Supriya Pal, Serampore College, Serampore, Hooghly, West-Bengal, India, PIN-712201. e-mail: palsupriya@yahoo.com D. K. Ganguly, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Calcutta-700019, India. e-mail: gangulydk@yahoo.co.in Lee Peng Yee, MME, National Institute of Education, 1 Nanyang Walk, Singapore 637616. e-mail: pylee@nie.edu.sg.

THE FUNDAMENTAL THEOREM OF CALCULUS FOR GR_k -TYPE INTEGRALS

Abstract

The GR_k integral, a Stieltjes type integral, was introduced by the authors. In this paper we introduce a GR_k -type integral that admits the fundamental theorem of calculus. Also, a convergence theorem is proved using equi-integrability conditions.

1 Introduction

The Henstock-Stieltjes integral is well known [1]. Recently the GR_k -integral was introduced by the authors (see [3]). Some results on the GR_k integral were established in [3]. The GR_k -integral is not covered by the Henstock-Stieltjes type integrals in the literature. The GR_k -integral was defined using a different type of division called δ^k -fine division. For this division we had a different type of partial division and the Saks-Henstock lemma where the building blocks were point-division pairs rather than point-interval pairs as in the usual case.

It is observed that pointwise tagging is not helpful in studying the GR_k integral and so we introduce the concept of what we call "local tagging". Further the concept of "regulated δ^k -fine division" is introduced by means of local tagging and using this type of divisions we introduced the GR_k^* -integral. It was shown that the new integral includes the GR_k -integral provided the

Key Words: Henstock Integral, δ^k -fine division, regulated δ^k -fine division, Saks-Henstock lemma, g^k -variation, GR_k -integral, GR_k^* -integral, g regular function, Equiintegrability, BV^k , LBV^k , nearly additive function.

Mathematical Reviews subject classification: 26A39 Received by the editors December 23, 2001

⁵⁴⁹

jump J(g; x) exists at every point. We verify some fundamental prperties of GR_k^* integrals and find that the primitive function for a GR_k^* integral is also not additive; rather it is, what we call, nearly additive. We also introduce the concept of local g^k variation which plays an important role in the development of the integral. We obtain a fundamental theorem of calculus for the GR_k^* integral using the notion of 'g-regularity' of primitive functions. Further, we prove the equi-integrability convergence theorem (see [2]) for the GR_k^* integral.

2 Preliminaries

Let k be a fixed positive integer and δ be a positive function defined on [a, b]. We shall call a division D of [a, b] given by $a = x_0 < x_1 < \ldots < x_n = b$ with associated points $\{\xi_0, \xi_1, \ldots, \xi_{n-k}\}$ satisfying

$$\xi_i \in [x_i, x_{i+k}] \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$$
 for $i = 0, 1, \dots, n-k$

a δ^k -fine division of [a, b]. For a given positive function δ , we denote a δ^k -fine division D by $\{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\dots,n-k}$. Using compactness of [a, b] it is easy to verify that such δ^k -fine divisions exist. Note that δ^1 fine divisions coincide with the usual definition of δ -fine divisions.

Let g be a real-valued function defined on a closed interval $[a,b]^{k+1}$ in (k+1)-dimensional space, and f a real-valued function defined on [a,b]. We say that f is GR_k -integrable with respect to g to I on [a,b] if for every $\epsilon > 0$ there is a function $\delta(\xi) > 0$ for $\xi \in [a,b]$ such that for any δ^k -fine division $D = \{[x_i, x_{i+k}], \xi_i\}_{i=0,1,\dots,n-k}$ we have

$$\left|\sum_{i=0}^{n-k} f(\xi_i)g(x_i,\ldots,x_{i+k}) - I\right| < \epsilon.$$

We shall denote the above Riemann sum by s(f, g; D). If f is integrable with respect to g in the above sense, we write $(f, g) \in GR_k[a, b]$ and denote the integral by $\int_a^b f \, dg$.

Let $x \in [x_i, x_{i+k}]$ where $x_i < x_{i+1} < \ldots < x_{i+k}$. The jump of g at x, denoted by J(g; x), is defined by $J(g; x) = \lim_{x_i \to x, x_{i+k} \to x} g(x_i, \ldots, x_{i+k})$, if the limit exists finitely.

In [3] the following theorem was proved.

Theorem 2.1. Let $(f,g) \in GR_k[a,c]$ and $(f,g) \in GR_k[c,b]$. If J(g;c) exists, then $(f,g) \in GR_k[a,b]$ and

$$\int_{a}^{b} f \, dg = \int_{a}^{c} f \, dg + \int_{c}^{b} f \, dg + (k-1)f(c)J(g;c).$$

Remark 2.2. We note that if we define $F(u, v) = \int_u^v f \, dg$ for $[u, v] \subset [a, b]$, then F is not an additive function on the closed subintervals of [a, b] for k > 1. But for k = 1 it is additive because the extra term vanishes.

Let the domain of F be $\{[u, v] \subset [a, b] | u \leq v\}$. We say F is nearly additive if for a < c < b, F(a, b) = F(a, c) + F(c, c) + F(c, b). Further, F is called *g*-nearly additive with respect to f if for all $x \in (a, b)$ we have that F(x, x) = (k-1)f(x)J(g; x). So, the integral function F of the GR_k -integral is *g*-nearly additive with respect to f in [a, b].

In [3] the following δ^k -fine partial division of a special kind was introduced. Let $[a_i, b_i], i = 1, 2, ..., p$ be pairwise non-overlapping, and $\bigcup_{i=1}^{p} [a_i, b_i] \subset [a, b]$. Then $\{D_i\}_{i=1,2,...,p}$ is said to be a δ^k -fine partial division of [a, b] if each D_i is a δ^k -fine division of $[a_i, b_i]$. Its corresponding partial Riemann sum is given

by
$$\sum_{i=1}^{F} s(f, g; D_i)$$

With this notion of partial division an analogue of the Saks-Henstock Lemma was proved (see [3]).

Theorem 2.3. (Saks-Henstock Lemma) If $(f, g) \in GR_k[a, b]$ and J(g; c) exists for all $c \in (a, b)$, then for every $\epsilon > 0$ there exists a positive function δ on [a, b]such that for any δ^k -fine division D of [a, b] and for any δ^k -fine partial division $\{D_i\}_{i=1,2,...,p}$ of [a, b]

$$\left| s(f,g;D) - \int_a^b f \, dg \right| < \epsilon \text{ and } \left| \sum_{i=1}^p \left(s(f,g;D_i) - \int_{a_i}^{b_i} f \, dg \right) \right| < (k+1)\epsilon$$

where D_i is a δ^k -fine division of $[a_i, b_i]$.

Remark 2.4. In view of the above definition of partial division and Saks-Henstock lemma we observe that unlike the usual partial division in Henstock's theory we have to consider "point-division" pairs and also we see that these are the building blocks of the GR_k -integral. In other words, "a point" and "an interval around that point" are not helpful for our purpose; rather "a point" and "a δ^k -fine division in a neighbourhood of the point" are what we need.

Keeping this in mind we introduce the concept of *local tagging* which for k = 1, reduces to usual "point-interval" tagging.

Definition 2.5. Given a function $\delta : [a, b] \to \mathbb{R}_+$ and a point $x \in [a, b]$, then a δ^k -fine division D of $[u, v] \subseteq [a, b]$ is said to be locally tagged at x if $[u, v] \subset (x - \delta(x), x + \delta(x))$ with either u = x or v = x.

It may be noted here that for local tagging at x we need δ to be defined in a neighbourhood of x. But for simple presentation we considered δ to be defined on [a, b].

Definition 2.6. A family of triplets $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ is called a regulated δ^k -fine division of [a, b] if each D_i is a δ^k -fine division of $[a_i, b_i]$ locally tagged at x_i where $[a_i, b_i], i = 1, 2, ..., p$ are non-overlapping with $\cup [a_i, b_i] = [a, b]$. Further, $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ is called a regulated δ^k -fine partial division of [a, b] if $\cup [a_i, b_i] \subseteq [a, b]$.

3 GR_k^* -integral

We now introduce a GR_k -type integral that admits the fundamental theorem of calculus among other results. Also we will show that if J(g; c) exists for all $c \in (a, b)$, then the new integral contains the GR_k integral. We denote the new integral by GR_k^* integral which is defined as follows.

Definition 3.1. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b]^{k+1} \to \mathbb{R}$ such that J(g; c) exists for all $c \in (a, b)$. We say that f is GR_k^* integrable to A with respect to g on [a, b] if for all $\epsilon > 0$ there exists $\delta : [a, b] \to \mathbb{R}_+$ such that for any regulated δ^k -fine division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b] we have

$$\left|\sum_{i=1}^{p} s(f,g;D_i) + \sum_{i=1}^{p-1} (k-1)f(b_i)J(g;b_i) - A\right| < \epsilon$$

We can easily verify that GR_k^* integral is well defined.

If f is GR_k^* integrable with respect to g, we write $(f,g) \in GR_k^*[a,b]$ and denote the integral also by $\int_a^b f \, dg$.

In what follows we always assume that J(g; x) exists for all $x \in (a, b)$.

Theorem 3.2. Let a < c < b. If $(f,g) \in GR_k^*[a,c]$ and $(f,g) \in GR_k^*[c,b]$, then $(f,g) \in GR_k^*[a,b]$ and

$$\int_{a}^{b} f \, dg = \int_{a}^{c} f \, dg + \int_{c}^{b} f \, dg + (k-1)f(c)J(g;c).$$

PROOF. Since $(f,g) \in GR_k^*[a,c] \cap GR_k^*[c,b]$, for $\epsilon > 0$, there exists $\delta_1(x) > 0$ and $\delta_2(x) > 0$ defined on [a,c] and [c,b] respectively such that

$$\left|\sum_{i=1}^{p} s(f,g;D_i) + \sum_{i=1}^{p-1} (k-1)f(b_i)J(g;b_i) - \int_{a}^{c} f \, dg\right| < \epsilon,$$

$$\left|\sum_{j=1}^{q} s(f,g;P_j) + \sum_{j=1}^{q-1} (k-1)f(d_j)J(g;d_j) - \int_{c}^{b} f \, dg\right| < \epsilon,$$

for every regulated δ_1^k -fine division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, c] and regulated δ_2^k -fine division $\{y_j, P_j, [c_j, d_j]\}_{j=1}^q$ of [c, b] respectively. We define $\delta(x) = \min\{\delta_1(x), c-x\}$ when $x \in [a, c)$, $\min\{\delta_2(x), x-c\}$ when $x \in (c, b]$, and $\min\{\delta_1(c), \delta_2(c)\}$ when x = c. For any δ -fine division D of [a, b], c is always an associated point of D. Let $\{z_l, Q_l, [u_l, v_l]\}_{l=1}^r$ be a regulated δ^k -fine division of [a, b]. So, c is one of u_l or v_l for some $l = 1, 2, \ldots, r$. Then,

$$\begin{split} \left| \sum_{l=1}^{r} s(f,g;Q_{l}) + \sum_{l=1}^{r-1} (k-1)f(v_{l})J(g;v_{l}) \right. \\ \left. - \left\{ \int_{a}^{c} f \, dg + \int_{c}^{b} f \, dg + (k-1)f(c)J(g;c) \right\} \right| \\ \leq \left| \sum_{1} s(f,g;Q_{l}) + \sum_{1} (k-1)f(v_{l})J(g;v_{l}) - \int_{a}^{c} f \, dg \right| \\ \left. + \left| \sum_{2} s(f,g;Q_{l}) + \sum_{2} (k-1)f(v_{l})J(g;v_{l}) - \int_{c}^{b} f \, dg \right| < 2\epsilon, \end{split}$$

where \sum_{1}, \sum_{2} denote respectively the partial sum and jumps over [a, c] and [c, b] respectively. So, $(f, g) \in GR_{k}^{*}[a, b]$ and the result follows.

It is to be noted that Remark 2.2 still holds for GR_k^* integral. Similar to Theorem 2.3 [3] we can prove the following Cauchy condition for GR_k^* integral.

Theorem 3.3. $(f,g) \in GR_k^*[a,b]$ if and only if for every $\epsilon > 0$ there exists a positive function δ on [a,b] such that for all regulated δ^k -fine divisions $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ and $\{y_j, P_j, [c_j, d_j]\}_{j=1}^q$ of [a, b] we have

$$\left| \left(\sum_{i=1}^{p} s(f,g;D_i) + \sum_{i=1}^{p-1} (k-1)f(b_i)J(g;b_i) \right) - \left(\sum_{j=1}^{q} s(f,g;P_j) + \sum_{j=1}^{q-1} (k-1)f(d_j)J(g;d_j) \right) \right| < \epsilon.$$

Also similar to Theorem 2.4 of [3], we have the following result.

Theorem 3.4. If $(f,g) \in GR_k^*[a,b]$ and $a \le c < d \le b$, then $(f,g) \in GR_k^*[c,d]$.

and

Next we come to the Saks-Henstock Lemma for the GR_k^* integral.

Theorem 3.5. (Saks-Henstock Lemma) $(f,g) \in GR_k^*[a,b]$ if and only if there exists a function F, g-nearly additive with respect to f, satisfying the condition that for all $\epsilon > 0$ there exists $\delta : [a,b] \to \mathbb{R}_+$ such that for all regulated δ^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b] we have

$$\left|\sum_{i=1}^{p} \{s(f,g;D_i) - F(a_i,b_i)\}\right| < \epsilon.$$

PROOF. Let $(f,g) \in GR_k^*[a,b]$. Since $(f,g) \in GR_k^*[a,b]$, for $\epsilon > 0$ there exists $\delta(x) > 0$, $x \in [a,b]$ such that for all regulated δ^k -fine division $\{z_r, Q_r, [u_r, v_r]\}_{r=1}^t$ of [a,b] we have

$$\left|\sum_{r=1}^{t} s(f,g;Q_r) + \sum_{r=1}^{t-1} (k-1)f(v_r)J(g;v_r) - F(a,b)\right| < \epsilon,$$

where $F(u,v) = \int_{u}^{v} f dg$. We define F(u,v) = (k-1)f(u)J(g;u) when u = v. Let $\{x_i, D_i, [a_i, b_i]\}_{i=1}^{p}$ be a regulated δ^k -fine partial division of [a, b], and $\cup_{j=1}^{q} [c_j, d_j]$ be the closure of the complements of $\cup_{i=1}^{p} [a_i, b_i]$ in [a, b]. By Theorem-3.4, $(f,g) \in GR_k^*[c_j, d_j], j = 1, 2, \ldots, q$ and so we can find $\delta_j(x) > 0, j = 1, 2, \ldots, q$ defined on $[c_j, d_j]$ such that for all regulated δ_j^k -fine division $\{y_{js}, D_{js}, [c_{js}, d_{js}]\}_{s=1}^{m_j}$ of $[c_j, d_j], j = 1, 2, \ldots, q$ we have

$$\left|\sum_{s=1}^{m_j} s(f,g;D_{js}) + (k-1) \sum_{s=1}^{m_j-1} f(d_{js}) J(g;d_{js}) - F(c_{js},d_{js})\right| < \frac{\epsilon}{q}.$$

We may assume that $\delta_j(x) \leq \delta(x)$ for $x \in [c_j, d_j], j = 1, 2, \dots, q$.

Now $\{y_{js}, D_{js}, [c_{js}, d_{js}]\}_{s=1}^{m_j}; j = 1, 2, \dots, q$ and $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ is a regulated δ^k -fine division of [a, b].

Let Λ be the set of common end points of $[a_i, b_i]$ and $[c_j, d_j]$. Now,

$$\left|\sum_{j=1}^{q}\sum_{s=1}^{m_j} s(f,g;D_{js}) + \sum_{i=1}^{p} s(f,g;D_i) + (k-1)\sum_{j=1}^{q}\sum_{s=1}^{m_j-1} f(d_{js})J(g;d_{js}) + (k-1)\sum_{x\in\Lambda} f(x)J(g;x) - F(a,b)\right| < \epsilon.$$

Also by Theorem 3.2,

$$\begin{split} F(a,b) &= \sum_{i=1}^{p} F(a_{i},b_{i}) + (k-1) \sum_{x \in \Lambda} f(x) J(g;x) \\ &+ \sum_{j=1}^{q} F(c_{j},d_{j}) \Big| \sum_{i=1}^{p} s(f,g;D_{i}) - \sum_{i=1}^{p} F(a_{i},b_{i}) \Big| \\ &\leq \Big| \sum_{j=1}^{q} \sum_{s=1}^{m_{j}} s(f,g;D_{js}) \\ &+ \sum_{i=1}^{p} s(f,g;D_{i}) + (k-1) \sum_{j=1}^{q} \sum_{s=1}^{m_{j}-1} f(d_{js}) J(g;d_{js}) \\ &+ (k-1) \sum_{x \in \Lambda} f(x) J(g;x) - F(a,b) \Big| \\ &+ \Big| (k-1) \sum_{j=1}^{q} \sum_{s=1}^{m_{j}-1} f(d_{js}) J(g;d_{js}) \\ &+ \sum_{j=1}^{q} \sum_{s=1}^{m_{j}} s(f,g;D_{js}) - \sum_{j=1}^{q} F(c_{j},d_{j}) \Big| < 2\epsilon. \end{split}$$

Conversely, let there exist $\delta(x) > 0$, for $x \in [a, b]$ and a function F, gnearly additive with respect to f so that the given condition holds for any
regulated δ^k -fine division in [a, b]. Let $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ be any regulated δ^k fine division of [a, b] such that $\left| \sum_{i=1}^p s(f, g; D_i) - \sum_{i=1}^p F(a_i, b_i) \right| < \epsilon$. Now Fbeing g-nearly additive, $F(a, b) = \sum_{i=1}^p F(a_i, b_i) + (k-1) \sum_{i=1}^{p-1} f(b_i) J(g; b_i)$.
So, $\left| \sum_{i=1}^p s(f, g; D_i) + (k-1) \sum_{i=1}^{p-1} f(b_i) J(g; b_i) - F(a, b) \right| < \epsilon$. Hence, $(f, g) \in$ $GR_k^*[a, b]$.

Remark 3.6. In view of the above lemma, it follows that if J(g; c) exists for all $c \in (a, b)$, then $(f, g) \in GR_k[a, b]$ implies that $(f, g) \in GR_k^*[a, b]$. Also, when (f, g) is $GR_k[a, b] \cap GR_k^*[a, b]$, the respective integrals are equal.

In [3] we used the concept of bounded variation of kth order of g. We now introduce the notion of local bounded variation of kth order.

For $X \subset [a, b]$, we define

$$LV_g^k(X) = \inf_{\delta} \sup \left\{ \sum_{i=1}^p |s(1,g;D_i)| \right\},\$$

where the sup is taken over all regulated δ^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b] such that $x_i \in X$. Then $X \subset [a, b]$ is said to be of Lg^k -variation zero if $LV_q^k(X) = 0$.

For example, let X be countable. $LV_g^k(X) = 0$ if and only if J(g; x) = 0 at every $x \in X$. A function g is said to be $LBV^k(X)$ if $LV_g^k(X)$ is finite.

Also g is said to be $LBV^kG(X)$ if $X = \bigcup_{j=1}^{\infty} X_j$ such that g is $LBV^k(X_j)$ for each j.

We can easily show that, $g \in BV^k[a, b]$ implies that $g \in LBV^k[a, b]$

A property is said to hold Lg^k a.e. if it holds everywhere in [a, b] except on a set of Lg^k -variation zero. It is easy to verify the following result.

Theorem 3.7. If f_1 or f_2 is GR_k^* integrable with respect to g on [a, b] and $f_1 = f_2$, Lg^k a.e. in [a, b], then the other is also integrable and $\int_a^b f_1 dg = \int_a^b f_2 dg$.

4 Some Results

Definition 4.1. Let F be a function g-nearly additive with respect to f on [a, b]. F is said to be g-regular with respect to f at $x \in [a, b]$ if for all $\epsilon > 0$, there exists a function $\delta(x) > 0$, defined on [a, b] such that for all δ^k -fine divisions $D = \{[x_i, x_{i+k}]; \xi_i\}_{i=0,1,2...,n-k}$ of $[u, v] \subset [a, b]$ locally tagged at x we have

$$|(D)\sum f(\xi_i)g(x_i,\ldots,x_{i+k})-F(u,v)|<\epsilon(D)\sum |g(x_i,\ldots,x_{i+k})|.$$

Definition 4.2. Let $f : [a, b] \to \mathbb{R}$, $g : [a, b]^{k+1} \to R$ and F be g-nearly additive with respect to f in [a, b]. Given $\epsilon > 0$ and a function $\delta : [a, b] \to R_+$, we define $\Gamma_{\epsilon,\delta} = \{(x, D) : D = \{[x_i, x_{i+k}]; \xi_i\}_{i=0}^{n-k}$ is a δ^k -fine division of [u, v] locally tagged at $x \in [a, b]$ such that

$$|(D)\sum f(\xi_i)g(x_i,\ldots,x_{i+k})-F(u,v)|\geq \epsilon(D)\sum |g(x_i,\ldots,x_{i+k})|\Big\}.$$

Theorem 4.3. Let F be g-nearly additive function defined on [a, b] and $g \in LBV^kG[a, b]$. If F is g-regular at all $x \in [a, b]$, then $(f, g) \in GR_k^*[a, b]$ with primitive F.

PROOF. Since $g \in LBV^kG[a, b]$, there exists non-overlapping $E_j, j = 1, 2, ...$ such that $[a, b] = \cup E_j$ and $g \in LBV^k(E_j)$ for all j. So, there exists $\delta_{1j}(x) > 0, j = 1, 2, ...$ defined on [a, b] and $M_j > 0$ such that $\sum_{i=1}^{p_j} |s(1, g; D_{ij})| < M_j$ for all regulated δ_{1j}^k -fine division $\{x_{ij}, D_{ij}, [a_{ij}, b_{ij}]\}_{i=1}^{p_j}, x_{ij} \in E_j$. F being gregular at all $x \in [a, b]$, for $\epsilon > 0$ and j = 1, 2, ... there exists $\delta_{2j}(x) > 0$, for $x \in [a, b]$ such that for all δ_{2j}^k -fine division $D = \{[x_i, x_{i+k}]; \xi_i\}$ of [u, v] locally tagged at $x \in [a, b]$ we have

$$|F(u,v)-(D)\sum f(\xi_i)g(x_i,\ldots,x_{i+k})| < \frac{\epsilon}{2^j M_j}(D)\sum |g(x_i,\ldots,x_{i+k})|.$$

We define $\delta(x) = \min \{\delta_{1j}(x), \delta_{2j}(x)\}, x \in E_j$. Let $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ be any regulated δ^k -fine partial division of [a, b].

$$\left|\sum_{i=1}^{p} \{s(f,g;D_i) - F(a_i,b_i)\}\right| \leq \sum_{i=1}^{p} \left|s(f,g;D_i) - F(a_i,b_i)\right|$$
$$= \sum_{j=1}^{\infty} \sum_{x_i \in E_j} \left|s(f,g;D_i) - F(a_i,b_i)\right|$$
$$\leq \sum_{j=1}^{\infty} \frac{\epsilon}{2^j M_j} \sum_{x \in E_j} \left|s(1,g;D_i)\right| < \epsilon.$$

So $(f,g) \in GR_k^*[a,b]$ with primitive F.

Theorem 4.4. Let F be a function g-nearly additive with respect to f on [a, b]and $g \in LBV^kG[a, b]$. Then $(f, g) \in GR_k^*[a, b]$ with primitive F if for all $\epsilon > 0$ there exists $\delta : [a, b] \to \mathbb{R}_+$ such that for all regulated δ^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b], where $(x_i, D_i) \in \Gamma_{\epsilon, \delta}, i = 1, 2, ..., p$ we have

$$\sum_{i=1}^p |s(f,g;D_i)| < \epsilon \text{ and } \sum_{i=1}^p |F(a_i,b_i)| < \epsilon$$

The converse also holds if $[a,b] = \bigcup_{l=1}^{\infty} X_l$ is such that for each l there exists a $\delta_l : [a,b] \to \mathbb{R}_+$ and $M_l > 0$ so that for any δ^k -fine division $D = \{[x_i, x_{i+k}]; \xi_i\}_{i=0}^{n-k}$ of [u,v] locally tagged at $x \in X_l$, we have

$$\sum_{i=0}^{n-k} f(\xi_i) g(x_i, \dots, x_{i+k}) \bigg| \le M_l \sum_{i=0}^{n-k} \bigg| g(x_i, \dots, x_{i+k}) \bigg|.$$

PROOF. Let the given conditions hold. Since, $g \in LBV^kG[a, b]$, there exists non-overlapping $E_j, j = 1, 2, ...$ with $[a, b] = \bigcup_{j=1}^{\infty} E_j$ such that $g \in LBV^k(E_j)$.

So, we can find $\delta_{1j}(x) > 0, x \in [a, b]$ and $M_j > 0$ such that for all regulated δ_{1j}^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of $[a, b], x_i \in E_j$ we have $\sum_{i=1}^p |s(1, g; D_i)| < M_j$. For $x \in X'(\epsilon) \cap E_j$, there exists $\delta_{2j}(x) > 0$ defined on [a, b] such that for all δ_{2j}^k -fine division $D = \{[x_i, x_{i+k}]; \xi_i\}$ of [u, v] locally tagged at x, we have

$$|(D)\sum_{i=1}^{n-k} f(\xi_i)g(x_i,\ldots,x_{i+k}) - F(u,v)| < \frac{\epsilon}{2^j M_j}\sum_{i=1}^{n-k} |g(x_i,\ldots,x_{i+k})|.$$

Let $\delta(x) = \min\{\delta_{1j}(x), \delta_{2j}(x)\}, x \in E_j \text{ and } \{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ be a regulated δ^k -fine partial division of [a, b]. Then

$$\begin{split} |\sum_{i=1}^{p} \{s(f,g;D_i) - F(a_i,b_i)\}| &\leq \sum_{x_i \in X(\epsilon)} |s(f,g;D_i)| + \sum_{x_i \in X(\epsilon)} |F(a_i,b_i)| \\ &+ \sum_{x_i \in X'(\epsilon)} |s(f,g;D_i) - F(a_i,b_i)| \\ &< 2\epsilon + \sum_{j=1}^{\infty} \sum_{x_i \in X'(\epsilon) \cap E_j} |s(f,g;D_i) - F(a_i,b_i)| \\ &< 2\epsilon + \sum_{j=1}^{\infty} \sum_{x_i \in X'(\epsilon) \cap E_j} \frac{\epsilon}{2^j M_j} |s(1,g;D_i)| \\ &= 2\epsilon + \sum_{j=1}^{\infty} \frac{\epsilon}{2^j M_j} M_j = 3\epsilon. \end{split}$$

So, $(f,g) \in GR_k^*[a,b]$.

Conversely, let $(f,g) \in GR_k^*[a, b]$ with primitive F and f satisfies the given condition. We may assume that X_l are disjoint. So, there exists $M_l > 1$ and $\delta_{1l}(x) > 0$, for $x \in [a, b]$ such that

$$|(D)\sum f(\xi_i)g(x_i,\ldots,x_{i+k})| \le M_l\sum |g(x_i,\ldots,x_{i+k})|,$$

for any δ_{1l}^k -fine division $D = \{[x_i, x_{i+k}]; \xi_i\}$ of [u, v] locally tagged at $x \in X_l$. By the Henstock Lemma, there exists $\delta_{2l}(x) > 0$ on [a, b] such that for every regulated δ_{2l}^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b] we have

$$\Big|\sum_{i=1}^{p} \{s(f,g;D_i) - F(a_i,b_i)\}\Big| < \frac{\epsilon^2}{2^{l+1}M_l}$$

We define $\delta(x) = \min\{\delta_{1l}(x), \delta_{2l}(x)\}, x \in X_l$. Let $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ be a regulated δ^k -fine partial division of [a, b], where $(x_i, D_i) \in \Gamma_{\epsilon, \delta}$. Then,

$$\begin{split} \sum_{i=1}^p |s(f,g;D_i)| &\leq \sum_{l=1}^\infty \sum_{x_i \in X_l} |s(f,g;D_i) \leq \sum_{l=1}^\infty M_l \sum_{x_i \in X_l} |s(1,g;D_i)| \\ &\leq \sum_{l=1}^\infty \frac{M_l}{\epsilon} \sum_{x_i \in X_l} |s(f,g;Di) - F(a_i,b_i)| \leq \sum_{l=1}^\infty \frac{M_l 2\epsilon^2}{\epsilon 2^{l+1} M_l} = \epsilon. \end{split}$$

Furthermore, δ may be chosen such that

$$\sum_{i=1}^{p} \left| F(a_i, b_i) \right| \le \sum_{i=1}^{p} \left| s(f, g; D_i) - F(a_i, b_i) \right| + \sum_{i=1}^{p} \left| s(f, g; D_i) \right| < \epsilon.$$

We note that in this part we do not need $g \in LBV^kG[a, b]$.

Corollary 4.5. If f satisfies the condition of the second part of the above Theorem, and F be a function g-nearly additive with respect to f on [a, b] and $g \in LBV^kG[a, b]$, then $(f, g) \in GR_k^*[a, b]$ with primitive F if and only if for all $\epsilon > 0$ there exists $\delta : [a, b] \to R_+$ such that for all regulated δ^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b], where $(x_i, D_i) \in \Gamma_{\epsilon, \delta}$ we have

$$\sum_{i=1}^{p} |s(1,g;D_i)| < \epsilon \text{ and } \sum_{i=1}^{p} |F(a_i,b_i)| < \epsilon.$$

PROOF. If $(f,g) \in GR_k^*[a,b]$ with primitive F, then the above inequalities are satisfied which can be easily seen from the proof of the first part of Theorem-4.4.

Conversely, let the above conditions hold. We define X_l as in the above theorem. Let $\epsilon > 0$. Then for every $\epsilon_l = \frac{\epsilon}{M_l 2^{l+1}}$, there exists $\delta_l(x) > 0$ such that $\sum_{i=1}^p |s(1,g;D_i)| < \epsilon_l$ and $\sum_{i=1}^p |F(a_i,b_i)| < \epsilon_l$, whenever $\{x_i, D_i, [a_i,b_i]\}$ is a regulated δ_l^k -fine partial division of [a, b], where $(x_i, D_i) \in \Gamma_{\epsilon_l, \delta_l}$. Now let δ be so that $\delta(x) \le \delta_l(x), x \in X_l$. Then for any regulated δ^k -fine partial division $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ of [a, b], where $(x_i, D_i) \in \Gamma_{\epsilon_i, \delta_l}$,

$$\sum_{i=1}^{p} |s(f,g;D_i)| \le \sum_{l=1}^{\infty} \sum_{x_i \in X_l} |s(1,g;D_i)| < \epsilon.$$

The proof is complete by Theorem 4.4.

5 Convergence Theorem

Definition 5.1. Let $(f_n, g) \in GR_k^*[a, b]$. $\{(f_n, g)\}$ is said to be equi- GR_k^* integrable on [a, b] if for all $\epsilon > 0$ there exists $\delta(x) > 0$, $x \in [a, b]$, independent of n, such that

$$\Big|\sum_{i=1}^{p} s(f_n, g; D_i) + (k-1)\sum_{i=1}^{p-1} f_n(b_i)J(g; b_i) - \int_a^b f_n dg\Big| < \epsilon,$$

for all n, whenever $\{x_i, D_i, [a_i, b_i]\}_{i=1}^p$ is a regulated δ^k -fine division of [a, b].

Theorem 5.2. Let $g \in LBV^k[a,b]$. If (i) $\{(f_n,g)\}$ is equi- GR_k^* -integrable, (ii) $f_n(x) \to f(x)$ as $n \to \infty$ for all $x \in [a,b]$, then $(f,g) \in GR_k^*[a,b]$ and

$$\int_{a}^{b} f dg = \lim_{n \to \infty} \int_{a}^{b} f_{n} dg.$$

PROOF. Since $\{(f_n, g)\}$ is equi- GR_k^* -integrable, for every $\epsilon > 0$, there exists $\delta_0(x) > 0$, for $x \in [a, b]$ independent of n such that

$$\left|\sum_{i=1}^{p} s(f_n, g; D_i) + (k-1) \sum_{i=1}^{p-1} f_n(b_i) J(g; b_i) - A_n\right| < \epsilon,$$

for all regulated δ^k -fine division $\{(x_i, D_i, [a_i, b_i])\}$ of [a, b] where $A_n = \int_a^b f_n dg$. Now $g \in LBV^k[a, b]$ implies that there exists $\delta_1(x) > 0, x \in [a, b]$ and M > 0 such that $\sum_{i=1}^p |s(1, g; D_i)| < M$ for all regulated δ_1^k -fine division $\{(x_i, D_i, [a_i, b_i])\}$ of [a, b]. Let $\delta(x) = \min \{\delta_0(x), \delta_1(x)\}, x \in [a, b]$. Since $f_n(x) \to f(x)$ as $n \to \infty$, for all $x \in [a, b]$ and since there are finite number of associated points in regulated δ^k -fine partial division $\{(x_i, D_i, [a_i, b_i])\}_{i=1}^p$ we can find N_1 such that $|f_n(\xi) - f(\xi)| < \frac{\epsilon}{M}$ for all $n > N_1$ and for all $\xi \in \Lambda$ = the set of associated points of D_i . So, for all $n > N_1$ we have $\sum_{i=1}^p |s(f_n, g; D_i) - s(f, g; D_i)| < \epsilon$. Also there exists $N_2 > N_1$ such that for all $n > N_2$,

$$\left| (k-1) \sum_{i=1}^{p-1} f_n(b_i) J(g; b_i) - (k-1) \sum_{i=1}^{p-1} f(b_i) J(g; b_i) \right| < \epsilon.$$

Now, for $n, m > N_2$

$$\begin{aligned} |A_n - A_m| &\leq \left| \sum_{i=1}^p s(f_m, g; D_i) + (k-1) \sum_{i=1}^{p-1} f_m(b_i) J(g; b_i) - A_m \right| \\ &+ \left| \sum_{i=1}^p s(f_n, g; D_i) + (k-1) \sum_{i=1}^{p-1} f_n(b_i) J(g; b_i) - A_n \right| \\ &+ \left| \sum_{i=1}^p s(f_m, g; D_i) - \sum_{i=1}^p s(f_n, g; D_i) \right| \\ &+ \left| (k-1) \sum_{i=1}^{p-1} f_n(b_i) J(g; b_i) - (k-1) \sum_{i=1}^{p-1} f_m(b_i) J(g; b_i) \right| < 4\epsilon \end{aligned}$$

So $\{A_n\}$ is a Cauchy sequence. Let $A = \lim_{n \to \infty} A_n$ and for $n > N > N_2$ let $\left| \int_a^b f_n dg - A \right| < \epsilon$. For fixed n > N, we have

$$\begin{aligned} \left| \sum_{i=1}^{p} s(f,g;D_{i}) + (k-1) \sum_{i=1}^{p-1} f(b_{i}) J(g;b_{i}) - A \right| \\ \leq \left| \sum_{i=1}^{p} s(f_{n},g;D_{i}) + (k-1) \sum_{i=1}^{p-1} f_{n}(b_{i}) J(g;b_{i}) - A_{n} \right| \\ + \left| (k-1) \sum_{i=1}^{p-1} f_{n}(b_{i}) J(g;b_{i}) - (k-1) \sum_{i=1}^{p-1} f(b_{i}) J(g;b_{i}) \right| \\ + \left| \sum_{i=1}^{p} s(f_{n},g;D_{i}) - \sum_{i=1}^{p} s(f,g;D_{i}) \right| + \left| A_{n} - A \right| < 4\epsilon. \end{aligned}$$

So, $(f,g) \in GR_k^*[a,b]$ and $\int_a^b f dg = \lim_{n \to \infty} \int_a^b f_n dg$.

Acknowledgement: The authors are really grateful to the referee for his valuable observations which played a key role in the development of the paper.

References

- P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific Publishing Co., Singapore, 1989.
- [2] P. Y. Lee and R. Vyborny, *The Integral : An Easy Apporach after Kurzweil and Henstock*, Cambridge University Press, 2000.

[3] Supriya Pal, D. K. Ganguly and Lee P. Y., Henstock-Stieltjes Integral not induced by measure, Real Analysis Exchange, 26 2000/2001, 853–860.