<zAt+e)< flz)<axz(A—e) <0 (6)
for each x € I7(0), and

O<z(A—¢) < f(z) <z(A+¢e) <z (7)
for each @ € I7(0). Successively applying (6) and (7) yields 1.) and 2.). The

converse follows from 1.) and 2.) with k& = 1. O

If f: 1 — I has a fixed point 0 € I with 0 < f’(0) < 1, then there is an f-
invariant neighborhood 7(0) wherein f satisfies the conclusions of Lemma 2.2
with A = f/(0). Functions satisfying either Lemma 2.1 or Lemma 2.2 will be
referred to as being 0-local.

Definition 2.3. A function f is 0-local on I if f : I — 1,0 € I, f(0) =0,
and there is a A and € > 0 satisfying 0 < |\| £ & < 1 such that
f(z)

A—e< =2 < A+e¢
T

for each x # 0.

The notion of c-locality can be defined in a similar manner for any real c.
At times, it will be necessary to specify that f is 0-local on I with A and the
given €. The next result, which follows from the definition, presents a useful
property of 0-local functions.
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Proposition 2.4. If f is 0-local on I with A, then f™ is 0-local on I with A™
for each n > 0.

A function satisfying the conditions of Lemma 2.1 is a strictly decreasing
function of its orbits, and a function satisfying the conditions of Lemma 2.2 is
a strictly increasing function of its orbits. The following lemma is an improve-
ment of Lemma 2.1 and Lemma 2.2 for interval maps that are differentiable
at the fixed point.

Lemma 2.5. Let f be 0-local on I with A = f'(0) and . Then there is a

sequence of functions {7, }3%, such that f*(z) = mHﬁ:l()\ + 7,(x)) for each
x €I and k > 0, where 7, : [ — (—¢,¢ ), 7,(0) = 0, 71 s continuous at 0,

and Tk 0 uniformly on I.

PRrROOF. Define

fUA ) , :
re(2) = W—A, if e I\{0};
0, if =0,

and note that 741 = 74 o f for each k > 0. The formula for f*(z) is verified
by substitution of the given formula for 7,. We conclude from Lemma 2.1
and Lemma 2.2 that 7y *0 uniformly on I. The 0-locality of f and the
differentiability of f at 0 imply that 75 is continuous at 0. O

The final lemma of this section provides a means of constructing and rep-
resenting a function in the form stated in the preceding lemma.

Lemma 2.6. Lete >0,0< |\ *e<1, andlet 7:1 — (—e,¢) with 0 € I,
7(0) =0, and T continuous at 0. If

f(@) =2(A+7(2)) (8)

for each x € I, then f is 0-local on I with A = f'(0) and e. Let 1 = 7
and Ti41 = Tk o f for each k > 0. Then f*(x) = le]f:l(/\ + 7,(x)) for each
x €1l and k > 0, where 7y, : I — (—¢,¢ ), 17(0)=0, 71 is continuous at 0, and

Tk 50 uniformly on I.

PROOF. Since (8) holds for each = € I,

T(m):{ @—A, it o I\{0}:
0, if x=0.
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By assumption 7: I — (—¢,¢ ) and 7 is continuous at 0. Consequently, (3)
holds for each = € I'\{0} with A = f’(0). It follows that f is O-local on I with
A= f'(0) and e. Since {73}, satisfies the recursion formula 74,41 = 7 o f,
the proof is complete. O

Lemma 2.6 will be used to construct an interval map for which the associ-
ated Koenigs’ sequence diverges everywhere except at the fixed point.

3 Convex Functions and Stable Fixed Points

A study of the convexity relationship between an interval self-map and its
second iterate in a neighborhood of a stable fixed point will be useful for
establishing sufficient conditions for convergence of Koenigs’ sequences. We
begin with a result that reveals a convexity relationship between a twice dif-
ferentiable function f and its second iterate f2 in a neighborhood of a stable
fixed point 0 when —1 < f(0) < 0.

Proposition 3.1. Let f: I — I be twice differentiable with 0 € I, f(0) =0,
-1 < f(0) < 0, and f"(0) > 0. If f" is continuous at O, then there is a
neighborhood of 0 wherein f is strictly convex and f? is strictly concave.

Proor. If g = f2, then ¢”(0) = f/(0)f”(0)(1 + f'(0)) and therefore f”(0)
and ¢'/(0) have opposite signs. Since f”(0) > 0 and f” is continuous at 0,
there is a neighborhood of 0 wherein f”(z) > 0 and ¢’ (z) < 0. O

The proof of Proposition 3.1 yields the following related result.

Proposition 3.2. Let f : I — I be twice differentiable with 0 € I, f(0) =0,
either f'(0) < =1 or f'(0) > 0, and f”(0) > 0. If f” is continuous at 0, then
there is a neighborhood of 0 wherein f and f2 are both strictly convex.

If f”(x) > 0 for each x in a neighborhood of 0 but f” is discontinuous at
0, then the conclusion of Proposition 3.1 is no longer ensured. The following
example illustrates this fact.

Example 3.3. Let

B o(z/2+ p), if <0;
f(z) —{ 2(x/2+ p) + p [ 2 sin (1/t)dt, if x>0,

where —1 < <0 and 1+ p < p < 1. Therefore,

Fx) = w4+, if x <0;
w4z + pr?sin (1/z), if 2 >0,



INTERVAL MAPS AND KOENIGS’ SEQUENCES 211

and
(@) = L if 2 <0;
| 14 2pzsin(1l/z) —pcos(1/x), if x>0.
Clearly f is strictly convez for x <0, and f"(z) > 1 — p — 2px for each x > 0.
Since p < 1, there is a 6 > 0 such that f"'(x) > 0 for each x € [—6,0]. Let f
be 0-local on n(0) C [=4,6]. Then pu = f'(0), f" is discontinuous at 0, and f
is strictly convex on n(0). Let g = f? and let xy = 1/2km for k > 0. Then

9" (@) =" (f (@) (f (2x)? + £ (x) £ (f ()
=(u+ 1) + (1= p)(pu+ f(a1))
Hop(L 4 —p) >0,

and therefore there is a K > 0 such that g"(zx) > 0 for each k > K. Thus f>
is nmot concave on any neighborhood of the fixed point 0.

The following proposition is closely associated with convergence of both
{¢r} and {¢}.} on a neighborhood of the fixed point 0.

Proposition 3.4. Let f: T — T with0 €I, f(0) =0, -1 <X = f'(0) <0,
and f"(0) > 0. Then there is a neighborhood n(0) wherein

\x < f(z) and fo f(x) < Nz
for each x # 0.

PrROOF. Since f”(0) > 0, there is a neighborhood ¢(0) wherein f'(z) < \ for
each x € (7 (0) and X < f’(z) for each z € (T(0). It follows from the Mean
Value Theorem that Az < f(z) for each x € ((0\{0}. If g = f2, theng: I — I
with g(0) = 0, 0 < A% = ¢/(0) < 1, and ¢”(0) = f/(0)f”(0)(1 + f/(0)) < 0.
Proceeding in a manner similar to the above shows that there is a neighborhood
1(0) C¢(0) with the required properties. O

The next proposition presents conditions under which concavity of f2 im-
plies convexity of f.

Proposition 3.5. Let f: I —I1,0€ I, f(0) =0, =1 < f/(0) <0, and let f
be differentiable with f' continuous at 0. If f? is concave on a neighborhood
of 0, then f is convex on a neighborhood of 0.

PROOF. Let f be 0-local on n(0) with f/(x) < 0 for each # € n(0) and f?
concave on 7)(0). Let z,y € n~(0) and z < y. We will show that f'(z) < f'(y).
Since (2)'(y) < (f2)/(z), we have

FW)F (W) < f'@)f(f(x)), and therefore ; :
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Furthermore since (f2)(f(x)) < () (f(y)), it follows that

) _ f @)
@) = P W)

(@) .
f

P @) (@) < £ ) () and o)

<

Continuing in this manner we obtain

1 1 £2k—1 1( £2k 1( 2k
) PO @) S0 PER)
i) = P Ny)) — R @) T ke f1(fPR ()
where in taking the limit we used the fact that f’ is continuous at 0. We
conclude that f'(z) < f(y). Similarly, it can be shown that if z,y € n7(0)
and z < y, then f'(z) < f'(y). The continuity of f’ at 0 implies that f’ is
increasing on 7(0). O

The proof of Proposition 3.5 shows that if f? is strictly concave on a
neighborhood of 0, then f is strictly convex on a neighborhood of 0. The
proof also indicates that with the additional assumptions that f is 0-local on
I and f’(z) < 0 for each z € I, then f2 concave on I implies that f is convex
on I. Some interesting aspects of Proposition 3.5 are highlighted in the next
example.

Example 3.6. Let —1 < pu < 0, let a, (B be positive real numbers, and let

| zlax+p), if x<O0;
flw) = { x(fzx+p), if x>0.

Then f(0) =0, f'(0) = u, and f' is continuous. We are led to the following
conclusions :

1. If a/B € (0,|p]) U(1/|p|, 00), then there is an f-invariant neighborhood
1(0) for which f is strictly convex and f" exists and is bounded on n(0)\
{0} ; however, f? is not concave on any neighborhood of 0. Note that
1"(0) does not exist.

2. If /B € (|u|,1/|u|), then there is an f-invariant neighborhood 1n(0) for
which f? is strictly concave, f is strictly convex, and f" exists and is
bounded on 1n(0)\{0}. Note that f'(0) exists if and only if « = 3.

The proof of Proposition 3.5 yields the following result.

Proposition 3.7. Let f: I — 1,01, f(0)=0,0< f'(0) <1, and let f be
differentiable with f' continuous at 0. If f? is concave on a neighborhood of
0, then f is concave on a neighborhood of 0.

Note that under the assumptions of Proposition 3.7 if f? is strictly concave
on a neighborhood of 0, then f is strictly concave on a neighborhood of 0.
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4 A Preliminary Result

Consider a 0-local map g on I with 0 € I° and 0 < ¢’(0) < 1. If fo f = g, then
f is referred to as an iterative square root of g. An iterative square root f is
orientation-reversing if f(1~(0)) C 1" (0) and f(I7(0))CI~(0). The existence
of an orientation-reversing iterative square root of g is closely associated with
convergence of Koenigs’ sequences. We will now present a result that will lead
to a description of sufficient conditions for uniform convergence of Koenigs’
sequences. Note that D~ f and D f refer to the derivates of f defined by

D™ f(z) = limsup fy) = fl@) and D4 f(xz) = liminf o) =f@),
Yy—x— y—x y—at y—x
Lemma 4.1. Let g be 0-local on I with0 € I°,0 < \? = ¢’(0) < 1, and g(z) <
A2z for each x € I. If f is an orientation-reversing iterative square Toot of
g, then f(x)/x is increasing on each of the orbits of g. If D~ f(0) < D4 f(0),
then f(x)/x is increasing on each of the orbits of f.

PROOF. We first prove that f(x)/x is increasing on the orbits of g on I—(0).
If x € I=(0), then

o) oo of@)
R 9 ©)
and multiplying (9) by f(x)/g(z) gives
f) o) o fa) P fel)
e S gl NI ST S T = N

The result follows from the latter inequality in (10) since x < f?(z) = g(x).
The proof that f(z)/x is increasing on each of the orbits of g on I7(0) is
similar, except that we consider an z € It (0) and each of the above inequalities
is reversed.

With the additional assumption that D~ f(0) < D4 f(0), we will now show
that f(x)/x is increasing on each of the orbits of f on I. It is sufficient to
consider the orbit of an arbitrary x € I—(0):

f f% _ f f2k+1
for some real numbers p and p. The conclusion follows. 0

Under the assumptions of Lemma 4.1 if f is differentiable at the fixed
point, then f(x)/z is increasing on each of the orbits of f. Note however that
we can’t conclude that f is O-local on the entire interval I. If in the statement
of Lemma 4.1 one assumes that g(z) > A2z for each x € I, then f(z)/x is a
decreasing function of the orbits of g.
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5 Convergence of Koenigs’ Sequences

If fis O-local on I with —1 < f’(0) < 0, then ¢x(z) < 0 for each = < 0,
¢1(0) = 0, ¢(z) > 0 for each z > 0, and ¢y, is strictly increasing on each of
the orbits of f on I. Thus, if {¢r} converges to a limit ¢, then ¢(0) = 0 and,
as we shall see, ¢ is strictly increasing on each of the orbits of f on I. We now
present the principal result.

Theorem 5.1. Let f be defined on a neighborhood of 0 with f(0) = 0 and
-1 < X = f(0) < 0. If either fo f(z) < Nz or fo f(z) > Nz on a
neighborhood of 0, then Koenigs’ sequence converges uniformly to a limit ¢
on a neighborhood of 0 with ¢(0) =0 and ¢'(0) = 1. The limit ¢ is invertible
on each orbit of f in a neighborhood of 0 and conjugates f orbitwise to its
linearization \x, that is o fo ™l (x) = \x.

PrROOF. We assume without loss of generality that f is O-local on I with e.
We present the proof only for the case when f o f(z) < A2z for each z € I.
The proof for the other case is similar. Let € I~ (0). Since f satisfies the
conditions of Lemma 4.1 and f is differentiable at 0, it follows that

2k 2k+1
FUP@) ey S0P @)
f2* () fH ()
where the convergence is uniform on I~ (0). Consequently, for each k > 0 we
have

(11)

AP () P @) ()
W <A, A< fzk(m;” and fzk(;) <A (12)
Multiplication of the first inequality in (12) by f2++1(2)/\2k+3 gives
P2k41(2) < Parts () (13)

for each k > 0. Similar manipulation of the latter two inequalities in (12)
shows that for each k > 0,

Par+2(2) < Por(x) and Gap41(x) < Por(w) . (14)
Dividing (11) by A yields
SN /N e FUPR@)/A

@ T )
and equivalently
Pour2(2) 4y P21(T)
b2k+1(2) i Por () (15)
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where the convergence is uniform on I~ (0). We conclude from (13), (14), and
(15), that limy 00 ¢r(z) = ¢(z) exists and

bort1(x) ¥ () & dor(x) (16)

for each « € I~(0). To prove that the convergence in (16) is uniform on 7~(0)
we consider

$21(w) — darr(2) = [me(@)|[1 - 2221, (17)
Pk (z)
Since f is 0-local on I with ¢, then
f@)| _lalle = Al _HZ(O)lle = Al
(o) < o) =| B2 P Al IEOREZAL

Let § > 0 be given. It follows from the uniform convergence in (15) that there
Pon+1()

is a K(0) > 0 such that
A
“om) | 5<|I-<o>|e— A|> 19)

for every z € I=(0) and k > K. We conclude from (16), (17), (18), and (19),
that ¢ag () — arr1(x) < d for every x € I~ (0) and k > K. Since ¢y (0) = 0 for
each k > 0, ¢(0) = 0. The proof that {¢;} converges uniformly on 7~ (0)U{0}
is complete. In an entirely similar manner it can be shown that {¢y} converges
uniformly on I(0) U {0}. The fact that ¢ (z) < ¢(x) < ¢o(x) for each z € T
and ¢ (0) = 1 = ¢;(0) shows that ¢'(0) = 1.

To prove that ¢ is strictly increasing, and therefore invertible, on each orbit
of f in I7(0), it is sufficient to prove that ¢(f2(x)) < ¢(x) for an arbitrary
x € IT(0). Let x € I'T(0). Since f is 0-local on I with €, we have

0 < f(2)(A +e)? < f2(fM(2)) < FH (@) (A —¢)?

for each k > 0. It follows that ¢or(f?(x)) < ¢or(z)(A — ¢)? for each k > 0,
and therefore ¢(f?(x)) < ¢(x)(A —€)? < ¢(x), which concludes the proof for
x € I'(0). The proof for z € I~(0) is similar. An alternate proof uses the
fact that ¢ satisfies the Schroder equation. O

-

The proof of Theorem 5.1 yields the following corollary.

Corollary 5.2. Let f be 0-local on I with —1 <X = f'(0) < 0. If fo f(z) <
N2z for each x € I, then ¢opi1(x) & ¢(x) & ¢ar(x), and if fo f(x) > Nz
for each x € 1, then ¢ai(x) 5 p(x) & dar11(x). The convergence is uniform
in both cases with ¢$(0) =0 and ¢'(0) =1
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Functions satisfying the conditions of Theorem 5.1 are presented in the
following proposition.

Proposition 5.3. Let p(z) = z(ax + N\) and q(z) = z(Bx + \) for each
xrER with —1<A<0and 0 < a<f<—a/\ If f is a function satisfying
p(x) < f(z) <q(z) on a neighborhood of 0, then f'(0) = X and f o f(x) < Nz
on a neighborhood of 0.

The authors thank the referee for the following simplified proof of Propo-
sition 5.3.
PROOF. Tt is clear that f/(0) = A. Using the fact that ¢ is decreasing on a
neighborhood of 0, we get

F(f(@) < q(f(2) < a(p(@)) = Nz + (Aa+ NB)a® + O(a?)

and it follows immediately from the conditions on o and 3 that Aa + A\23 < 0.
O

Functions satisfying the conditions of Proposition 3.4 also satisfy the con-
ditions of Theorem 5.1. Other examples include those described in Proposi-
tion 3.1 and Proposition 3.5. We have the following additional corollary of
Theorem 5.1.

Corollary 5.4. Let g be 0-local on I with \* = ¢’(0) and —1 < X < 0. Let
f be an orientation-reversing iterative square root of g with A= f'(0). If
g(x) < X2z for each x € I, then the Koenigs’ sequence for g satisfies

Ap(x) 57 Ap(x) = o(f()) & du(f(2));
and if g(x) > X2z for each x € I, then
or(f(2) 5 o(f(2)) = Ad(x) I A () -
The convergence is uniform on I in both cases, with ¢$(0) =0 and ¢’'(0) = 1.

Without prior knowledge of the existence of an orientation-reversing iter-
ative square root of g, the following result can be obtained.

Proposition 5.5. Let g be defined on a neighborhood of 0 with g(0) =0 and
0< A2 =g'(0) < 1. If g(x) < Xx on a neighborhood of 0, then for each x < 0
and y > 0 on a neighborhood of 0 the Koenigs’ sequence for g satisfies

—00 < @(x) I ¢r(z) <0=0(0) < d(y) & dr(y)-

If g(x) > X%z on a neighborhood of 0, then for each x <0 and y >0 on a
neighborhood of 0 the Koenigs’ sequence for g satisfies

o(x) 57 () < 6(0) = 0 < di(y) B d(y) < o0
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PROOF. We assume without loss of generality that g is O-local on I. If g(z) <
A2z for each = € I, then for each z € I and k > 0 we have g(g*(z)) < A2g*(z)

and therefore i -
_9(g" (@) _ Ng"(x) _
Prt1(z) = 200D = (R = (@) -

The conclusion follows from the above inequality along with the fact that
¢r(x) < 0 for each x € I7(0), ¢x(0) = 0, and ¢y (x) > 0 for each x € I7(0).
The proof for the case where g(z) > A2z is similar. O

Let g be convex and O-local on a closed interval I with 0 € I° and 0 < \? =
¢'(0) < 1. It is well-known that there exists an orientation-reversing iterative
square root of g on I. As well, g satisfies the conditions of Proposition 5.5.
It follows from Theorem 5.1 that a necessary condition for the existence of an
orientation-reversing iterative square root f that is differentiable at 0 is that
the limit ¢ of the Koenigs’ sequence for g satisfy the Schréder equation (1) for
each z € I.

6 Divergence of Koenigs’ Sequences

We will now construct a 0-local map f with —1 < A = f/(0) < 0 for which the
associated Koenigs’ sequence diverges everywhere except at the fixed point.
Once this has been accomplished, we will then see that f can easily be redefined
to be a C! map with divergent Koenigs’ sequence.

Example 6.1. Let —1/e <A <0,0<e< =\, 0<o0 <log(l—e/N), and let
flx) =2xA e"P@) for eachx €1,

where the interval I and the function P are defined as follows: Let ag < 0 and
ar = ag )\knizl e’ for each k > 0. Let I = [ag,a1], and define

1 .
T if x € [agk,a2x42), k> 0;
P(z) = 0, if x=0;
1 .
m? if x S (a2k+3,a2k+1]7 k Z 0.

Then f is 0-local on I with A = f'(0), and the Koenigs’ sequence for f
satisfies
— o0, if x € [ag,0);
lim ¢ (x) = 0, if z=0;
koo +oo0, if € (0,a:].



218 D. J. DEwWSNAP AND P. FISCHER

PRrOOF. It follows that |ag41]| < |ag| for each k > 0 and asg 7 05 agpy1 -
Thus P : I — [0,1], P(0) = 0, and P is continuous at 0. Now define the
function 7(z) = A (e"P(I) —1) foreachx € I. Thent: I — (—¢, 0], 7(0) =0,
and 7 is continuous at 0. Let

f@) =2\ +7(z)) =2reT®

for each z € I. By Lemma 2.6 we conclude that f is 0-local on I with A = f7(0).
For each k£ > 0,

k+1
flar) = aph ") = g MHl e o v VY = gy 4

and therefore f*(ag) = ay. Since f is strictly decreasing on I, it follows that
for each k£ > 0,

f(lagk, azk+2)) C (a2x43, agk41) and f((azk+3, a2x41]) C [G2k42, A2k44) -

Let P, = P and 7y = 7. Applying Lemma 2.6, we define the sequence {73 }2° ;
by setting Py+1 = P o f and 7441 = 7 o f for each £ > 0. Thus,

1 .
mt+k’ if z € lagn, azn+2), n > 0;
risr € (a2nrs,a], n 20,

for each k > 0. Therefore Py, : I — [0,1/k], Px(0) = 0, P is continuous at 0,
and Py £0 uniformly on I. For each k > 0,

A(e?nﬁk — 1) v if @ € [agn, agnya2), n > 0;
Tr(z) = 0, if ©=0;
/\(e2nf1+k — 1) v if x € (a2n43,a2n41), n >0,

and therefore 7, : I — [A(e?/* —1),0] C (—¢,0], 7,(0) = 0, 74 is continuous

at 0, and 7y LA uniformly on I. In accordance with Lemma 2.6, for each
x € I and k > 0 we have

k k
f*z) = xH()\ +7.(x)) = x)\kHe“P“(’”) = x)\ke"ELIP“(“’),
v=1 v=1
and .
on(w) = L8 — geonian@, (20)

)\k



INTERVAL MAPS AND KOENIGS® SEQUENCES 219

If z € I7(0), then z € [agy, azpt2) for some n > 0. Using (20) gives
or(2) = 26025:11/(2"+V)i> — 0.
Similarly, if z € IT(0), then z € (a2, +3, a2n11] for some n > 0 and therefore

bi(z) = zeoTom /@it K, 4 o O

For an interval map f with f(0) =0 and —1 < f/(0) < 0 it is well-known
that Koenigs’ sequence converges if f € C'T¢ for some € > 0. We will now
illustrate by means of an example that C! is insufficient to ensure convergence
of Koenigs’ sequence. The map defined in Example 6.1 can easily be redefined
to be a O function with divergent Koenigs’ sequence. This is achieved in the
following manner.

Example 6.2. Let —1/e < A< 0,0<e < -\ 0<0<log(l—¢e/)\), and let
flx)=2zA @) for each x € 1,

where the interval I and the function P are defined as follows: Let ag < 0 and
ar = ag )\kHI;:I eV for each k > 0. Let I = [ag,a1], and define P(0) = 0
and P(ay) = 1/(k + 1) for each k > 0. Let P be C' on I\ {0} with P’
strictly decreasing on both 1= (0) and I7(0). Then f is C' and 0-local on I
with A = f'(0) and f has a divergent Koenigs’ sequence.

ProOF. That such a P exists follows from the special nature of the sequence
{ar}. Note that P’ is necessarily negative on I~ (0) with lim, ,o- P'(z) = —c0
and P’ is positive on I (0) with lim, o+ P’'(z) = co. We have

Fa) = A, if £=0;
7 AeoP@) (1+ oxP'(z)), otherwise.

It is evident from the formula for f’ and the fact that P is continuous at 0

with P(0) = 0, that to prove the continuity of f’ from the right at 0 it suffices
to show that lim,_,g+ zP'(z) = 0. If z € IT(0), then = € (agkyt3, asky1] for
some k > 0. Since P’ is positive and strictly decreasing on I(0),

Pl(aspss ap\2FHL 2R o /v
P (z) < agpy1 P (a2r43) < opir (azies) _ - L= 373
A2k+3 ag N2k 32k + [ eo/v

eia(ﬁ+ﬁ) k
= 0.

A2(2k +4)
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The proof that f’ is continuous from the left at 0 is similar. It then follows
that f € C! on I. The 0-locality of f on I with A = f/(0) and divergence
of the associated Koenigs’ sequence is proven in a similar manner as for the
previous example. In particular, note that f(ax) = ag+1 for each k > 0 as in
the previous example. O

Let g be a C! convex 0-local map on a closed interval I with 0 € I° and
0 < A =g'(0) < 1. There exists an orientation-reversing iterative square root
of g on I. As well, g satisfies the conditions of Proposition 5.5. It follows from
Theorem 5.1 that an orientation-reversing iterative square root of g is non-
differentiable at the fixed point 0 if the Koenigs’ sequence for g diverges on
I7(0). We conclude with an example of such a map g. Note that it is sufficient
to define g on I7(0) U {0} with the resulting Koenigs’ sequence diverging on
1(0).

Example 6.3. Let

_ 1 : —1/e7.
o(z) = x()\ log(m))’ if x € (0,e”"/¢];
0, if =0,

where 0 < X\ < 1 and 0 < & < 1 —\. Then g is 0-local on [0,e~ /] with
A =g (0) and ¢' is strictly increasing on [0,e=1/¢]. The Koenigs’ sequence
for g diverges for each z € (0,e=1/¢].
PROOF. The 0-locality of g follows from the choice of e. Clearly ¢’ is strictly
increasing on [0, e~'/¢] and A = ¢/, (0). Using the standard reorganization, we
see that the Koenigs’ sequence satisfies

g (x)  glx) glg(@) gl¢"2(x) g(g" ()

ox(z) = TN T @) MR () AR ()
and for our specific g,
1 1 1
or(r) = 2(1 = =——=)(1 )---(1 )

Mog (z)"" Mog (g(z)) ~ Mog (g 1(2))

To show that this sequence diverges it is enough to prove that the series

= 1
2 Tiog (6" (@) &

diverges. It follows from the definition of g that g¥(x) > x\* for each x €
(0,e71/¢], which yields

log (g¥(z)) > klog (\) + log (z) and hence klog (1) —log (z) > |log (¢"(x))].
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Thus,
1 1

klog (1) —log (z) < log (g% (2))|

In view of the above inequality, we conclude that the series in (21) diverges. [
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