
Real Analysis Exchange
Vol. (), , pp. 861–866

D. J. Dewsnap, Southeastern Oklahoma State University, P. O. Box 4194,
Durant, OK 74701-0609. e-mail: ddewsnap@sosu.edu
P. Fischer∗, Department of Mathematics and Statistics, University of Guelph,
Guelph, ON N1G 2W1, Canada. e-mail: pfischer@uoguelph.ca

NON-UNIQUENESS OF COMPOSITION
SQUARE ROOTS

Abstract

In response to a question posed by O.E. Lanford III, it is shown that
for each µ > 0 there is a differentiable and non-linearizable interval map
g with non-vanishing derivative defined on a neighborhood of a fixed
point 0 with g′(0) = µ such that g has infinitely many differentiable
and non-linearizable orientation-reversing composition square roots with
non-vanishing first derivatives on a neighborhood of 0.

1 Introduction

Throughout this paper, fk will denote the k’th iterate of f and I shall denote
an interval of the reals of finite positive length. A neighborhood J of 0 ∈ I shall
refer to a subinterval of I having 0 as an interior point with corresponding left-
neighborhood defined by J−(0) = J ∩ {x ∈ I|x ≤ 0} and right-neighborhood
J+(0) similarly defined. The Koenigs’ sequence {φk(f)} associated with an
interval map f defined on a neighborhood of a fixed point 0 with f ′(0) = λ
where 0 < |λ| < 1 is defined by φk(f)(x) = fk(x)/λk. If the Koenigs’ sequence
of f converges pointwise to a limit φ on a neighborhood I of 0, then φ satisfies
the Schröder equation φ(f(x)) = λφ(x) on I. We will use the following two
results from [1].

Theorem 1.1. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where −1 < λ < 0. If either f ◦ f(x) ≤ λ2x or f ◦ f(x) ≥ λ2x on
a neighborhood of 0, then Koenigs’ sequence converges uniformly to a limit φ
on a neighborhood of 0 with φ(0) = 0 and φ′(0) = 1.
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The following proposition identifies functions satisfying the conditions of
Theorem 1.1.

Proposition 1.2. Let p(x) = x(αx + λ) and q(x) = x(βx + λ) for each
x ∈ R with −1 < λ < 0 and 0 < α < β < −α/λ. If f is a function satisfying
p(x)≤f(x)≤q(x) on a neighborhood of 0, then f ′(0) = λ and f ◦ f(x) ≤ λ2x
on a neighborhood of 0.

Let f be defined on a neighborhood of a fixed point 0 with f ′(0) = λ
where λ is a real number. The interval map f is said to be linearizable if
there exists an invertible function φ with φ(0) = 0, φ′(0) = 1, and satisfying
φ ◦ f ◦ φ−1 = λx on a neighborhood of 0. Such a φ will be referred to as a
conjugator to f . It follows that if f is linearizable, then it is invertible on a
neighborhood of 0 unless λ = 0. As well, φ satisfies the Schröder equation for
f on a neighborhood of 0.

Consider an interval map g defined on a neighborhood of a fixed point 0
with g′(0) = λ2 where λ < 0. A composition square root of g is a function f
satisfying f2 = g on some neighborhood I of the fixed point 0. We refer to f
as being an orientation-reversing composition square root of g if f(I−(0)) ⊂
[0,∞) and f(I+(0)) ⊂ (−∞, 0]. If f is differentiable at the fixed point 0, then
f ′(0) = λ. A problem will be said to have a unique solution if all solutions of
the problem belong to the same germ of functions. The equivalence relation
which determines the germs defines two functions to be equivalent if there
exists a neighborhood of 0 on which they coincide. We state the following
result without proof.

Theorem 1.3. (O.E. Lanford III) Let g be defined on a neighborhood of a
fixed point 0 with g′(0) = λ2 where −1 6= λ < 0. If g is linearizable, then there
exists a unique orientation-reversing composition square root f with f ′(0) = λ.

For a map g defined on a neighborhood of a fixed point 0 with g′(0) =
λ2 = 1, then g is linearizable if and only if g(x) = x on a neighborhood of 0.
Indeed, if φ is a conjugator to g, then it must satisfy the Schröder equation
φ ◦ g(x) = φ(x) on a neighborhood of 0. Since both φ and g are invertible
on a neighborhood of 0 and continuous at 0, it follows that g must be the
identity on a neighborhood of 0. Clearly, linearization of g(x) = x can be
achieved by many conjugators. Any orientation-reversing composition square
root f of g(x) = x which is differentiable at 0 must satisfy the equation
f2(x) = x with f(0) = 0 and f ′(0) = λ = −1. If f is strictly decreasing and
continuous with f = f−1, f(0) = 0, and f ′(0) = −1, then f is an orientation-
reversing composition square root of g which is also differentiable at the fixed
point. Thus, when λ = −1 there are infinitely many strictly decreasing and
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continuous (in fact, analytic) orientation-reversing composition square roots
of a linearizable mapping that are differentiable at the fixed point.

For a continuous, strictly increasing, and non-linearizable g defined on
a neighborhood of a fixed point 0 with 0 < g′(0) < 1, the question of
uniqueness of a strictly decreasing and continuous orientation-reversing com-
position square root that is differentiable at the fixed point was posed by
O.E. Lanford III. We will show that the answer to this question is in the neg-
ative.

2 Non-Uniqueness Example

We begin with an example of a differentiable and non-linearizable interval
map g with non-vanishing derivative defined on a neighborhood of a fixed
point 0 with 0 < g′(0) < 1. This function will be shown to have infinitely
many differentiable orientation-reversing composition square roots with non-
vanishing first derivatives on a neighborhood of 0.

Example 2.1. Let p and q be quadratic polynomials satisfying the conditions
of Proposition 1.2 on a neighborhood J of the fixed point 0 with p and q
both strictly decreasing on J and q(J−(0)) ⊆ J+(0). Let r be a quadratic
polynomial satisfying p(x) < r(x) < q(x) for each x ∈ J \ {0}. Choose
u ∈ J−(0) \ {0} sufficiently close to 0 so that the sequence of points {wk}∞k=0

satisfying q(w2k) = r(r2k(u)) and p(w2k+1) = r(r2k+1(u)) also satisfies w2k ∈
(r2k(u), r2k+2(u)) and w2k+1 ∈ (r2k+3(u), r2k+1(u)) for each k ≥ 0. The
sequence {εk}∞k=0 is defined recursively by choosing 0 < ε0 < w0 − u and
0 < (−1)kεk < min{|rk(u)− r(rk−1(u) + εk−1)|, |rk(u)− wk|} for each k ≥ 1,
where the εk’s are additionally chosen so that limk→∞ εk/λ

k = 0. We define a
differentiable and non-linearizable function f satisfying f ′(x) < 0 and p(x) ≤
f(x) ≤ q(x) on the interval [u, r(u)] in the following manner :

Let f(0) = 0 and fk(u) = rk(u) for each k ≥ 0. Let v = u+ε0 and fk(v) =
fk(u)+εk for each k ≥ 1. The choice of {εk}∞k=0 ensures that r(r2k(u)+ε2k) =
r(f2k(v)) < f(f2k(v)) < r(r2k(u)) = q(w2k) < q(f2k(v)) and p(f2k+1(v)) <
p(w2k+1) = r(r2k+1(u)) < f(f2k+1(v)) < r(f2k+1(v)) = r(r2k+1(u) + ε2k+1).
Define f on the remaining points in [u, r(u)] so that f is smooth everywhere
except at the origin with f ′(x) < 0 and p(x) < f(x) < q(x) on [u, r(u)] \ {0}.
As a result of Proposition 1.2, f is differentiable at 0 with f ′(0) = λ and
f ◦ f(x) ≤ λ2x on a neighborhood of 0. It follows from Theorem 1.1 that the
Koenigs’ sequences for both f and g = f2 converge uniformly on a subinterval
I ⊆ [u, r(u)] containing 0 to limit φ with φ(0) = 0 and φ′(0) = 1. Since f is
continuous and strictly decreasing on I, then φ is continuous and increasing
on I. Also, since fk(v) = fk(u) + εk with limk→∞ εk/λ

k = 0, it follows that
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φ(fk(u)) = φ(fk(v)) for each k ≥ 0. Thus, φ is constant on each of the
subintervals [f2k(u), f2k(v)] and [f2k+1(v), f2k+1(u)] for each k ≥ 0.

In conclusion, g is smooth everywhere on I except at 0 and g′(x) > 0
everywhere on I with g′(0) = λ2 where −1 < λ < 0. The Koenigs’ sequence
for g converges uniformly on I to limit φ, where φ is a continuous and increasing
function on I with φ(0) = 0 and φ′(0) = 1. Since φ is non-invertible on any
neighborhood of 0, it follows that g is non-linearizable at 0.

We will need the following lemma.

Lemma 2.2. (0.E. Lanford III) Let g be strictly increasing and continuous
on the interval [a, b] where a < 0 < b with g(0) = 0, g(x) > x for a ≤ x < 0,
and g(x) < x for 0 < x ≤ b. Let f be strictly decreasing and continuous on
the interval [a, g(a)] with f(a) ≤ b and f(g(a)) > 0. Then f can be extended
to the interval [a, f(a)] as a strictly decreasing and continuous function such
that f2 = g if and only if g(f(a)) = f(g(a)). If these previous conditions hold,
then the extension is unique.

We will now show that the map g of Example 2.1 has infinitely many
strictly decreasing and differentiable orientation-reversing composition square
roots.

Example 2.3. Consider g = f2 of Example 2.1. We obtain a differentiable
function h 6= f with h2 = g, h′(0) = λ, and h′(x) < 0 on I in the following
manner :

We have I ⊆ [u, f(u)]. By replacing u and v with f2n(u) and f2n(v)
for sufficiently large n we may assume that I = [u, f(u)] where u < v <
f2(u). We define h so that h(u) = f(u), h(x) = f(x) for x ∈ [v, f2(u)],
h′(x) < 0 and continuous on [u, v], and h(x) > f(x) for each x ∈ (u, v). It
is clear that such an h exists and satisfies the condition h(g(u)) = g(h(u)).
In view of Lemma 2.2, h extends uniquely to a continuous strictly decreasing
function satisfying h2 = g on I, where the extended function is also denoted
by h. Furthermore, it follows that h(x) = f(x) everywhere on I except on
the subintervals (f2k(u), f2k(v)) and (f2k+1(v), f2k+1(u)) for each k ≥ 0. On
the other hand, one can show by induction that if x ∈ (u, v) then h(fn(x)) >
f(fn(x)) for all positive integers n. Only a simple case will be considered here,
which is already sufficient to conclude that h 6= f in the sense of germs. For
x ∈ (u, v) we have h(f2n(x)) = gn(h(x)) > gn(f(x)) = f(f2n(x)), since gn

is strictly increasing. Furthermore, since h′(h(x)) = g′(x)/h′(x), it follows by
induction that h′(x) < 0 and h is smooth everywhere on I \{0}. To show that
h′(0) = λ, it is sufficient to show that limk→∞ h(hk(x))/hk(x) = λ uniformly
on (u, v). We prove that limk→∞ h(h2k(x))/h2k(x) = λ uniformly on (u, v).
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We have

f(f2k(u))
f2k(u) + ε2k

=
f(f2k(u))
f2k(v)

=
h(h2k(u))
h2k(v)

<
h(h2k(x))
h2k(x)

<
f(h2k(x))
h2k(x)

for every x ∈ (u, v). Since f satisfies the conditions of Theorem 1.1, then

f2k(u) + ε2k

f(f2k(u))
=

f2k(u)
f(f2k(u))

+
ε2k/λ

2k+1

f2k+1(u)/λ2k+1

k−→ 1
λ

,

where limk→∞ f2k+1(u)/λ2k+1 = φ(u) < 0 and limk→∞ ε2k/λ
2k+1 = 0. The

proof that limk→∞ h(h2k+1(x))/h2k+1(x) = λ uniformly on (u, v) is similar.
This completes the proof.

In the previous example f , h, and g are differentiable and invertible func-
tions with non-vanishing derivatives on I. Thus, f−1 and h−1 are differentiable
orientation-reversing composition square roots of g−1 on g(I). Combining this
with the case g′(0) = λ2 = 1 where λ = −1 discussed in the Introduction, we
obtain the following result.

Theorem 2.4. For each µ > 0 there is a differentiable g with non-vanishing
derivative defined on a neighborhood of a fixed point 0 with g′(0) = µ such that
g has infinitely many differentiable orientation-reversing composition square
roots with non-vanishing first derivatives on a neighborhood of 0.
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