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ON THE DERIVATIVES OF FUNCTIONS
OF BOUNDED VARIATION

Abstract

Using a standard complete metric w on the set F' of continuous func-
tions of bounded variation on the interval [0, 1], we find that a typical
function in F' has an infinite derivative at continuum many points in
every subinterval of [0,1]. Moreover, for a typical function in F, there
are continuum many points in every subinterval of [0,1] where it has
no derivative, finite nor infinite. The restriction of the derivative of a
typical function in F' to the set of points of differentiability has infinite
oscillation at each point of this set.

Let C[0,1] denote the family of continuous real valued functions on the
interval [0,1] and let F' denote the set of functions of bounded variation in
o, 1].

It is known (see for example [B] or [C]) that with respect to the uniform
metric on C0, 1], a typical function in C[0, 1] has a unilateral infinite derivative
at continuum many points in each subinterval of [0, 1], even though it has no
finite unilateral derivative at any point. We wondered if some sort of analogue
can be constructed for F. Problems of finding such an analogue are two-fold:
the uniform metric is not complete on F', and functions in F' are differentiable
almost everywhere. So we define

w(f,g) = ‘f(O) - g(0)| + total variation of f — g on [0,1].

The proof that w is a complete metric on F is well-known (see [R, p. 147], for
example).

With respect to the metric w, we will show that a typical function in F has
infinite derivatives at continuum many points in each subinterval of [0, 1]. For
any residual set S, we will find that a typical f € F satisfies f'(x) € S almost
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everywhere. For any subset F of (0,1), with exterior measure 1, we will show
that the restriction to E of the Dini derivatives of any typical function in F
are discontinuous at each point of E. All derivatives here are two-sided.

Theorem 1. For a typical f € F, the set
{zerl: |f(z) =00}
has the power of the continuum for each subinterval I of [0,1].

PROOF. Let [c,d] be a subinterval of [0,1]. Let k € F and let € be a positive
number. Choose a subinterval [a, b] of [¢,d] such that

V(k:,[a,b]) <

ool m

(Here V' denotes total variation.) Let f be a singular nondecreasing function
in F, that vanishes on [0, a], is constant on [b, 1] and such that

(Lebesgue’s singular function can be used to construct f; see [HS, (8.28)].)
Then w(k + f,k) =¢/2.

Now any function in the open ball with center k + f and radius €/8 can be
expressed k + f + g where g € F and w(g,0) < €/8. Then

€ € € €

V(k+g,[a,b]) <V(k,a,b]) +V(g,[a,b]) < 3 + w(g,0) < 3 + ST

and
V(k+g.[a,b]) <5 =)~ fla).

It follows from this and the fact that f is singular on [a, b], that k + f 4 ¢ is
not absolutely continuous on [a,b] nor on [¢,d]. Thus the set of functions in
F that are not absolutely continuous on [e, d] form a residual subset of F.

Finally, let [c,d] run over all the subintervals of [0, 1] with rational end-
points and find that the set of functions in F' that are absolutely continuous
on no subinterval of [0,1] form a residual subset of F. But such functions
must have infinite derivatives at continuum many points in each subinterval

of [0, 1]. O

N ™

Theorem II. For every residual set of real numbers S, f'(z) € S almost
everywhere for typical f € F (in particular, for such sets S of measure 0).
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PROOF. Let p be a positive number and let X be a closed nowhere dense
subset of R. It suffices to prove that the set of all g € F' for which

m{z € (0,1) : g'(z) e X} >p

is a nowhere dense subset of F'.
So let T denote the set of all g € F for which m{z € (0,1) : ¢'(z) €
X} >p.Let ke F\T. Then

m{z € (0,1) : K'(z) € X} <p.
There are positive numbers 7 and ¢ such that
m{x € (0,1) : the distance from k'(z) to X is less than q} =r<p.
Choose any h € T. Then
m{z €(0,1) : |K(z)—W(x)| > q} >p—r.

We apply the Vitali Covering Theorem to this set to find mutually disjoint
intervals [z;, u;] such that

Z(Ui—xi)Zp—T

i
and for each index i,

U; — 1‘1)

6 = B)a) — (= B)(a)| = L

Consequently,

It follows that

ap—r)
2 )

and T is a closed subset of F. It remains to prove that F'\ T is dense in F'.
Let € be a positive number. Let (y;) C R\ X be a sequence such that

w(h, k) >

oo
j=—o0

lim y; = —o0,

) im y; =00 and 0<y; —y;—1 <e foreachj.
Jj——00 Jj—o0
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Let hg € F. For z € [0,1], define
fi(x) =r; — hy(z) where j is such that r; > hg(x) > rj_1.

Then 0 < fi(z) < €. Let f5 be the indefinite integral of fi:

Then 0 < f5(z) < e almost everywhere and

w(f2,0) = V(2. [0,1]) = /O ftdt<e.

Also f5(x)+hg(z) is in the set {r;} C R\ X almost everywhere, so fo+ho ¢ T.
Finally
w(f2 + ho, ho) = w(f2,0) <e.

Thus F' \ T is a dense open subset of F'. O
Theorem III. Let E be any subset of [0,1] with exterior measure 1. Then

the restriction to E of the Dini derivates of a typical function in F are dis-
continuous on E. Moreover, their oscillations at each point of E are infinite.

PROOF. Let I be an open subinterval of [0,1] and J be an open subinterval
of R. Then it suffices to prove that the set of functions g € F' for which

m{zel : g(x)eJ} >0

is an open dense subset of F. Let T denote the set of all ¢ € F' for which
m{zrel : ¢(x)eJ}=0. Take h ¢ T. Then m{z € I : W' (x) € J} > 0.
Let s and r be positive numbers such that

m{x € I : the distance from h'(z) to R\ J is at least s} =r>0.

Let g€ T. So
m{xe[ W (2) — ¢/ (z)] 23} >r.

We use the Vitali Covering Theorem on this set to find pairwise disjoint in-
tervals [a;, b;] such that

S(bZ - ai)

5 for each 1

‘(h —9)(bi) — (h— 9)(%’)‘ >
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and Y. (b; —a;) > r. Hence

b —a; _ rs
w(h,g) =2 V(h=g,0,1]) 25 Y =—— >,
and T is a closed subset of F.

Now let gg € T, and let p be a positive number. Let [a,b] be a subinterval of
I for which V' (go, [a,b]) < p/4. Tt is easy to construct a function g; € F that
coincides wit g on [0,a] and on [b, 1], for which

V (91, [a, b]) <g and m{z € [a,b] : gi(z) € J} >0.

Hence g1 ¢ T and

wlgo,0) = V{1 = g0, 0.) < V(gr. ) +V (g0, fost) < 5+ 2 <.

So T is a nowhere dense closed set. O

Note that the set I} of nondecreasing functions in F' is a closed subset of F'.
So F} is a complete metric space under w in its own right. The Theorems I, 1T
and III are also true with F) in place of F' by essentially the same arguments.

Let g € F| and assume that Dtg < co on a second category subset of
[0,1]. Tt follows that there is a second category set E such that the set

{g(x +p) —g(x)
p

is bounded. Let I be a subinterval of [0, 1] in which E is dense. By continuity,
the difference quotient of g is bounded on I. On the other hand, it is easy
to prove that the set of all functions in F; with bounded difference quotient
on [ is a first category subset of Fj. It follows that the set of all ¢ € Fy
such that DT g(x) = oo on a residual subset of [0, 1] is a residual subset of Fj.
Likewise it is easy to prove that the set of all functions in F; with difference
quotient bounded away from 0 on [ is a first category subset of F}. By an
analogous argument it follows that the set of all g € F; such that D, g(x) =0
on a residual subset of [0,1] is a residual subset of Fy. The corresponding
statements can be proved for D™ g and D_g. We conclude with:

:p>0,x6E}

Proposition 1. For a typical f € Fy, the set
{x €(0,1) : D¥f(x) = D™ f(z) = o0 and Dy f(z) = D_f(z) = o}

is a residual subset of [0,1]. Thus typical f € Fy have unilateral derivatives,
finite or infinite, on at most a first category subset of [0, 1].



928 F. S. CATER

For f € Fy we define the four sets:

o Ay ={z€(0,1) : D_f(z) = D+ f(x) =0},

o By={xe(0,1) : D~f(x) = D" f(z) = oo},

e C;={zc(0,1) : D_f(z)=0 and D*f(x) =00},
o Dy={z€(0,1) : D f(x) =00 and D, f(z)=0}.

(The idea is that in each set there is one restriction on the left and one on
the right.) For typical f € F, we know that Ay U By UCy U Dy is a residual
subset of [0, 1].

Is there a strictly increasing singular function f for which AyUB;UC;UD; =
(0,1)? The answer is yes; we showed how one can be constructed in [C1].

Is there a strictly increasing singular function in F; for which (0,1) equals the
union of any three of these sets? The answer, we shall see, is no.

Proposition 2. Let f be a strictly increasing singular function in Fy. Then
each of the sets

AfUBfUCf, AfUBfUDf, AfUOfUDf, By UCyU Dy,
has a dense complement in [0,1].

PROOF. Let I be a subinterval of [0, 1]. Because f is a singular function, we
deduce that there exist points a,b € I such that

a<b, f'(a)=o00 and f'(b)=0.
Let G denote the graph in R?

{(#,f(x)) : a<x<b}.

Then G is a compact subset of R2. Let r be the maximum value for which
the line (in R?) y = « + r meets G. Say they meet at the point (u, f(u)). By
comparing the slope of the line with the slope of the graph, we conclude that
u#aand u#b Soa<u<bandu € I. By the same reasoning we find
that D f(u) <1 and D_f(u) > 1. It follows that u ¢ Ay U By U Cy. By the
analogous argument (with b < @ and r minimal) we find a point in I that is
not in Ay UBsUDy. Of course any point where f’ = oo is not in AyUCyUDy
and any point where f’ = 0 is not in BfUCyUDy. The conclusion follows. [

Let us recapitulate. For typical f € Fy and any subinterval I of [0,1] we
have:
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1) f has derivative co at continuum many points in I,
2) f has a finite derivative at continuum many points in I,

3) there are continuum many points in I at which f has no derivative, finite
or infinite,

4) the restriction of f’ to the set of all points of differentiability of f, has
infinite oscillation at each point.

We conclude by giving an indirect but elementary proof of the well-known
result that the set
{z € (ab) : |f(x)| =00}
has measure zero. The arguments will not require the Vitali Covering Theorem
nor the differential properties of monotonic functions. We require only the
following well-known facts, that we state without proof.

Lemma A. If S1,S5,Ss,... are finitely many subsets of [a,b], then
Zm(Sz) 2 m(UiSi)

where m denotes Lebesgue outer measure.

Lemma B. If 51,55, S53,... is a sequence of subsets of [a,b], then there is an
index k such that )
m(UleSi) Z 5 m(UfilSz) .

PROOF OF THE RESULT. It suffices to prove the result for bounded functions.
Then it will hold for arbitrary functions by truncating such a function at N
and —N. So let g be a bounded function on [a,b] and let E C [a,b] be a set
such that ¢'(x) = oo at each € E. The plan is to assume that m(E) > 0
and eventually find a contradiction. Fix an integer N so large that on [a, b]

N >2-|g| (1)
So

~ f@)—fu) 8N 1
E:Jg{er: p— >m(E) for O<|x—u|<3}.

By Lemma B, there is an index k for which m(E) > m(E2)/2 where

_ @) —g(w) _ 8N o
Elf{er. p— >m(E) for 0 < |z u\<k}
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Choose points g, u1, U, . . ., up such that
1 .
a=ug<u; <up<...<up,=> and u; =u;_; <% fori=1,2,...,p.

For each index 4 for which the interval [u;_1, u;] meets Ey, choose a point x; €
[w;—1,u;]NE7 such that 2(u; —x;) exceeds the diameter of the set [u;—1,u;)NE;.
Then

U; — X > % . m([ui,l,ui] N El) .

We sum over the indices ¢ for which [u;_1,u;] N E; is nonvoid and obtain (by
Lemma A)

Z(’UNL — LUZ) > Z% . m([ui,l,ui] N El) > % . m(El) .

%

But m(E) > 3 - m(E), so

By the definition of Ej,

S (o) = a()) > 0 oo =) = oo S )

%

and by (2),
8N m(E)
D= gl@) > —— L 9N 3
S (ot~ o(e) > 1o Q
Note also that no two of the intervals [z;,u;] overlap.

From Lemma A we deduce that one of the sets [u;_1,u;] N E; does not have
measure zero; call this set F;. Thus there is a subinterval [c,d] of [a,b],
containing this subset Fy of 7, such that

1
d—c<%, m(E2) >0, and ¢'(z)=oco0 foreach z € E,.

We repeat the preceding arguments with [c, d] in place of [a,b] and Es in place
of E, to find mutually nonoverlapping subintervals

[ylvvlL [yQ’rUQL [yg,llg], CEE [ytvvt]
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of [c,d], such that y; € Es for all j and

(9(v;) —g(y;)) = 2N. (4)

t
=1

J

We index these intervals so that 11 < yo < y3 < ... <1y;. Because the intervals
do not overlap, we have in fact

Y1 <v <y <vy<y3<wvg<...<y <vp. (5)

But each y; € E; also, and we deduce from the definition of E; that v; — y;
and g(v;j) — g(y;) are both positive, and y; —v;—1 and g(y;) — g(vj_1) are both
nonnegative. It follows from (5) that

9(y1) < g(v1) < g(y2) < glvz2) < glys) <glvs) <... <gly) <g(vr). (6)
From (4) and (6) we obtain
9(v) = 9(m) = > _(9(v) = 9(y;)) > 2N - (7)
By (1) we have g(v) — g(y1) < N. Combining this with (7), we have
N >2N. (8)

Finally, 0 > N contrary to (1). This contradiction completes the proof. O
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