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POINTS OF INFINITE DERIVATIVE OF
CANTOR FUNCTIONS

Abstract

We consider self-similar Borel probability measures p on a self-similar
set E with strong separation property. We prove that for any such
measure p the derivative of its distribution function F'(x) is infinite for
p-a.e. x € F, and so the set of points at which F'(z) has no derivative,
finite or infinite is of u-zero.

1 Introduction.

Let £ C R be a Borel set, let u be a finite, atomless Borel measure on E. For
0 <c< oo, set

Qg:{erzhmsupu([x—TMSC},
r—0+ r

and

¢ r—0+ r

Q! {er:liminf'u([x_r’m_Fr])gc}.

Then a classical result (ref. proposition 2.2 (a) and (c) in [4]) shows that
p(Q%) < cHYQY) and p(QL) < cPH(QL), where H!(-) and PL(.) are, respec-
tively, the one-dimensional Hausdorff and packing measures. Therefore, if
both dimy F and dimp E are less than 1, then for p-a.e. x € E,

limsup p([z —r,x +r])/r = 400 and lim(i)r}rf,u([x —r,x+r])/r=+oc0. (1)
r—0+ r—
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The first equality in (1) implies that for y-a.e. x € E,

umx+ﬂ}

max {lim sup M, lim sup = +00.

r—0+4 r r—0+
It shows that the distribution function of u has infinite upper derivatives p
almost everywhere. However, the second equality in (1) provides less informa-
tion about its lower derivatives which for x € R equal
T—r T, x+r
min { lim inf M, lim inf M}
r—0+ r r—0+ r
In the following, we consider E as a class of self-similar sets, and p as
the self-similar measures on E. In the present paper, we show that their
distribution functions have infinite derivatives for uy-a.e. = € E.
A self-similar set F in R is defined as the unique nonempty compact set
invariant under h;’s:

B =Jh(B), (2)
j=0

where hj(z) = ajz +b;, 7 =0,1,...,r, with 0 < a; < 1 and r > 1 being a
positive integer. Without loss of generality, we shall assume that by = 0 and
ar + b, = 1. We furthermore assume that the images h;([0,1]), 7 =0,1,...,r
are pairwise disjoint (i.e., F satisfies the strong separation property) and are
ordered from left to right. We remark that this assumption implies that the
h;’s satisfy the open set condition with the open set (0, 1), which is less general
than the usual one defined by [6]. It is well-known that dimy F = dimp E =
dimp E = £ € (0,1) and 0 < H*(E) < PS(E) < 400 where ¢ is given by
> =0 a§ =1 (vef. [6]).

As usual, the elements of F in (2) can be encoded by digits in Q =
{0,1,...,7} as follows. We write QN = {0 = (0(1),0(2),...) : o(j) € Q}
and Q* = [Jpo,QF with QF = {0 = (0(1),0(2),...,0(k)) : o(j) € Q}
for k € N. |o| is used to denote the length of the word o € Q*. For
any o,7 € Q, write o x 7 = (c(1),...,0(|o]),7(1), ..., 7(|]7])), and write
rxo = (7(1),...,7(|7]),0(1),0(2),...) for any 7 € Q*, ¢ € QY. |k =
(0(1),0(2),...,0(k)) for 0 € QN and k € N. Let h,(z) = hyqyo---o
ho(iy(z) for o € Q% and « € R. Then for o € Q, the intervals hq.o([0, 1]),
hes1([0,1]), ..., hosr([0,1]) are contained in h, ([0, 1]) in this order where the
left endpoint of hy.o([0,1]) coincides with the left endpoint of h, ([0, 1]), and
the right endpoint of hy..-([0, 1]) coincides with the right endpoint of h ([0, 1]).
Moreover, the length of the interval h, ([0, 1]) equals A(h,([0,1])) = H?:l Ao (5)
=:a, for o € Q% where \(-) denotes the one-dimensional Lebesgue measure.



PoOINTS OF INFINITE DERIVATIVE OF CANTOR FUNCTIONS 89

For j = 1,2,..., let E; = U,eqiho([0,1]). Then E; | E as j — oo and
x € F can be encoded by a unique o € QY satisfying

{JJ} = m ha\k([o? 1])

k=1

Throughout this paper we sometimes denote this unique code of x by Z and
use z(k) to denote the k-th component of Z; i.e., use Z = (z(1),z(2),...) for
the code of x € E. In this way one can establish a continuous one-to-one
correspondence between QN and E. The endpoints of h,([0,1]) for a o € Q*
will be called the endpoints of E. So the set of endpoints of E is countable.
Obviously, any endpoint e of F lies in E and except for a finite number of
terms, its coding é consists of either only the symbol 0 if e is the left endpoint
of some h,([0,1]), or only the symbol r if e is the right endpoint of some
o ([0,1]).

Let p be a self-similar Borel probability measure on E corresponding to the
probability vector (pg,p1,...,pr), where each p; > 0 and >, p; = 1; i.e., the
measure satisfying

w(A) = iju(hgl(A)) for any Borel set A,
3=0

and so

k
p(ho([0,1))) = [ [ Po¢s) =t o, for any o € OF, ke N. (3)
j=1
Obviously, u is atomless. Consider the distribution function of such a proba-
bility measure pu, also called Cantor function or a self-affine ‘devil’s staircase’
function,
F(z) = p([0,2]), € 10,1]. (4)
Then F(z) is a non-decreasing continuous function with F(0) < F(1); that
is, constant off the support of p. Obviously, the derivative of F(z) is zero for
each z € [0,1]\ E. In particular, the set S of points of non-differentiability of
F(x); that is, those  where

i P8 = F@) ol +d) ( pla+oal)
i ) = M) (o MR 5 <)

does not exist either as a finite number or oo, has Lebesgue measure 0. The
Hausdorff dimension of S has been obtained (ref. [1, 2, 3, 5] for the case
pi = a5, [8] for the case p; = a;(31_, a;)~" and [7] for the case p; > a;). Let

E* = E \ {endpoints of E},
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and

T = {tEE*:hm Zl Pu)

n—oo n at(z

sz log p; — log ab)} (5)

Then u(T) =1 by the law of large numbers. We decompose the set S into
S=NtUN UZ,

where NT(N7) is the set of points in E* at which the right (left) derivative of
F(x) doesn’t exist, finite or infinite, Z is a subset of the set of endpoints of F,
so at most countable. In the present paper, we prove the following theorem.

Theorem 1.1. Let (po,p1,-..,pr) be an arbitrarily given probability vector.
Let  and F(z) be determined by (3) and (4) respectively. Then F'(x) = +oo
for p-a.e. x € E. So u(S)=0.

2 Proofs.

In this section, we first prove in the following Proposition 2.1 that F(x) has
infinite upper derivatives for u-a.e. x € E (although it can be obtained directly
from (1)) by showing that both of the upper right and the upper left derivatives
of F(z) are infinite for each z € T. Then the set TN Nt (T'N N~) consists
of those points of T' at which F'(z) has finite lower right (left) derivatives by
the definition of N* (N~). We characterize TN Nt (TN N~) by the coding
property of its elements in Lemma 2.2. Theorem 1.1 then is proved by showing
that u(TNNT) =0 (u(TNN~)=0).

Proposition 2.1. Both the upper right and the upper left derivatives of F(x)
are infinite for each x € T.

PROOF. Let t € T with code ¢ = (£(1),¢(2),...). Then # has infinitely many
entries lying in Q \ {r}. Suppose f has an entry from Q\ {r} in position
j. Then ¢ lies in the interval h£|(j—1 ([0,1]), but is not equal to the right
endpoint u of hg;_1)([0,1]), where @ = (¢(1),...,t(j —1),7,7,...). Note that
u is also the right endpoint of hg;([0,1]) an that té¢ huh([O 1]) Thus we
have that t,u € hy;_1)([0,1]) and (t,u] 2 hﬁj([ 1]). Consider the slope of
the line segment from the point P = (¢, F(t)) on the graph of F(x) to the
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point @ = (u, F(u)). We have
Fu) = F(t) _ p((tu]) o pha(0,1]) _ Pag-nPr

u—t u—t = |hyon ([0, 1D aggoy
1 Pi(s) )
prexp | (j )jflzoga”
P (i)

Note that by corollary 1.5 in [4],

T T
Zpi(logpi —loga;) > —logZaj > 0.
i=0 §=0

Thus, the upper right derivative of F(x) at ¢ is infinite by (6) and (5) when
j — +oo. Symmetrically, the upper left derivative of F(z) at t of E is also
infinite. O

Lemma 2.2. LetT'={0,1,...,r — 1}. Lett € E* and let z(t,n) denote the
position of the n-th occurrence of elements of T in t. Then

(I) TNN+ C TN {t € B limsup=irt) > 1 — LN, (log p; — log ai)};

g z(t,n)
i=0
(II) TN {t € E* : limsup,,_, o Z(Zt(’zz)l) >1-— loglpr Yoo pi(logp; — log ai)} C
TNNT.

Symmetrically, if we replace T by {1,2,...,7}, then

t
8PS 2

(1) Tﬂ{t € E* : limsup,_, 2&rtl) 5 q 1 Si_opi(logp; — log ai)}

(MYTNN- CTNte E*: limsup2&nt > q loglpo Zpi(logpi —log ai)};
z(t,n) log po <
TAN™.

PRrROOF. We first prove statement (I); i.e., the lower-right derivative of F(x)
is infinite at ¢ € T when

1
Jim sup 27D

r
— oz v — loga:).
n—00 Z( ,n) logpr Zpl( 0g P Ogaz) (7)

i=0

Consider such a point ¢ with £ = (¢(1),(2),...). By (7) and (5) let k be a
positive integer such that for n > k

z(t,n+1) <1_

z(t,n) log py-

Zpi(bgpi —loga;) + 2g, (8)
i=0
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and

z(t,n
Z — > sz log p; — log a;) — qlog pr, 9)
i=1 =0

for some negative real number ¢q. Let u be a positive number such that u
is smaller than the distance between ¢ and [0,1] \ By, with | = 2(t,k). Let
z be a point in the segment (¢,¢ +u). Then ¢,2 € hy,([0,1]). We will see
that (F(z) — F(t))/(z — t) is large relative to k, so t is not in N*. Let i
denote the level at which z ¢ hg,;([0, 1]) but = € hy;_1)([0,1]). Note also that
t € hy—1)([0,1]). Thus z —t < [hg;_1)([0,1])] = az;_1y; also i = z(t, n)
for some n > k. Put j = z(t,n + 1) — 1, and by v we denote the right
endpoint of hz;([0,1]), which implies that @ = (¢(1),...,t(j),r,7,...) and
(t,v] 2 hy)j+1)([0,1]). Then we have t < v < x and F(v) — F(t) = p((t,v]) >

1)) =

at(1

p(ha 41 ([0, pz|jpr- Therefore, we have
z(t,n+1)—1
F(x)— F(t) S Dy iPr _ D H,,E:1+ ) Pt(m)
x—t ag|i—1) H;Etwlb)—l At (m)
z(t,n) P
_ 2(t,n+1)—z(t,n) Pt(m)
)P H | Qy(m) (10)
() (tl ; z(t,n)
z(t.,n+1)_1 z(t,n pt(m) z(t,n
> ( min ay) [pr"""
(0<m<r ) ngl at(m)
Let .
z(t,n) z(t,n)
2@t Pt(m)
Q= pTZ(t’n)
7n1;[1 at(m)
Taking logs, and by (8) and (9), we have
log Q@ = M71 lo JrZ§7f)lo Pt 5 1o (11)
g - Z(t,n) ng Z(t,n) — g at(m) q ng

Since ¢ is a non-end point, z(t,n) — oo and the lower-right derivative of F(x)
is infinite at ¢ by (10) and (11).
Now we turn to the proof of statement (II). Let ¢ € T be such that

t 1
Jim sup 2" 1)

msup =~ logper(ogp 0ga;)

=0
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Then there exists a sequence {ny} of positive integers such that for some
positive constant c,

W ~ " logp, ;pi(logpi ~logai) +2¢, (12)
and in addition by (5),
|
z(t,nk) ; fog (i) - ;pi(logpi ~logai) — clogpr. (13)

Let @ be the left endpoint of A .e(j,+1)+1) ([0 1]), where ji = 2(t,nx) —
1. Thus we have Z = (¢(1),...,t(jk),t(jx + 1) + 1,0,...,0,...). Let wug
be the right endpoint of hy;, +1)([0,1]). Then @y = (¢(1),...,t(jx), t(jx +
1), 7,7, ...). Thus, (ug,z) is the gap on the right side of hﬂ(jkﬂ)([O, 1))
and A([ug, zx]) = zp — uk = ag, Bij,+1) Where by 8;, j = 0,1,....r — 1,
we denote length of the gap between images h;([0, 1]) and h;4+1([0,1]). Note
that [t,2] D [up,x] and pu((t,2a]) = u((t, uad) + o((weo 2)) = ol n]) <
(g (i +1)—1) ([0, 1])) since [ (2(¢, ng +1) = 1) = @g|(2(t, n+1) —1). There-
fore we have

F(zg) = F(t) = p((t, 21]) < 120t +1)-1) ([0, 1]) = Piatmp+1)-1)

and

zi —t > Mk, Tk]) = @502 (4,n)— 1) Be(z(tm0)) -
Let B« = minjcqo,1,....r,—1} 85 and @* = max;eqo,1,... r} @;- Then we obtain, by
a similar reasoning which led to (10),

Flag) = F@) _  Pheem+n-1)

T 1 - afl(Z(t,nk)—l)ﬂf(z(t,nk))
z(t,nK)
= M 2(t,ne+1)—z(t,nk) @
= N pr H
ﬁt(z(t,nk))pr i a’t(i) (14)
ﬁ z(t,ng)
z(t,n t, z(t,ny
<> TSR Z(l—nf) 20
= Dr
Bupr =1 )
Let 1
2(tnptl) z(t,nk) Z(tng)

Q=p, H Pt(i)

=1 Q)
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Taking logs and using (12) and (13), we obtain

z(t,ng + 1)
Z(ta nk)

logQ = ( Z log Zt(i) < clogp, <0.(15)

i=1 L

1) logp, + ———
Juosn
From (14) and (15) it follows that the lower-right derivative of F(x) at ¢ is
finite by letting & — oco. Finally, (I’) and (II’) can be proved similarly. [

PROOF OF THEOREM 1.1. Since p is atomless, we only need to prove that
u(NTAOT)=u(N-NT)=0. Below we prove u(N*TT) =0; (N~ OT) =
0 can be obtained in the same way. By lemma 2.2 (I), we have N* (T C M
where

) 2(t,n+1) 1 w
M=qteT:1 —2>1- i(logp; —logay) ¢ .
et S o St oo

1=0

Now fix a positive real number

Zpi(bgpi —loga;). (16)

< —
log pr <

Choose n* large enough to assure that when k& > n*

2logk « 1 «
— < —and - < —. 17
klogp, -2 MY ETR (17)

Now for each k& > n*, we can choose u; > k such that

Uk - «
1o > pillogpi —loga;) — ., 1
k = log p, izop'(ng 0g i) 2 (18)
and
ue—t g 1 f: (log p; — loga;) — = (19)
i i:Opl gpi —loga;) — .

Then we have

- «
I Zpi(logpi—logai)—§ <%
gp, o0

g o!
Zpi(logpi —loga;) — T
i=0

<1-
log p,-
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by (18), (19) and the second inequality in (17). Let
Jp={zx e E:xz(i)=r for k<i<wug}, k>n",

and

J =limsup J, = ﬁ U Ji.
k—oo m=n* k>m

Now for each point ¢ € M, there exists a strictly increasing sequence {n;,i €
N} of positive integers such that z(¢,n;) > n* and

z(t,n; + 1) . !
) oap ;:()p (logp; —loga;) — & (21)

Taking k; = z(t,n;) and using (21) as well as the second inequality in (20), we
have z(t,n; + 1) > uy,, which implies that ¢ € Ji,. Thus we have M C J*.
Note that for £ > n* and by the first inequality in (17), (18) and (16),

Uk s 2logk .

— L pTRE < |2, 22
k = klogp,«’le’pT <k (22)

Therefore for any m > n*,

by (22). Finally, we obtain u(N+* NT) = 0 by letting m — occ. O
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