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AN OSCILLATION FUNCTION ON THE
REAL LINE

Abstract

By means of a certain well known family B of subsets of R fulfill-
ing two conditions we introduce some topologies on R (in Section 2
we consider the density topology). We observe that the family of the
sets Qy(y) = {z € R; wy(x) >y} for an arbitrary bounded function
f : R — R (where wy(z) is a kind of B-oscillation of f) has three
properties. Then we show that for each family {Q(y)},c0.1 C 2F hav-
ing similar properties and in addition fulfilling conditions M; and U’
(known from the literature) there is a function f : R — [0, 1] such that
Qs (y) = Q(y) for each y € [0, 1]. In Section 2 we prove some analogous
result for the density topology. *

Let R denote the set of all real numbers.

1 B-Oscillation

Definition 1. Let Ba' C 2% be a nonempty family of sets fulfilling the follow-
ing conditions:

(1) if B € B, then for every t >0, BN (0,t) € B,
(2) B1U B,y € By if and only if By € By or By € B

For every set AC Rand x € Rput A+ 2 = {yeR;Fpcn (y=a+2)}
and —A:={yeR:—ye A}
Now we can define the family B as

Ba::{BCR:—BGBJ}
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and for each x € R

Bf ={BCR:(B—z)eBj},
By :={BCR:(-B—-z)€B]}.

For x € R, put B, := B} UB, and by B denote the family of all subsets B of
R such that there exists zp € R and B € B,

Definition 2. (see [2]) We say that a family B fulfills condition My, if for
every o € R and a set B € B/ and for every family of sets {B,},.p such

that B, € B, (x € B), the set | J, 5 B, belongs to the family B, .

Assume that the family B fulfills M;. Let us define the operation “” in
the following way: A := {x € R: A € B,} for arbitrary A C R. It is now
possible to consider the closure operation “~” for each subset A C R : A :=
AU A. In fact, it is not difficult to check that the operation “~ 7 satisfies
the Kuratowski’s axioms. Let 7 denotes the topology on R generated by the
operation “~7.

Definition 3. A number g is called a B-limit number of a function f: R — R
at a point xg if for every positive number e

{z eR;|f(z) — g] < €} € By,.

By L(f,z) we denote the set of all B-limit numbers of the function f at z.
It is known that for each bounded or locally bounded function f and every
point x € R there exists at least one B-limit number of f at = but for every f
and x € R the set L(f,x) is closed in the usual Euclidean topology on R.
For a bounded function f: R — R let

m(f,x) = min {L(f, ) U{f(x)}],
M(f,x) = max{L(f,z) U{f(2)}].

We say that a function f is upper B-semicontinuous (lower B-semicontinuous)
at a point xg if

M(f,x0) < f(z0), (m(f,z0) > f(20)).

From theorem 14 in [2] we infer the following characterization. For an
arbitrary bounded function f, the function M(f,z) (z € R) is upper B-
semicontinuous if and only if the family B fulfills condition M; and similarly:
the function m(f,x) is lower B-semicontinuous if and only if the family B
fulfills condition Mj.
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By the symbol w¢(z) we denote the B-oscillation of a bounded real function
f at = defined as follows:

CL)f(x) = M(f,x) —m(f, ).

Let us observe that for an arbitrary bounded function f : R — R, which
is upper B-semicontinuous at each point z € R and for each a € R and
xo € Eq := {z; f(x) < a} there exists such a set V,, € 7 (with 2 € V,) such
that for any « € V,,,, f(z) < a. Hence the set E, is 7-open. And conversely,
if the set E, is 7-open for each a € R, then f is upper B-semicontinuous in
each point x € R. Therefore for a bounded function f : R — R the following
properties are true:.

(1) The set Q¢(y) := {z : w¢(x) > y} is 7-closed for each y € R.

(2) If y1 <y, then Qf(y2) C Qf(y1).

(3) The set U, cg [2f(y) x {y}] is 7 x Te-closed, where 7. denotes the Eu-
clidean topology on R.

Now let {€2(y)}o<,<; be a nonempty family of nonempty subsets of R such
that: o

(a1) the set Q(y) is 7-closed for each y € [0, 1],
(a2) if y1 < ya, then Q(y2) C Q(y1),

(as) the set |J,cp [2(y) x {y}] is 7 X Te-closed,
(as) 9(0) =R.

For cach y € [0,1] put Q(y) = A(y) U B(y), where A(y) := Q(y) and
B(y) := Q(y) \ A(y). Assume that the family B fulfills the following condition
U’ which is a particular case of the condition U from [4].

Each subset A C R can be represented as a sum of such A; and A, that:

(a) Ay CA, As CA, A10A2:®,
(b) A=A, A, = A.
We prove the following theorem.

Theorem 1. Let B be an arbitrary family fulfilling conditions My and U'.
Then for each family of subsets {Q(y)}y<,<; of reals fulfilling conditions (ay ) -
(cy) there exists a function f: R — [0, 1] such that for any 0 <y < 1 we have
Qy) = (y).
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Let B, stand for the set {y € [0,1] : a € B(y)} and let F be the set of all
a € R for which By # 0. Let xg € R be an arbitrarily chosen point and

Yo := max {py [P(%) N ( U (A(y) x {y}))] }7
0<y<1

where P(zg) ;== {p € RxR:p= (z9,y)} and py is the projection to Y axis.
The point zg € A(yo) because the set [y, <1 (A(y) x {y}) is 7 x Te-closed.
Conditions (a1) - (a) and definition of yq easily imply that there exists such
h() that

(o= tazo-+ o) x| (U B < b)) n (U ®=toh)] 25

y€[0,1] Yo<y

where y(, is an arbitrarily chosen number from (yo, 1] and px is projection to
the X axis.
To prove our theorem it is sufficient to define the function f by

f(2) ._{ sup{y € [0,1]: z € Q(y)} forxze A UF,
10 forz e R\ (A1 UF),

where the condition U’ was applied for A = {z : sup{y: = € A(y)} > 0}.
Prove the inclusion Q(y) C Qy(y). Let yo be some number from (0, 1] and
z € Q(yo)-

(I1) Suppose z & F and y| :=sup{y € [0,1] : € A(y)}. From (a3) and def-
inition of f we obtain that x € Q(y() and y{, = max [L(f,z) U{f(z)}] =
f(x). Since wy(x) = y;, we infer that x € Qs (y;) and because y; > yo,
then z € Qf(yo).

(I2) If z € F, then we have inequality yj < f(x) and again from («3) and
definition of f it follows that z € Q(f(x)). Since wy(z) = f(x) > yo,
hence x € Q¢(yo).

The proof of the converse inclusion is obvious.

2 Approximate Oscillation

In this section we find a necessary and sufficient condition for a family of sets
to be the family of associated sets of approximate oscillation.
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Let E C R and g € R . The upper outer density of E at the point g is
the number

_ EnN —h h
D,,(E) = limsup | (2o Zo + 1)
h—0+ 2h

)

where | - | denotes outer measure.

Let B, = U, be the family of all sets for which x is not a dispersion point
(i. e. D.(E) > 0). For B = U the number g is called an approximate limit
number (U-limit number). Let Ly(f, x) denote the set of all ¢{-limit numbers
of a function f at a point z.

For a bounded function f: R — R we write

my(f,x) = min{ Ly (f,2) U{f(2)}}, Mu(f,z) = max{Ly(f,z) U{f(2)}}.

We say that the function f is upper U-semicontinuous (lower U-semicontinuous)
at a point xg if My(f,z0) < f(zo), (mu(f, o) = f(x0)).

The U-oscillation of a bounded function f: R — R at a point z € R is a
function wy(x) = My (f, z) — my(f, x).

Let 7, denote the density topology on R ([1], [5]) and 7, the natural topol-
ogy. It is easy to see that for an arbitrary bounded function f : R — R,
which is upper U-semicontinuous at each point of R and for each a € R and
xo € B = {z : f(z) < a} there exists a set Vj € 75 (xg € Vp) such that
f(z) < a for every z € Vp. (It follows from the Lebesgue Density Theorem.)
Hence the set E, is 7s-open.

Conversely, if the set E, is 75-open for each a € R | then f is upper U-
semicontinuous at each point z € R . It is easy to see ([2], [3]), that the
following facts hold for each bounded function f: R — R:

(1) The set Q¢(y) = {z: wyr(z) >y} is Ts-closed for each y € R.

(2) If y1 < y2, then Q¢(y2) C Qp(y1).
3) The set Qr(y) x {y}) is 75 X Te-closed on the plane R x R .
yeR f

It follows from the Lebesgue Density Theorem that every nonempty 7s-closed

set D can be represented as a sum of two disjoint subsets D1, Dy, the first one

consisting of all points of density of D and the second one satisfying |Dy| = 0.
Let {Q(y)}o<y<1 be a nonempty family of subsets of R such that:

(a1) The set Q(y) is Ts-closed for each y € [0, 1],

(a2) If y1 < ya, then Q(y2) C Q(y1),
(a3) The set U, 017 (2(y) x {y}) is 75 x Te-closed.
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(0a) Q(0)=R.

For each y € [0,1] let Q(y) = A(y) U B(y), where A(y) is the set of all density
points of Q(y) and B(y) = Q(y) \ A(y).
The main result of this section is the following.

Theorem 2. For every family {Q(y)}o<y<1 fulfilling conditions (a1) — (aa)
there exists a function f : R — [0,1] such that for each 0 < y < 1 we have

Qy) = Qs (y).

Notice, that if for some 3" € (0,1], z € A(y'), then x € A(y) for every
0 <y <. Similarly, if x € B(y"), for some y” < ¢/, then x € B(y) for each
y" <y <y'. For each a € R define the set B, by

B,={y€0,1]: a€ B(y)}.
Let I be the set of all @ € R, for which B, is nondegenerate interval.

Lemma 1.
|F| = 0.

ProoOFr oF LEMMA. Take an arbitrary point g € F' and h > 0. Put
vo=inf {y: (@0 — o+ 1)\ A@) x {y}) N |J (a} x Ba) # 0}
a€F

and take the following sequence of sets.

Wy :px{ [((1’0 — h,iﬁo + h) \A(y(] + 1 —23/0))

<+ 25210 Ut » 2}
Wy =px{ :1 {((wo —h, o+ h)\ Ay + W))
x {0 + WH N ({a} % Ba)}
acF
Wap, = px{ :L_J1 [((ﬂfo —h,x0 +h)\ A(yo + %))

Lo+ P2 0 | (o) = B

a€F
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It is easy to verify that

OS‘(1‘0—h,$0+h)ﬂF|§|W1‘+Z|W2n|

n=1
From the Lebesgue theorem it is clear that
|(xg — h,z0 + h)NF| = 0.

Since the number h > 0 was chosen arbitrarily, D,,(F) = 0. So F consists of
upper outer dispersion points of F. Once again using the Lebesgue theorem
we obtain that |F'| = 0. O
To prove Theorem 2 let A = {z: sup{y: = € A(y)} > 0}. It is known ([6])
that A can be represented as a sum of two subsets A; and Ay such that

(a) Al n A2 = @,
(b) [Ai] =[A], [Az] =A]
Our function f can be now defined as follows:
o) = sup{y € [0,1]: 2 € Q(y)} forxze AjUF,
o forx e R\ (A1 UF).
The rest of the proof follows the lines of the proof of Theorem 1.
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