Real Analysis Exchange
Vol. (), , pp- 541-552

August M. Zapata, Department of Mathematics and Natural Sciences
Catholic University of Lublin, Aleje Ractawickie 14, 20-950 Lublin, Poland.
e-mail: august.zapala@kul.lublin.pl

JENSEN’S INEQUALITY FOR
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Abstract

In this note we present a simple proof of the inequality ® (EAf) <
EA®(€) a.s. for separable random elements ¢ € L;(Q, F, P; X) in a Ba-
nach space X, where E (+) denotes conditional expectation with respect
to the o-field A C F, and ® : X — R is a convex functional satisfying
certain additional assumptions which are less restrictive than known till
now. Some consequences of the above result are also discussed; e.g., it
is shown that if £ is a Gaussian random element in X, then there exists
a constant 0 < ¢ < oo such that for each o-field Ay C F the family

{exp{c HEAEHQ} t A CAC f} is uniformly integrable.

1 Introduction.

Let (Q2,F, P) be a probability space, let A C F be a sub-o-field of the o-
field F and let X be a Banach space. Denote by L,(A; X), 1 < p < oo, the
space of equivalence classes of separable A-measurable Borel random elements
& :Q — X such that

1/p
lel, {/ I€l” dp} < oo for 1< p< oo
Q

and

[€]l o = ess sup [[{(w)]| < oo for p = oco.
weN
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It is fairly well-known that there exists a continuous linear operator E-A
acting from L;i(F;X) to Li(A; X) such that / EA¢dP = / &dP for all
A A

¢ € L1(F; X) and arbitrary A € A. The random element EA¢ € Li(A; X) is
called conditional expectation of £ € Lq(F; X) with respect to the o-field .4
and it is defined uniquely as an element of L (A; X); i.e., as a random element
in X uniquely up to sets A € A of P-measure zero.

Conditional expectations of random elements in a Banach space possess
similar properties to that of real valued random variables. The following in-
teresting feature of this notion is worth mentioning here. If T': X — Y is
a continuous linear operator acting on X into another Banach space Y, then
EA(TE) = T (EA¢) a.s. for every £ € Li(F; X). In particular, if z* € X*
and £ € Ly (F; X), then

EA(z*¢) =2* (BA¢) in Li(AR). (1)

The aim of this note is to present a simple proof of Jensen’s inequality for
conditional expectations in a Banach space. In various monographs and survey
articles devoted to conditional expectations and martingales such a property
is either merely mentioned, cf. Vahania, Tarieladze and Chobanyan (1985),
Ch. II, §4, or even quite omitted, as in Diestel and Uhl (1977), Metivier and
Pellaumail (1980), or Woyczyniski (1978). Vahania, Tarieladze and Chobanyan
in Ch. II, §4, of their monograph formulated without proof the following
result. If £ € L1(F; X) and ® : X — R is a continuous convex functional in a
Banach space X such that ® (§) € Ly (F; X), then

® (BAE) < BAD(€) as. (2)

We consider a convex functional ¢ on arbitrary convex closed separable subset
K C X and we do not assume that ® is continuous, but only lower or upper
semi-continuous. It is shown in §3 that under these conditions (2) remains
true. Next the examples of convex semi—continuous but discontinuous func-
tionals ® : K — R are given. Moreover, a few applications of the conditional
Jensen’s inequality are presented.

2 Preliminary Result.

The auxiliary result below is a conditional analogue of the similar statement
for the usual expectation in a Banach space. We include it here for future
reference, but it may be also of independent interest.
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Lemma. Let £ € L1(F; X) and let A C X be a separable subset of a Banach
space X, such that £ € A a.s. Then, for an arbitrary o-field A C F,

EA¢ € conv A a.s.,
where conv A is the closed convex hull of the set A.

PROOF. Let K = conv A and observe that under our assumptions K is a
separable subset of X. In fact, finite rational linear combinations of points
taken from the separability set A; C A form a countable dense subset of K.
Thus, assume that {x,zs,...} is a denumerable dense subset of K. Let

Boi={r e K:|z—x]| <1/n},
Bypr={zeK:|z—zj|>1/n,j=1...k—1, ||z — x| <1/n} for k> 1,

and f,(z) = kakj{x € Buk}, n > 1. Then B, k > 1 are mutually
disjoint, |J, Bnx = K for each n > 1, and ||fp(z) — 2| < 1/n, 2 € K.

Consequently, ||fn (W) —&(w)]] < 1/n for all w € Q, whereas f, ((w)) =
kakj{g(w) € By, 1} are elementary random elements in X. Furthermore,

[fn €D < 1 (€(w)) = &I + €@ < 1/n+ (W]

so that f, ({(w)) € L1(F; X), and in addition f, ({(w)) € K a.s.

Since EA : L1 (F; X) — Li(A; X) is a bounded linear operator with norm
1 (cf. Vahania, Tarieladze and Chobanyan, Ch. II, §4, Prop. 4.1, p. 108, or
Diestel and Uhl, Ch. V, §1, Th. 4, p. 123), we have

|E41a(6) = BA€ll, < Mal®) — €l = [ 16 €]l aP
Q

<1/n—0asn— oo;

ie., EAf, (&) — EA¢ in Ly(A; X). Selecting from {EAfn(f)} a suitable sub-
sequence {EA fnr (&)} that is convergent with probability 1 to EAE, we infer
that the relation F4f,(¢) € K a.s. implies EA¢ = lim, EAf,/(€) € K a.s.
Therefore it suffices to prove our lemma for an elementary random element

n= kakJAk € Li(F; X) such that z € K, k > 1, where A € F are any
disjoint random events, | J, A = Q.
To this end, let n = kaxkj"‘k € L1(F; X), where z, € K and Ay, are as

above, and let zg € K be fixed arbitrarily. Put Ay = Aé") =Q\Up_, Ar and
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notice that n,(w) = szo

Indeed, if w € Q, then w € A, for some r = r(w) > 1, and so

I (0) = @) = | 3o _jar T @) = 3, weTa @) = lle = 2] = 0
whenever n > r. Moreover,
EAy, = Zkzol'kEAjAk = ZkzokaA[Ak] € K as.,

because the right side is a finite convex linear combination of g, x1, ..., T, € K.
Since n € L1 (F; X), we conclude that

ol = [ [ 20,

2pJa,(w) — n(w) as n — oo for each w € Q.

4P =3 el PlAg] < o0
Thus
B4 = B2l <l =l = [ |0 oeda = 3, o

=Z [zo — @k P[Ax]
<Hx0\|z PAk+Z |zx]| P[Ag] — 0 as n — oo,

dP

Finally, choosing from {EAnn} an approprlate subsequence {E N/ } conver-
gent a.s. to By we obtain E4n = lim,, E4n, € K a.s. O

3 The Main Theorem.

Let K C X be a convex subset of a Banach space X. By analogy to the real
case, a function @ : K — R is called convexz, if

A A @ (az + fy) < a® () + [ (y).
r,ycK OsfbﬁzelR

Suppose now that K C X is closed. The mapping ® : K — R is said to be
upper semi-continuous, if

/\ /\ limnsup b (z,) <P (x),

ze€K {z,}CK
Tp—T

and it is called lower semi-continuous, if

/\ /\ D (z) < limninf D (z,).

zeK {z,}CK

Ty —T
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Theorem. Let K C X be a convex, closed, separable subset of a Banach space
X with a nonempty interior K° # 0, such that ¢ € K a.s., and let ® : K — R
be an upper or lower semi-continuous conver functional. If ®(§) € L1(F;R),
where § € L1(F; X), then

® (BAE) < BAD(€) aus. (3)

PROOF. Since ¢ is a separable random element, we can restrict further ar-
guments to a closed separable linear subspace Xy C X. However, to simplify
the notation we shall write X instead of Xy and assume that X is separable.
Consider the product space X xR equipped with the usual Tychonov topology
and put

D= {(x,t): ®(z) <t,r € K}, and D = {(z,t) : ®(x) <t,z € K}.

Obviously, X x R is a Banach space with norm ||(z,t)|| = ||z|| + |¢|, and the
sets D and D are convex in the product X x R. In fact, since K is convex and
® is a convex functional, for (x,t), (y,s) € D ( D resp.) and 0 < a,3 € R,
a+ =1, we have ax + By € K, and in addition

®(az + By) < a®(z) + B(y) < (S)at + Bs;

ie., a(x,t) + By, s) = (ax + By,at + Bs) € D (D resp.). Moreover, if ®
is upper semi-continuous, then D is open in the Tychonov topology of the
product K x R. To see this, suppose (z,,t,) € D' = (K x R)\ D; ie., z, €
K, ®(xz,) > tn, and (2n,t,) — (x,t) in X x R. Then ||z, —z| — 0 and
|t — t,| — 0. Thus z € K for K is closed. According to upper semi-continuity
of ®,

O(z) > limsup ¢(x,) > liintn =t

so that (z,t) € D', which means that D’ is closed in K x R and a fortiori D
is open. By analogy, under lower semi-continuity of ® it can be easily shown
that D is closed in K x R, and so in X x R as well.

Without loss of generality in the sequel we may and do assume that O =
(0,0) € D, where 6 denotes the zero vector in X. For if § ¢ K°, but K° >
xg # 0, then putting ®g(z) = P(x + xo) we see that &g : K — a9 — R
is upper (resp. lower) semi-continuous convex functional on K — zg, 6 €
(K —20)° = K° —x9 and £ — 29 € K — xy a.s. Moreover, the inequality
P (EA(E — 30)) < EADG(¢ — mp) a.s. implies that

O (BA(€ — x0) + m0) = Do (EA(E — m0)) < EADo(€ — )
= FA® ((€ — 330) + .T?Q) a.s.
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Next, if ®(8) > 0, instead of ® we consider ¥(x) = ®(z) — C with a
suitably chosen constant C, 0 < ®(f) < C' < co. The mapping ¥ : X — R
is then obviously upper (resp. lower) semi-continuous convex functional, and
whenever we prove the inequality ¥ (EAf ) < EAY(€) a.s., then (3) will follow
automatically. Thus, from now on let O € D.

Clearly, D = G N (K x R), where G is an open set in X x R such that
O € G. Since 6 € K° and ®(f) < 0, we have O = (0,0) € GN (K° xR) C D,
which means that the interior D° of D treated as a subset of X x R is non-
empty.

It is known that each continuous linear functional in X7 x ... X X, is of the
form (a7, ..., x5 ) (@1, oy @) = f(21) + ...+ 2} (zy), where 27 € X, 1 <i<m;

furthermore ||(z5, ..., z2)| = l=5|| V ... V||z&| (see e.g. Alexiewicz (1969), Th.
10.3, Ch. III, p. 152). Suppose now that ® is upper semi-continuous and
observe that (z,®(z)) ¢ D for every x € K. Therefore, on the basis of Th.
8.10, Ch. III, p. 141 in Alexiewicz (cf. also Kantorovich and Akilov (1984),

Th. 5, Ch. III, §2, p. 107) we have

AV oz +at <1< 20(@) + a,®(2) (4)
€K  2leX™
az€ER

for all (y,t) € D. In particular, (4) is valid for each x € K°. If z € K\ K° # (),
we select (2%, ) in a special way. Namely, recall that

(z,t)eclD < \/ Tp =T Aty —t,
{(mn»tn)}CD

where cl D stands for the closure of D in X x R. Moreover,

limsup @ (z,) < lim ¢, =t

Tp—T n— oo

for an arbitrary sequence of points (x,,t,) € D, n > 1 such that z,, — z and
t, — t. Thus, denoting &, = {{z,} C K : ,, — x} we have in fact

sup [limsup@ (xn)] =k <1,
{z,}€€ L Tn—x

where ¢ = inf {g €ER: Vi trep {ant €&, limt, =g exists} .

Otherwise, if t < £, < @ (x) < 00, then (x,t) ¢ cl D. Hence, on account of
Th. 8.11 and Corollary 8.12, Ch. III, §8, pp. 142-143 of Alexiewicz (see also
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Kantorovich and Akilov, Ch. III, §2, Th. 6, p. 107 or Yosida (1978), Ch. IV,
§6, Th. 3’, p. 109) we obtain

AV V20 taat <1< tan(d@) - C), ()

zeK\K° 0<Cz<o0 zjeX™
azER

because (z, ® () — C,) ¢ cl D for sufficiently large C,, > ® () — k. Using (4)
and (5) we shall characterize the set D.

Let (y,s) € D, sothat y € K and ®(y) < s. Then ®(y) < s+1/n forn > 1,
and thus (y,s + 1/n) € D. Hence z:(y) + oy (s +1/n) <1 < 2X(x) + a, P(z)
for each n > 1 and = € K. Consequently, for z € K

Z(y) + ags <1< 25(2) + ap®().

On the other hand, if (y,s) € (K x R)\ D, then s < ®(y), and so s = ®(y) —¢
for some e > 0. We shall demonstrate the inequality z;(y) + ays > 1.
Notice first that a, < 0 for each x € K. Indeed, from (4) it follows that

zi(x) + ozt <1< zh(x) + a, P(x),

whenever ¢t > ®(z), © € K°. Hence o, < 0. Furthermore, the equality o, =0
implies that 2 () = 1. But if z € K°, then x + rz € K° for some r > 0, and
so for appropriately chosen ¢, > ® (x + rz), in view of (4) we have

l+r=z(x+rz)+0- -t <1,

which leads to a contradiction. If x € K \ K°, then taking ¢t > ® (x); i.e.,
(x,t) € D, we get z5(z) + ayt < 1 < 25(x) + ay (P(z) — C,), and this is
possible only when «, < 0 as well. Therefore,

2y (y) + ays = 2, (y) + ay®(y) — aye > 2, (y) + ay®(y) = 1.
In other words, we have obtained the following relation
(y,t) €D <& /\ (zp(y) + ozt <1) A (y € K).
reK

Observe next that each pair (2%, a;) is a continuous linear functional on
X x R, thus the family {(y,t) € K x R : 2X(y) + a,t = (2%, a.)(y,t) > 1},
r € K, forms an open covering of the set (K x R) \ D. Since X x R is a
separable metric space, by virtue of the well-known Lindel6f theorem there
can be found at most denumerable set @ C X* x R such that

(KxR)\D= [J {(teKxR:z"(@y)+at>1}.
(z*,)€Q
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Hence it follows that

whHeD & N (EF@W+at<)A(yeK), (6)
(Z*,Oz)EQ
in particular
/\ 2" (y) +a®(y) <1 for ye K. (7)
(z%,0)€Q

If ® is lower semi-continuous and D is closed, then (z, ®(z) —A) € (K x R)\ D
for an arbitrary x € K and A > 0. Thus, in view of Th. 3/, Ch. IV, §6, p. 109
of Yosida (1978) (cf. also Kantorovich and Akilov, Ch. III, §2, Th. 6, p. 107
or Alexiewicz, Ch. III, §8, Th. 8.11 and Corollary 8.12, pp. 142-143),

A A Vo ) +anat <1<z (@) +aen(@(2) =) (8)

z€EK  A>0  z;  eX”
oz 2ER

for all (y,t) € D, in particular 27 , (y) + oz 2 ®(y) < 1 whenever z,y € K and
A > 0. Putting y = x in the last inequality we infer from (8) that a, » < 0 for
z € K and A > 0. Denote by Z the set of all the pairs (2} ,, ;) indexed by
r € K and A > 0, for which (8) holds. Suppose that (y,s) € (K x R)\ D; i.e.,
y € K and s < ®(y). Then s = ®(y) — ¢ for some € > 0, and so taking A < e
we see that for (2 ,,q, ) € Z,

1< 2y 3(1) + aya(@(y) = A) < 255 (y) + ayas.

Hence

(y.t)eD & A (zza(y) +agat < 1) A (y € K).
(z;wA,az‘A)EZ

Applying again the Lindel6f theorem to the family of sets
{(y,t) e K xR: 2y A (y) + gt > 1}, (22 Qzn) € Z,

we obtain (6) and (7) as well as previously.

Having established (7) we argue as follows. Substitute y = £(w) in (7)
and next evaluate conditional expectations of both sides of the obtained thus
inequality with respect to the o-field A. Then for all (z*,a) € Q we get
EAZ (&) + aEA®(E) < 1 a.s.. By (1), 2*EA¢) + aBA®(€) < 1 a.s., for all
(2*,a) € Q; so that on the basis of (6) and the Lemma, (EA¢, EA®(E)) € D
with probability 1. By definition of D we have ®(E4¢) < EA®(E) a.s.. O
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Remark. It is an open question whether for an arbitrary (infinite dimen-
sional) normed linear space X there exists a convex semi-continuous functional
® : X — R which is not continuous. The possible candidate for such a convex
mapping may be x — |2’(z)|, where 2’ is any discontinuous linear functional
on X (see Alexiewicz, Ch. III, §8, Prop. 8.17, p. 145). However, as will be
seen below, if {(w) € K for allw € Q, where K is a proper closed convex subset
of X and ® need not be defined when x ¢ K, then the relevant examples can
be given even for finite dimensional spaces.

Example 1. Let X = R. Then it is enough to take K = (0,00) C R and
®(t) = 2 for t > 0, accomplished with ®(0) = ¢ > 0.

Example 2. A slightly more involved example may be constructed as follows.
Let X = R? and K = {x € X : ||lz|| < 1}, where |-|| is the usual Euclidean
norm in the plane. Define ®(z) = ||z||* for ||z|| < 1 and ®(z) = ¢ > 1 on the
unit sphere S = {x € X : ||z|| = 1}, except for aset {x;,7 € I} C S, which does
not have any accumulation points; moreover, for i € I put ®(x;) = ¢; > ¢. The
same effect on the boundary of K can be achieved in a more general way by
taking an arbitrary upper semi-continuous function ¢ : (0,27) — R, such that
¢(t) > 1 and limsup, ~o, p(t) < ¢(0). Using the one-to-one correspondence
x «— exp{it}, where x € S, t € (0,27), we define ®(z) = ¢(t) for z =
exp{it} € S, t € (0,27). It can be easily verified that ® is convex and upper
semi-continuous on K, but not continuous.

Example 3. A similar idea may be also adapted to the case of infinite di-
mensional spaces. Recall that a Banach space X is called strictly conver, if
for an arbitrary z,y € S={r e X : |z =1} and 0 < o, B ER, a+ 3 =1,
we have ||ax + By|| < 1. Let ¢ : (0,1) — R be a convex, continuous (bounded)
real function and let X be a strictly convex Banach space. Put

d(lel) — for lzf| <1,

O(z)=< c>¢Q) for |z||=1, z¢{x;iecl},
c >c for z=2;, 1€1,
where {z;,i € I} C S ={z € X : ||z|| = 1} does not have accumulation points.

Then @ is an upper semi-continuous, convex and discontinuous functional on
the set K = {r € X : ||z|| < 1}. If X is an arbitrary (infinite dimensional)
Banach space, instead of the unit ball, we consider rather a compact convex
set K contained in the closed unit ball. The convex continuous functional
Y(||z|)), x € K, attains its supremum ¢ < oo on K. Thus by the Krein-Milman
theorem (see e.g. Yosida, Ch. XII, §1, Th. and Corollary, pp. 362-363) the
mapping ®(x) = ¢(]|z||) can be modified on the set {x;,i € I} C K of all the
extremal points of K by putting ®(z;) =¢; > ¢, i € I.
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The next result is already known (see Diestel and Uhl, Ch. V, §1, Th. 4,
p. 123), but now it is a straightforward consequence of our theorem.

Corollary 1. If¢€ € L,(F; X), 1 <p < oo, then EA¢ € L,(A; X), and
1B, < ligll, )

i.e., B is a projection operator with norm 1 acting from L, (F; X) to L,(A; X).

PROOF. It can be easily verified that ®(z) = ||z|”, 2 € X, 1 < p < o0, is
a convex continuous functional on X. Hence, based on the above theorem, we
have

[EA]],, = (B[ EA|") P < (B {EA(IEIM) )P = (B 1€ = li€ll,

whenever { € L, (F;X), 1 < p < oo. For p = o0, (9) follows from the well-
known equality lim |||, = ||, (cf. Yosida, Ch. I, §2, Th. 1, p. 34,
p— 00

Kantorovich and Akilov, Ch. IV | §3, p. 144, or Alexiewicz, Ch. IV , §2, Th.
2.4, p. 219). The operator norm of E4 is equal to 1 in view of the property
EA¢ =¢ as. for £ € L, (A;X). O

Corollary 2. Let K C X and ® : K — R satisfy the assumptions of our
theorem. Moreover, let {F;,t € T C R} C F be an increasing family of o-
fields and let {&,F:} be a martingale such that & € K a.s. for allt € T.
Then {®(&), Fi} is a submartingale.

PROOF. The proof is immediate, because for s < t we have

(&) =@ (B &) < BT ®(&) as. O

Using our theorem we can also derive an interesting result concerning Gaus-
sian measures in a Banach space X. Recall that a (Borel separable) random
element ¢ in X is called Gaussian, if x*(€) is a real Gaussian random variable
for each continuous linear functional z* € X*, and it is called Gaussian in
the sense of Bernstein, if for any two independent copies &1, & of £ given on
a common probability space, the random elements & + & and & — & are
independent. In the described context these two definitions are equivalent.

Corollary 3. If £ is a Gaussian random element in X, then there exists a
constant 0 < ¢ < oo such that for any fized o-field Ay C F the family of

random elements {exp{c ||EA£H2 tAg C AC .7-"} C Ly(F; X) is uniformly
integrable.
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PROOF. Observe that t — t? and s — exp{cs} are convex real functions.
Therefore if ¢ > 0, then for z, y € X,

exp {clax + Byl } < exp {e(alle| +Bllyl)*} < exp{e(allal® + Sllvl) }
< aexp {ellel} + Bexp {cyl} -

Consequently, ®(z) = exp{c ||z||*} for ¢ > 0 is a convex continuous functional
on X. Moreover, there exists a constant 0 < B < oo such that exp {B ||§||2} is

integrable (see e.g. Fernique (1970), Kuo (1975), Ch. III, §3, Th. 3.1, p.159,
Kwapien and Woyczynski (1992), Ch. III, § 7, pp. 54-55, or Zapata (1987)).
Choose 0 < ¢ < B and fix € > 0 arbitrarily. Applying the above theorem

we get exp {CHEAEH2} < EXexp {c||§||2} a.s. Hence, if P[A] < (¢/M)P

1/q
for A € Ay, where M = (Eexp {cq\|§|\2}> < o0, cq < B, pg > 1,
1/p+1/q =1, then by Holder’s inequality

/Aexp {CHEA§||2} dP < /AEAexp{chHQ} AP = /Al-exp{c||§||2} dP
<y ([ e {eter}ar)” <=

and E exp {CHEAgHQ} < E{EAexp{cHgH?}} = Eexp {c||g\|2} <M < o0
uniformly with respect to o-fields A, Ag C A C F. By Th.19, Ch. II, p. 22 in
Dellacherie and Meyer (1978), the family {exp{c HEA£H2 A CAC .7:} -
L1(F; X) is uniformly integrable.

Remark. 1. If {F,t € T C R} C F is an increasing family of o-fields and &
is a Gaussian random element in X, then according to Corollary 2 for a fixed
¢ > 0 sufficiently close to zero {exp{c HE}-tgH2 RS T} is a submartingale,
thus its equi-integrability follows from a more general theorem concerning
stopped martingales (cf. Metivier and Pellaumail, Ch. 4, §8.3, Prop. 2, p.
96-97).

2. The result applied above concerning exponential integrability of Gaus-
sian random vectors in Banach spaces was considerably improved by Talagrand
(1984) as follows: if Y is a random vector with a symmetric Gaussian distri-

bution in a (separable) Banach space X, then E exp {CO Y] —b HYH} < 0

for an arbitrary b > 0, where ¢y = (2 SUp| g+ =1 B [2* (Y)]2) (see Kwapiernl
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and Woyczynski, Ch. III, §6, p. 89, cf. also Ch. II, §6, Th. 2.6.1, pp. 52-

53).

Moreover, instead of the norm in a Banach space one can consider any

pseudometric invariant under translations in a group (see Zapala (1987)).
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