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Wólczańska 215, 93-005  Lódź, Poland. email: mbalce@p.lodz.pl

ON COMPLETENESS GENERATED BY
CONVERGENCE WITH RESPECT TO A

σ-IDEAL

Abstract

We consider convergence (introduced by E. Wagner in 1981) with
respect to a σ-ideal of S-measurable real valued functions on Y where
S ⊂ P(Y ) is a σ-algebra containing a given σ-ideal J. We check which
operations preserve completeness generated by convergence with re-
spect to a σ-ideal. We introduce uniform kinds of J-convergence and
J-completeness and use them in a statement concerning the Fubini prod-
uct of two σ-ideals.

1 Introduction.

It is well known that a sequence of real-valued measurable functions (fn)n∈N
on [0, 1] converges in measure to a function f if and only if each subsequence
of (fn)n∈N contains a subsequence which converges to f almost everywhere.
The same is true for functions defined on any space of finite measure. This
fact was used by E. Wagner [W] to define an abstract kind of convergence with
which we will be concerned. A similar convergence was considered earlier by
D. Vladimirov [V] in another context. Throughout the paper, we assume that
S is a σ-algebra of subsets of a given set Y and J is a proper σ-ideal (i.e.,
Y /∈ J) of subsets of Y . We briefly say that S and J are a σ-algebra and a
σ-ideal on Y . In this section we assume additionally that J ⊂ S. (In the next
sections we will drop this assumption to extend the sense of some notions.)
By F(S) we denote the set of all S-measurable real-valued functions on Y.
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We say that a given property holds J-almost everywhere (in short J-a.e.) on
Y if the set of all elements y ∈ Y that do not have this property, belongs to J.
A sequence (fn)n∈N of functions from F(S) is called convergent to f ∈ F(S) with
respect to J if each subsequence of (fn)n∈N contains a subsequence convergent
J-almost everywhere to f . This is written as fn

J→ f . In our considerations,
as in the classical measure case, we might assume that functions from F(S) are
defined J-almost everywhere and have values in R∪ {−∞,+∞} but are finite
J-almost everywhere. This however does not lead to essentially more general
situation, since using the respective equivalence relation, we come back to the
case of finite valued functions defined everywhere on Y . Note that a limit
of a sequence (fn)n∈N in F(S) convergent with respect to J is not uniquely
determined, however any two limits are J-a.e. equal on Y . Indeed, assume
that fn

J→ f and fn
J→ g. Pick a subsequence (fnk) which is J-a.e. convergent

to f , and then pick a subsequence (fnkp ) which is J-a.e. convergent to g. But
(fnkp ) is also J-a.e. convergent to f , so f and g are equal J-a.e. on Y .

We use standard set theoretic notation. We will identify an ordinal with
the set of its predecessors. Cardinals will be treated as initial ordinals. We
denote by N↑ the set of all increasing sequences of positive integers. Let P(E)
stand for the power set of a set E, and let [E]<κ, [E]≤κ denote the families of
subsets of E of cardinality < κ and ≤ κ, respectively.

Let us recall the classical example which will be useful further in the paper.
In a sense, this example is universal since the same functions f, fn, n ∈ N, in
F(S) witness that convergence “ J→” need not imply convergence “→, J-a.e.”,
for a large class of pairs (S, J) on [0, 1].

Example 1. As usual, χA denotes the characteristic function of a set A ⊂ Y .
Let Y := [0, 1] and write the functions of the sequence

χ
[0,1/2], χ[1/2,1], χ[0,1/4], χ[1/4,1/2], χ[1/2,3/4], χ[3/4,1], χ[0,1/8], . . .

as f1, f2, f3, . . . . Let f ≡ 0 on [0,1]. Then fn → f in measure but fn(x)→ f(x)
is false, for all x ∈ [0, 1]. We will show that this example works for a wide
class of σ-algebras and σ-ideals. Clearly, the functions fn, n ∈ N, are Borel
measurable. Let S be any σ-algebra on [0, 1] containing Borel sets. Observe
that fn

J→ f where J ⊂ S is any proper σ-ideal containing all countable subsets
of Y . Indeed, if (nk) ∈ N↑ then we can find (kp) ∈ N↑ such that fnkp → f
everywhere except for at most one point from Y .

Due to the Riesz theorem, convergence in measure on [0, 1] is equivalent to
the respective Cauchy condition — if it is satisfied, a sequence of measurable
functions is called fundamental in measure. As it was observed in [WBW], the
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Cauchy condition in measure can be described without the use of measure.
This leads to the notion of a sequence fundamental in category (when one
uses as J the σ-ideal of meager subsets of [0,1]). The main result of [WBW]
states that a sequence of functions with the Baire property is convergent in
category on [0, 1] (i.e., convergent with respect to the σ-ideal of meager sets)
if and only if it is fundamental in category. The proof of sufficiency is highly
nontrivial — it yields a kind of completeness of the respective function space.

One can easily extend the considerations from [WBW] to the general case
of sequences in F(S). Namely, we say that a sequence (fn)n∈N in F(S) is J-
Cauchy (or J-fundamental) if, for any (mk)k∈N, (nk)k∈N ∈ N↑, the sequence
(fmk − fnk)k∈N converges, with respect to J, to the constant function equal to
zero on Y . Observe that (fn) is J-Cauchy if and only if for any (mk), (nk) ∈ N↑
there is (kp) ∈ N↑ such that (fmkp − fnkp )p∈N tends to zero J-a.e. on Y .

The following proposition can be proved similarly as in [WBW, Thm. 1].

Proposition 2. For every sequence (fn) of functions from F(S), if (fn) con-
verges with respect to J to a function f ∈ F(S), then (fn) is a J-Cauchy
sequence.

If every J-Cauchy sequence in F(S) is convergent, with respect to J, to a
function f ∈ F(S) (i.e. the converse of implication from Proposition 2 holds),
we say that F(S) is J-complete.

Consider the following simple example.

Example 3. By {∅}Y we denote the σ-ideal on Y consisting of ∅. Put J :=
{∅}Y and let S be an arbitrary σ-algebra on Y . Assume that fn ∈ F(S), n ∈ N,
and f ∈ F(S). We will show that fn

J→ f is equivalent to the usual pointwise
convergence fn → f ; this fact was mentioned in [W]. Let us start from an
observation that a sequence (an)n∈N of real numbers converges to a ∈ R if
and only if every subsequence of (an) contains a subsequence convergent to
a. Knowing this, assume that fn

J→ f . Thus for each (nk) ∈ N↑ there exists
(kp) ∈ N↑ such that fnkp (x)→ f(x) for all x ∈ Y . By the above observation,
if we put the quantifier “for all x ∈ Y ” in front of the others, we obtain
fn → f . Conversely, assume that fn → f and suppose that fn

J→ f is false.
Hence there is (nk) ∈ N↑ such that for every (kp) ∈ N↑ we can find x ∈ Y
such that fnkp (x) → f(x) is false. By considering (kp) = (p) this contradicts
fn(x)→ f(x). Similarly, it can be shown that (fn)n∈N is J-Cauchy if and only
if (fn(x))n∈N is a Cauchy sequence for every x ∈ Y . Hence we conclude that
F(S) is J-complete, by the completeness of R.

Let M and N stand for the σ-ideals of meager sets (i.e., of first category)
in R and of Lebesgue null sets in R. Their restrictions to an interval I ⊂ R
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will be denoted by MI and NI . Let BAIRE and LEB stand for the σ-algebras
of subsets of R with the Baire property and of Lebesgue measurable subsets of
R, respectively. Their restrictions to I will be written as BAIREI and LEBI .
Symbols M(Z) and BAIRE(Z) have the same meanings as M and BAIRE but
they concern an uncountable Polish space Z taken in place of R.

Fact 4. • F(LEB[0,1]) is N[0,1]-complete (the classical Riesz theorem);
• F(BAIRE[0,1]) is M[0,1]-complete [WBW, Thm. 2] ;
• F(LEB[0,1] ∩ BAIRE[0,1]) is N[0,1] ∩M[0,1]-complete [WBW, Thm. 2a].

Our aim is to study, under which additional conditions, the completeness
of F(·) is preserved when various operations on σ-ideals are considered and
the associated σ-algebras are respectively transformed. In Section 2 we obtain
results concerning operations of restriction, intersection and direct sum. To
obtain the respective statement (Proposition 24) for the Fubini product of two
σ-ideals, we use the notion of uniform J-completeness introduced in Section 3.

Several pairs (S, J) have not been investigated from the J-completeness
point of view. On the other hand, we know only one example of non-J-com-
pleteness given in [V]. Let us recall it. Consider the partial order ≤∗ on
N↑ defined by (mj) ≤∗ (nj) if there exists k ∈ N such that mj ≤ nj for all
j ≥ k. A set T ⊂ N↑ is called bounded if there exists (nj) ∈ N↑ such that
(mj) ≤∗ (nj) for all (mj) ∈ T . Let b denote the minimal cardinality of an
unbouned subset of N↑, and let c := |R|. (Originally, see [vD], the number
b is defined analogously for unbounded sets in NN, however our approach is
equivalent.) It is known that ω1 ≤ b ≤ c and each of the conditions ω1 = b < c,
ω1 < b < c, ω1 < b = c is consistent (cf. [vD]). Obviously the Continuum
Hypothesis (CH) implies b = c.

Fact 5. F(P(b)) is not [b]<b-complete. (See [V].)

2 Some Operations Preserving J-Completeness.

Let S and J be a σ-algebra and a σ-ideal on Y . Note that convergence with
respect to J, and also J-Cauchy condition and J-completeness, defined as in
Section 1, make sense without assuming J ⊂ S. Namely, put

J�S := {A ⊂ Y : (∃B ∈ J ∩ S)A ⊂ B}.

Then J�S is the σ-ideal generated by J ∩ S. If f, fn ∈ F(S), n ∈ N, observe
that “fn → f , J-a.e.,” is the same as the statement “fn → f , J�S-a.e.”. Hence
it follows that fn

J→ f is equivalent to fn
J�S→ f . So, our extended definition

has been reduced to the case of the pair (S, J�S) with J�S ⊂ S. Similarly, we
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interpret the extended notions of a J-Cauchy sequence and J-completeness of
F(S). In fact this setting is not more general but it is useful from the technical
standpoint.

We say that a family B ⊂ P(Y ) is a basis of a σ-ideal J on Y if B ⊂ J and
each set from J is contained in a set from B. Let A4B := (A \ B) ∪ (B \ A)
for A,B ⊂ Y . Put

S4J := {A4B : A ∈ S and B ∈ J};

this is the σ-algebra generated by S ∪ J. It is known that

F(S4J) = {f ∈ RY : (∃g ∈ F(S))f = g, J-a.e.}

provided J has a basis contained in S (equivalently, if J = J�S), see [F, 1D(c),
pp 7–8]. Hence one can easily check that, if J has a basis contained in S, then
F(S4J) is J-complete if and only if F(S) is J-complete. Therefore the case
“J has a basis contained in S” is principally not more general than the case
“J ⊂ S”. When we do not speak about a basis, it follows that F(S4(J�S)) is
J�S-complete iff F(S) is J�S-complete iff F(S) is J-complete.

In this section we study several operations preserving J-completeness. First,
consider the operation of restriction.

Proposition 6. Fix a σ-algebra S and a σ-ideal J on Y . Let Y0 ⊂ Y , Y0 ∈ S\J
and put J�Y0 := J ∩ P(Y0), S�Y0 := S ∩ P(Y0). We then have:

(a) J�Y0 is a σ-ideal and S�Y0 is a σ-algebra on Y0.
(b) F(S�Y0) = {f�Y0 : f ∈ F(S)}.
(c) If F(S) is J-complete, then F(S�Y0) is J�Y0-complete.
(d) If Y \ Y0 ∈ J, then F(S) is J-complete if and only if F(S�Y0) is J�Y0-

complete.

Proof. The proofs of (a), (b) and (d) are self-evident. (In the proof of
(d) we use (c).) To show (c) consider a J�Y0-Cauchy sequence (fn)n∈N in
F(S�Y0). Extend each fn to gn defined on the whole Y by putting gn(x) := 0
for x ∈ Y \ Y0. Then (gn)n∈N is J-Cauchy in F(S). By assumption there is

g ∈ F(S) such that gn
J→ g. Hence fn

J�Y0→ f where f := g�Y0 ∈ F(S�Y0).

Now, let us examine the operation of countable intersection. If a σ-algebra
S on Y is fixed, we say that two σ-ideals J1 and J2 on Y are S-orthogonal, if
there is A ∈ S such that A ∈ J1 and Y \A ∈ J2.

Proposition 7. Assume that Si is a σ-algebra and Ji is a σ-ideal on Y for
i ∈M where M 6= ∅. Let J =

⋂
i∈M Ji and S =

⋂
i∈M Si. We then have:
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(a) J is a σ-ideal and S is a σ-algebra on Y . If Ji�S = Ji for all i ∈M , then
J�S = J. If Ji ⊂ Si for all i ∈M , then J ⊂ S.

(b) F(
⋂
i∈M Si) =

⋂
i∈M F(Si).

(c) If M is countable, Ji�S = Ji for i ∈ M and F(Si) is Ji-complete for
i ∈M , then F(S) is J-complete.

(d) If M is countable, Si = S and Ji�S = Ji for i ∈ M , and Ji, i ∈ M , are
pairwise S-orthogonal, then F(S) is

⋂
i∈M Ji-complete if and only if F(S)

is Ji-complete for all i ∈M .

Proof. Assertions (a) and (b) are clear. We will prove (c) in the case M = N.
Let (fn)n∈N be J-Cauchy in F(S). Then it is Ji-Cauchy in F(Si) for each i ∈ N.
Consider (nk) ∈ N↑. Put A0 := Y and r(1) := 1. Since F(S1) is J1-complete,
pick g(1) ∈ F(S1) such that fn

J1→ g(1). Hence we find (k(1)
p ) ∈ N↑ such that

A1 :=
{
x ∈ A0 : lim

p→∞
fn

k
(1)
p

(x) 6= g(1)(x)
}
∈ Jr(1).

Since J1�S = J1, we may include A1 in B1 ∈ J1 ∩ S. For simplicity assume
B1 = A1. Then we proceed inductively. If A1 ∈ J, we are done. Otherwise, let

r(2) := min{j ∈ N : A1 /∈ Jj}. Hence A1 ∈
r(2)−1⋂
i=1

Ji\Jr(2). Since F(Sr(2)�A1) is

(Jr(2)�A1)-complete (cf. Proposition 6 (c)), pick g(2) ∈ F(Sr(2)�A1) such that

fn�A1

Jr(2)�A1→ g(2) on A1. Hence we find a subsequence (k(2)
p )p∈N of (k(1)

p )p∈N
such that

A2 =
{
x ∈ A1 : lim

p→∞
fn

k
(2)
p

(x) 6= g(2)(x)
}
∈ Jr(2).

As before, we can enlarge A2 to have A2 ∈ Jr(2) ∩ S. Then we pick r(3) if
possible. If our procedure is infinite, we obtain a sequence r(1) < r(2) < . . .
of positive integers and the respective sequence of sets A0 ⊃ A1 ⊃ . . . with
Ai ∈ Jr(i) ∩ S for all i ∈ N. Define f ∈ F(S) by putting f := g(i) on Ai−1 \Ai,
i ∈ N and f := 0 on

⋂
i∈N Ai (if this set is nonempty). We conclude that

the diagonal sequence (fn
k
(p)
p

)p∈N converges J-a.e. (more exactly, everywhere

except for the set
⋂
i∈N Ai ∈ J) to f on Y . If the procedure needs only finitely

many steps, the argument is similar.
(d) We assume that M ⊂ N. There is a partition {Yn : n ∈ M} ⊂ S

of Y such that Y \ Yn ∈ Jn and J�Yn = Jn�Yn. To see this let An,m ∈ S

for n < m, n,m ∈ M be such that An,m ∈ Jn and Y \ An,m ∈ Jm whenever
n < m. Put Yn :=

⋂
k<nAk,n∩

⋂
k>n(Y \An,k) for n ∈M . Then Y \Yn ∈ Jn,

n ∈M , and Yn ∩Ym = ∅ if n 6= m. Consequently, Yn ∈
⋂
k 6=n Jk for all n ∈M

and thus Jn�Yn = J�Yn, n ∈ M . We have Y \
⋃
n∈M Yn ∈ S ∩ J, so we may



Completeness Generated by Convergence 479

add this set to one of Yn’s and then {Yn : n ∈ M} is as desired. Now, the
implication “⇐” in (d) follows from (c) for Sn = S. We prove “⇒”. Assume
that F(S) is J-complete and let i ∈ M . Then F(S�Yi) is J�Yi-complete by
Proposition 6 (c), F(S�Yi) is Ji�Yi-complete because Ji�Yi = J�Yi, and finally,
F(S) is Ji-complete by Proposition 6 (d).

It is well known that each of the σ-ideals M and N has a basis consisting
of Borel sets. (See [O].) Thus by Proposition 7 (c) we have the following
corollary.

Corollary 8. F(BAIRE ∩ LEB) is M ∩N-complete.

Next, look at the operation of direct sum. The main property will follow
from Proposition 7 since direct sum is closely related to a particular case of
intersection.

Proposition 9. For a nonempty set M , let (Yi)i∈M be a family of pairwise
disjoint sets, and for each i ∈ M , assume that Ji and Si are a σ-ideal and a
σ-algebra on Yi. Put Y :=

⋃
i∈M Yi, ⊕

i∈M
Ji := {A ⊂ Y : (∀i ∈M)A ∩ Yi ∈ Ji}

and ⊕
i∈M

Si := {A ⊂ Y : (∀i ∈M)A ∩ Yi ∈ Si}. We then have:

(a) ⊕
i∈M

Ji is a σ-ideal and ⊕
i∈M

Si is a σ-algebra on Y .

(b) F( ⊕
i∈M

Si) = {f ∈ RY : (∀i ∈M)f�Yi ∈ F(Si)}.

(c) If M is countable, then all F(Si), i ∈ M , are Ji-complete if and only if
F( ⊕

i∈M
Si) is ⊕

i∈M
Ji-complete.

Proof. Assertions (a) and (b) are immediate. We will prove (c). Let J′i =
{A ⊂ Y : A∩Yi ∈ Ji}, i ∈M . Then Ji = J′i�Yi, Y \Yi ∈ J′i, and J′i, i ∈M , are
pairwise S-orthogonal. Put J := ⊕

i∈M
Ji and S := ⊕

i∈M
Si. Then J =

⋂
i∈M J′i.

By Proposition 7 (d) and Proposition 6 (d) we have: F(S) is J-complete iff
F(S) is J′i-complete for all i iff F(S�Yi) is Ji-complete for all i.

Let us explain why convergence in measure on R and convergence with
respect to N are not the same notions. Assume that fn ∈ F(LEB), n ∈ N,
and f ∈ F(LEB). Then fn → f in measure implies fn

N→ f . Indeed, if fn → f
in measure, then fn�[m,m + 1) → f�[m,m + 1) in measure for every m ∈ Z.
This, by Proposition 9, implies that fn

N→ f . However, condition fn
N→ f need

not imply fn → f in measure. As a counterexample, it suffices to consider
χ

[n,+∞), n ∈ N. So, N-completeness of F(LEB), which will be proved below,
is not a direct consequence of the Riesz theorem.
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Corollary 10. The space F(LEB) is N-complete.

Proof. We have

N = ⊕
m∈Z

N[m,m+1) and LEB = ⊕
m∈Z

LEB[m,m+1)

and F(LEB[m,m+1)) is N[m,m+1)-complete for every m ∈ N (by the Riesz the-
orem). So, it is enough to apply Proposition 9(c).

Analogously, from M[0,1]-completeness of F(BAIRE[0,1]) (cf. [WBW]) we
derive that F(BAIRE) is M-complete. We can also apply Proposition 9 to
mixed direct sums. For instance, we can deduce J-completeness of F(S) where
J := M[0,1) ⊕N[1,2) and S := BAIRE[0,1) ⊕ LEB[1,2).

Now, we will show that bijections preserve J-completeness in an appriopri-
ate way.

Proposition 11. Fix a σ-algebra S and a σ-ideal J ⊂ S on Y . For any
bijection h : Y → Z we have:

(a) h ∗ J := {h(A) : A ∈ J} is a σ-ideal and h ∗ S := {h(A) : A ∈ S} is a
σ-algebra on Z.

(b) F(h ∗ S) = {f ◦ h−1 : f ∈ F(S)}.
(c) If F(S) is J-complete, then F(h ∗ S) is h ∗ J-complete.

Proof. Assertion (a) is clear. To show inclusion “⊂” in (b), assume that
g ∈ F(h ∗ S). Then for an open U ⊂ R we have g−1(U) ∈ h ∗ S. Hence
g−1(U) = h(A) for some A ∈ S which yields (g ◦ h)−1(U) ∈ S. Putting
f = g ◦ h we have g = f ◦ h−1 and f ∈ F(S). Similarly, we demonstrate the
reverse inclusion.

To prove (c) assume that F(S) is J-complete and consider an h ∗ J-Cauchy
sequence (gn)n∈N in F(h ∗ S). Then (gn ◦ h)n∈N is a J-Cauchy sequence in
F(S). Hence gn ◦ h

J→ f for some f ∈ F(S). Observe that gn
h∗J→ f ◦ h−1 and

f ◦ h−1 ∈ F(h ∗ S).

Corollary 12. F(BAIRE(Z)) is M(Z)-complete for any uncountable Polish
space Z without isolated points.

Proof. By Proposition 11 (c), it suffices to apply the second assertion of Fact
4 and the fact that there is a Borel isomorphism h : [0, 1]→ Z (that is, h is a
bijection and h, h−1 are Borel measurable) preserving the Baire category; see
[CKW, Thm 3.15].

Corollary 13. F(P(c)) is not [c]<b-complete. Hence if b = ω1, then F(P(R))
is not [R]≤ω-complete.
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Proof. The first assertion follows from Fact 5 and Proposition 6 (c). To
show the second assertion we use the first assertion and Proposition 11 with
a bijection between c and R.

Problem 14. Is the last consequence in Corollary 13 provable in ZFC?

3 Uniform J-Convergence and Uniform J-Completeness.

Let S and J be a σ-algebra and a σ-ideal on Y . Additionally, fix a set X 6= ∅.
For f : X ×Y → R and x ∈ X we write as (f)x : Y → R the function given by
(f)x(y) := f(x, y), y ∈ Y . The set of all functions f : X × Y → R such that
(f)x ∈ F(S) for all x ∈ X will be written as FX(S). If A ⊂ X × Y and x ∈ X,
we let (A)x := {y ∈ Y : (x, y) ∈ A}.

We introduce two kinds of parametric convergence of (fn)n∈N to f in
FX(S). They are defined by

fn
X,J→ f iff (∀x ∈ X)(fn)x

J→ (f)x

and

fn
J,X→ f iff (∀(nk) ∈ N↑)(∃(kp) ∈ N↑)(∀x ∈ X)(fnkp )x → (f)x J-a.e. on Y.

Of course, fn
J,X→ f implies fn

X,J→ f . The converse need not hold but some-
times it is true. For instance, if X is countable, then, using the “diagonal
technique” applied in the proof of Proposition 7 (c), one can demonstrate that
the both types of convergence are the same. Let us consider two examples
with particular J.

Example 15. Let J = {∅}Y and let S ⊂ P(Y ) be an arbitrary σ-algebra. Fix
a set X 6= ∅. In this case, for any fn ∈ FX(S), n ∈ N, and f ∈ FX(S) we have

(fn
X,J→ f)⇒ (fn

J,X→ f).

Indeed, assume that fn
X,J→ f . Then (fn)x → (f)x for each x ∈ X (cf.

Example 3). Suppose that fn
J,X→ f is false. Then there is (nk) ∈ N↑ such

that for every (kp) ∈ N↑ we can find x ∈ X violating (fnkp )x → (f)x. By
considering (kp) = (p), this last condition contradicts our assumption.

Example 16. We follow notation from Example 1. Consider the respective
pair (S, J) on [0, 1] and pick fn, f ∈ F(S), n ∈ N, with fn

J→ f , chosen as
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in Example 1. Let X := N↑ and for an x ∈ N↑ let x = (mx
n)n∈N. Define

gk : X × [0, 1] → R, k ∈ N, by putting gk(x, y) := fn(y) if k = mx
n, and

gk(x, y) := 0 otherwise. Let g(x, y) := 0 for all (x, y) ∈ X× [0, 1]. It is obvious

that (gk)x
J→ (g)x = f for all ∈ X. Hence gk

X,J→ g. To show that gk
J,X→ g

is false, take an arbitrary subsequence (rn)n∈N of the sequence (n)n∈N. Put
x := (rn). Hence rn = mx

n for all n ∈ N. Since fn → f , J-a.e., does not hold,
by the definition of (gk)k∈N we infer that (grn)x → (g)x = f , J-a.e., does not
hold.

Convergence
J,X→ in FX(S) will be called uniform convergence with respect to

J, or simply uniform J-convergence. We say that a sequence (fn)n∈N in FX(S)
is uniformly J-fundamental if for any (mk), (nk) ∈ N↑ there is (kp) ∈ N↑ such
that ((fmkp )x − (fnkp )x)p∈N tends to zero J-a.e. for all x ∈ X. It is not hard
to prove that every uniformly J-convergent sequence in FX(S) is uniformly
J-fundamental (cf. Proposition 2 and [WBW, Thm 1]). If every uniformly J-
fundamental sequence in FX(S) is uniformly J-convergent to a function from
FX(S), we say that FX(S) is uniformly J-complete.

Proposition 17. (a) Let X be countable. Then FX(S) is uniformly J-
complete if and only if F(S) is J-complete.

(b) Let X1 and X2 be equinumerable. Then FX1(S) is uniformly J-complete
if and only if FX2(S) is uniformly J-complete.

(c) Let κ, λ be cardinals. If λ ≥ κ and Fλ(S) is uniformly J-complete, then
Fκ(S) is uniformly J-complete.

Proof. (a) Assume that FX(S) is uniformly J-complete. Fix x ∈ X. Then
F{x}(S) is (uniformly) J-complete which is equivalent to the J-completeness of
F(S) by Proposition 11.

Now, assume that F(S) is J-complete and let (gn) be a uniformly J-funda-
mental sequence in FX(S). Then ((gn)x)n∈N is J-fundamental for each x ∈ X.
So for each x ∈ X there is gx ∈ F(S) such that (gn)x

J→ gx. Putting g(x, y) :=

gx(y) for (x, y) ∈ X × Y we see that g ∈ FX(S) and gn
X,J→ g. But since X is

countable, we have gn
J,X→ g (use the “diagonal argument”).

(b) (Cf. Proposition 11.) Let h : X1 → X2 be a bijection and assume
that FX1(S) is uniformly J-complete. Let (fn) be uniformly J-fundamental in
FX2(S). Putting gn(x, y) := fn(h(x), y) for (x, y) ∈ X1×Y and n ∈ N observe
that (gn) is uniformly J-fundametal in FX1(S). Hence there is g ∈ FX1(S)

such that gn
J,X1→ g. Putting f(x, y) := g(h−1(x), y) for (x, y) ∈ X2 × Y , we

see that fn
J,X2→ f . The proof of the reverse implication is analogous.
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(c) Assume that (fn) is uniformly J-fundamental in Fκ(S). Putting gn :=
fn on κ × Y and gn := 0 on (λ \ κ) × Y , observe that (gn) is uniformly

J-fundamental in Fλ(S). So there is g ∈ Fλ(S) such that gn
J,λ→ g. Hence

fn = gn�(κ× Y )
J,κ→ g�(κ× Y ) =: f

and f ∈ Fκ(S).

Thanks to the referee’s suggestion, we are able to give a strengthened
version of Proposition 17 (a). To this aim we need some definitions. Let h be
the distributivity number of the Boolean algebra P(N)/[N]<ω (see [BS], [Va]).
For A,B ∈ [N]ω we write B ⊂∗ A whenever |B \ A| < ω. A set H ⊂ [N]ω is
called dense if for every A ∈ [N]ω there exists B ∈ H such that B ⊂∗ A, and
H is called open if for every A ∈ H and every B ∈ [N]ω, condition B ⊂∗ A
implies B ∈ H. The number h can be defined as the minimal cardinality of
a family D consisting of dense open sets with

⋂
D = ∅. It is known that

ω1 ≤ h ≤ b and the strict inequalities are consistent (cf. [Va]).

Proposition 18. Let |X| < h. Then FX(S) is uniformly J-complete if and
only if F(S) is J-complete.

Proof. We show “⇐”. Assume that F(S) is J-complete and let (gn) be a
uniformly J-fundamental sequence in FX(S). Then there is g ∈ FX(S) such

that gn
X,J→ g (cf. the proof of Proposition 17 (a)). We identify a sequence

(nk) ∈ N↑ with {nk : k ∈ N} ∈ [N]ω. For every x ∈ X put

Hx = {A ∈ [N]ω : {(gn)x}n∈A → (g)x, J− a.e.}

Then D := {Hx : x ∈ X} consists of dense open sets in [N]ω. Since |D| < h,

we have D :=
⋂

D 6= ∅ and D is s dense open set which yields gn
J,X→ g.

By Proposition 17 (b), the phenomenon of uniform J-completeness of FX(S)
does not depend on the nature of X but on its cardinality. Thus we may only
speak of uniform J-completeness of Fκ(S) where κ is a cardinal; for κ < h this
notion is equivalent to J-completeness of F(S), by Proposition 18.

Problem 19. Determine for which κ ≥ h the family Fκ(BAIRE) is uniformly
M-complete and the family Fκ(LEB) is uniformly N-complete.



484 Marek Balcerzak

4 Completeness with Respect to the Fubini Product of
σ-Ideals.

We will consider the operation of (the Fubini) product of two σ-ideals and we
will associate with it the respective σ-algebra.

Lemma 20. Let J and S be a σ-ideal and a σ-algebra on Y and let I be a
σ-ideal on X. We then have:

(1) I⊗ S := {A ⊂ X ×Y : {x ∈ X : (A)x /∈ S} ∈ I} is a σ-algebra on X ×Y ;
(2) I ⊗ J := {A ⊂ X × Y : {x ∈ X : (A)x /∈ J} ∈ I} is a σ-ideal on X × Y ,

and if J ⊂ S, then I⊗ J ⊂ I⊗ S.

Proof. Straightforward.

The σ-ideal I⊗ J is called the Fubini product of σ-ideals I and J.
Let Q stand for the set of all rationals.

Lemma 21. Assume that I and S are as in Lemma 20. For a function f : X×
Y → R, the following conditions are equivalent :

(1) f ∈ F(I⊗ S);
(2) f−1[(−∞, a)] ∈ J⊗ S for all a ∈ Q;
(3) {x ∈ X : (f)−1

x [(−∞, a)] /∈ S} ∈ I for all a ∈ Q;
(4)

⋃
a∈Q{x ∈ X : (f)−1

x [(−∞, a)] /∈ S} ∈ I;
(5) {x ∈ X : (f)x /∈ F(S)} ∈ I.

Proof. Equivalences (1)⇔(2) and (4)⇔(5) are obvious. The implication
(2)⇒(3) follows from the definition of I ⊗ S. The implication (3)⇒(4) fol-
lows from the σ-additivity of I. The implication (4)⇒(2) follows from the
definition of I⊗ S and the fact that I is a hereditary family.

Remark 22. Let I := {∅}X . From Lemma 21 it follows that FX(S) =
F(I ⊗ S). Note that uniform J-convergence in FX(S) (respectively, uniform
J-completenss of FX(S)) is the same as I⊗ J-convergence in F(I⊗ S) (respec-
tively, I⊗J-completeness of F(I⊗S)). If S = P(Y ), we have I⊗S = P(X×Y ).

Corollary 23. Let I := {∅}X . Then F(I ⊗ P(b)) is not I ⊗ [b]<b-complete.
Equivalently, FX(P(b)) is not uniformly [b]<b-complete.

Proof. By Remark 22 it suffices to show the first assertion. Suppose that
F(I ⊗ P(b)) is I ⊗ [b]<b-complete. Put S := I ⊗ P(b), J := I ⊗ [b]<b. Fix
x0 ∈ X and let Y0 := {x0}×b. Then F(S�Y0) is J�Y0-complete by Proposition
6. Observe that S�Y0 = P({x0}×b) and J�Y0 = [{x0}×b]<b. Hence we easily
deduce [b]<b-completeness of F(P(b)) which contradicts Fact 5.
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For an ideal I ⊂ P(X) we let

add(I) := min{|U| : U ⊂ I and
⋃

U /∈ I}.

Proposition 24. Assume that |X| = λ > c and I is a σ-ideal on X with
add(I) > c. Let S and J ⊂ S be a σ-algebra and a σ-ideal on Y . If Fλ(S) is
uniformly J-complete, then F(I⊗ S) is I⊗ J-complete.

Proof. Let (fn)n∈N be an I⊗ J-fundamental sequence in F(I⊗ S). For arbi-
trary h1, h2 ∈ N↑, h1 = (mk), h2 = (nk), pick z = z(h1, h2) ∈ N↑, z = (kp),
such that (fmkp − fnkp )p∈N tends to zero (I⊗ J)-a.e. on X × Y . Hence

E(h1, h2) := {x ∈ X : {y ∈ Y : ¬(fmkp (x, y)− fnkp (x, y)→ 0)} /∈ J} ∈ I.

Since fn ∈ F(I⊗ S) for n ∈ N, we have (cf. Lemma 21)

Fn := {x ∈ X : (fn)x /∈ F(S)} ∈ I for n ∈ N.

Put
E :=

⋃
h1,h2∈N↑

E(h1, h2) ∪
⋃
n∈N

Fn.

From add(I) > c it follows that E ∈ I. Let gn := fn�(X\E)×Y for n ∈ N, and
observe that (gn) is uniformly J-fundamental in FX\E(S). Since |X \ E| ≤ λ,
by assumption and Proposition 17(c) we infer that FX\E(S) is uniformly J-

complete. Hence there is g ∈ FX\E(S) such that gn
J,X\E→ g. Putting f := g

on (X \ E) × Y and f := 0 on E × Y note that f is I ⊗ S-measurable (cf.
Lemma 21) and fn

I⊗J→ f .

We could apply Proposition 24 to J ∈ {M,N} and the respective S ∈
{BAIRE,LEB} if we would know that Fλ(S) is uniformly J-complete (cf.
Problem 19). However, we have the following (rather simple) application of
Proposition 24.

Corollary 25. Let λ > c be a cardinal and let S ⊂ P(Y ) be a σ-algebra. Then
F([λ]≤c ⊗ S) is [λ]≤c ⊗ {∅}Y -complete.

Proof. It suffices to observe that add([λ]≤c) > c (this follows from c · c = c)
and that Fλ(S) is uniformly {∅}Y -complete (see Examples 3 and 15).

Proposition 24 seems to be less than satisfactory since from one strong
kind of completeness we derive another (related) strong kind of completeness.
Probably better results can be obtained in particular cases.
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5 Appendix: The Proof of Fact 5.

We follow the argument from [V].

Lemma 26. Let M ⊂ N↑ and |M | < b. There exists a sequence (zn)n∈N of
nonnegative real numbers such that

(a)
∑∞
i=1 zi =∞,

(b) limj→∞
∑j+nj
i=j+1 zi = 0 for each (nj) ∈M .

Proof. By the definition of b, there is (rk) ∈ N↑ such that (nk) ≤∗ (rk)
for all (nk) ∈ M . Define (m(j)) ∈ N↑ by formulas m(1) := 1 and m(j+1) :=
m(j) + rm(j) for j ∈ N. Obviously (m(j)) ∈ N↑. Let

zi :=

{
1/j if i = m(j) (j ∈ N)
0 for the remaining i ∈ N.

Assertion (a) is clear. To show (b) fix (nk) ∈ M . Pick p ∈ N such that
rk ≥ nk for all k ≥ p. Let j ≥ m(p). There is a unique kj ∈ N such that
m(kj) ≤ j < m(kj+1). Then j ≥ p and nj ≤ rj < r

m(kj+1) . Hence

{j + 1, j + 2, . . . , j + nj} ⊂ {m(kj) + 1, . . . ,m(kj) + r
m(kj+1)}

⊂ {m(kj) + 1, . . . ,m(kj+1) + r
m(kj+1)} = {m(kj) + 1, . . . ,m(kj+2)}.

Consequently,

0 ≤
j+nj∑
i=j+1

zj ≤
1

kj + 1
+

1
kj + 2

.

Since limj→∞ kj =∞, we have (b).

To finish the proof of Fact 5, write J := [b]<b and fix an unbounded
set T = {tα : α < b} ⊂ N↑ with tα = (n(α)

k )k∈N. If for every α < b we
apply Lemma 26 with Mα := {tβ : β ≤ α}, |Mα| < b, we obtain a sequence
(fi(α))i∈N of nonnegative real numbers such that
(a’)

∑∞
i=1 fi(α) =∞,

(b’) limj→∞
∑j+n

(β)
j

i=j+1 fi(α) = 0 for all β ≤ α.
In this way we have defined a sequence fi : b → [0,∞), i ∈ N. Put sn :=∑n
i=1 fi for n ∈ N. By (a’), for every α < b we have limn→∞ sn(α) = ∞.

In particular sn
J→ s is false for any s ∈ F(P(b)). It suffices to show that

(sn) is J-Cauchy. Let (mk), (nk) ∈ N↑. We will find (ki) ∈ N↑ such that
limi→∞(smki − snki ) = 0, J-a.e. If mk = nk for infinitely many k ∈ N, we are
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done. Otherwise, we may suppose that, for instance, mk > nk for infinitely
many k ∈ N. For simplicity assume that mk > nk for all k ∈ N. Fix (pk) ∈ N↑
such that pk ≥ mk for all k ∈ N (e.g. let pk := k + max1≤i≤kmi, k ∈ N).
Consequently,

(c) 0 ≤ smk − snk =
∑mk
j=nk+1 fj ≤

∑k+pk
j=k+1 fj for all k ∈ N.

Because T is unbounded, the condition (∀β < b) tβ ≤∗ (pk) is false. So, there
is β < b such that n(β)

ki
> pki for some (ki) ∈ N↑. By (b’) we infer that

lim
k→∞

k+n
(β)
k∑

j=k+1

fj = 0, J-a.e.

In particular,

lim
i→∞

ki+n
(β)
ki∑

j=ki+1

fj = 0, J-a.e.

Hence by (c) we have limi→∞(smki − snki ) = 0, J-a.e., as desired.
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