RESEARCH

Wenxia Li, Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China. email: wxli@math.ecnu.edu.cn

POINTS OF INFINITE DERIVATIVE OF CANTOR FUNCTIONS

Abstract

We consider self-similar Borel probability measures μ on a self-similar set E with strong separation property. We prove that for any such measure μ the derivative of its distribution function F(x) is infinite for μ -a.e. $x \in E$, and so the set of points at which F(x) has no derivative, finite or infinite is of μ -zero.

Introduction.

Let $E \subset \mathbb{R}$ be a Borel set, let μ be a finite, atomless Borel measure on E. For $0 < c < \infty$, set

$$Q^u_c = \left\{ x \in E : \limsup_{r \to 0+} \frac{\mu([x-r,x+r])}{r} \le c \right\},$$

and

$$Q_c^l = \left\{ x \in E : \liminf_{r \to 0+} \frac{\mu([x-r,x+r])}{r} \le c \right\}.$$

Then a classical result (ref. proposition 2.2 (a) and (c) in [4]) shows that $\mu(Q_c^u) \leq c\mathcal{H}^1(Q_c^u)$ and $\mu(Q_c^l) \leq c\mathcal{P}^1(Q_c^l)$, where $\mathcal{H}^1(\cdot)$ and $\mathcal{P}^1(\cdot)$ are, respectively, the one-dimensional Hausdorff and packing measures. Therefore, if both $\dim_H E$ and $\dim_P E$ are less than 1, then for μ -a.e. $x \in E$,

$$\limsup_{r \to 0+} \mu([x-r, x+r])/r = +\infty \text{ and } \liminf_{r \to 0+} \mu([x-r, x+r])/r = +\infty. \quad (1)$$

Key Words: non-differentiability; self-similar sets; self-similar measures; Cantor functions Mathematical Reviews subject classification: 28A80, 28A78

Received by the editors November 26, 2005

Communicated by: Zoltán Buczolich *Supported by the National Science Foundation of China #10371043 and Shanghai Priority Academic Discipline

The first equality in (1) implies that for μ -a.e. $x \in E$,

$$\max\left\{\limsup_{r\to 0+}\frac{\mu[x-r,x]}{r},\ \limsup_{r\to 0+}\frac{\mu[x,x+r]}{r}\right\}=+\infty.$$

It shows that the distribution function of μ has infinite upper derivatives μ almost everywhere. However, the second equality in (1) provides less information about its lower derivatives which for $x \in \mathbb{R}$ equal

$$\min\Big\{ \liminf_{r \to 0+} \frac{\mu[x-r,x]}{r}, \ \liminf_{r \to 0+} \frac{\mu[x,x+r]}{r} \Big\}.$$

In the following, we consider E as a class of self-similar sets, and μ as the self-similar measures on E. In the present paper, we show that their distribution functions have infinite derivatives for μ -a.e. $x \in E$.

A self-similar set E in \mathbb{R} is defined as the unique nonempty compact set invariant under h_i 's:

$$E = \bigcup_{j=0}^{r} h_j(E), \tag{2}$$

where $h_j(x) = a_j x + b_j$, $j = 0, 1, \ldots, r$, with $0 < a_j < 1$ and $r \ge 1$ being a positive integer. Without loss of generality, we shall assume that $b_0 = 0$ and $a_r + b_r = 1$. We furthermore assume that the images $h_j([0,1])$, $j = 0, 1, \ldots, r$ are pairwise disjoint (i.e., E satisfies the strong separation property) and are ordered from left to right. We remark that this assumption implies that the h_j 's satisfy the open set condition with the open set (0,1), which is less general than the usual one defined by [6]. It is well-known that $\dim_H E = \dim_B E = \dim_P E = \xi \in (0,1)$ and $0 < \mathcal{H}^{\xi}(E) < \mathcal{P}^{\xi}(E) < +\infty$ where ξ is given by $\sum_{j=0}^r a_j^{\xi} = 1$ (ref. [6]).

As usual, the elements of E in (2) can be encoded by digits in $\Omega = \{0,1,\ldots,r\}$ as follows. We write $\Omega^{\mathbb{N}} = \{\sigma = (\sigma(1),\sigma(2),\ldots):\sigma(j) \in \Omega\}$ and $\Omega^* = \bigcup_{k=1}^{\infty} \Omega^k$ with $\Omega^k = \{\sigma = (\sigma(1),\sigma(2),\ldots,\sigma(k)):\sigma(j) \in \Omega\}$ for $k \in \mathbb{N}$. $|\sigma|$ is used to denote the length of the word $\sigma \in \Omega^*$. For any $\sigma,\tau \in \Omega^*$, write $\sigma * \tau = (\sigma(1),\ldots,\sigma(|\sigma|),\tau(1),\ldots,\tau(|\tau|))$, and write $\tau * \sigma = (\tau(1),\ldots,\tau(|\tau|),\sigma(1),\sigma(2),\ldots)$ for any $\tau \in \Omega^*$, $\sigma \in \Omega^{\mathbb{N}}$. $\sigma|k = (\sigma(1),\sigma(2),\ldots,\sigma(k))$ for $\sigma \in \Omega^{\mathbb{N}}$ and $k \in \mathbb{N}$. Let $h_{\sigma}(x) = h_{\sigma(1)} \circ \cdots \circ h_{\sigma(k)}(x)$ for $\sigma \in \Omega^k$ and $x \in \mathbb{R}$. Then for $\sigma \in \Omega^k$, the intervals $h_{\sigma*0}([0,1])$, $h_{\sigma*1}([0,1]),\ldots,h_{\sigma*r}([0,1])$ are contained in $h_{\sigma}([0,1])$ in this order where the left endpoint of $h_{\sigma*0}([0,1])$ coincides with the left endpoint of $h_{\sigma}([0,1])$, and the right endpoint of $h_{\sigma*r}([0,1])$ coincides with the right endpoint of $h_{\sigma}([0,1])$. Moreover, the length of the interval $h_{\sigma}([0,1])$ equals $\lambda(h_{\sigma}([0,1])) = \prod_{j=1}^k a_{\sigma(j)} = a_{\sigma}$ for $\sigma \in \Omega^k$, where $\lambda(\cdot)$ denotes the one-dimensional Lebesgue measure.

For j = 1, 2, ..., let $E_j = \bigcup_{\sigma \in \Omega^j} h_{\sigma}([0, 1])$. Then $E_j \downarrow E$ as $j \to \infty$ and $x \in E$ can be encoded by a unique $\sigma \in \Omega^{\mathbb{N}}$ satisfying

$$\{x\} = \bigcap_{k=1}^{\infty} h_{\sigma|k}([0,1]).$$

Throughout this paper we sometimes denote this unique code of x by \tilde{x} and use x(k) to denote the k-th component of \tilde{x} ; i.e., use $\tilde{x}=(x(1),x(2),\dots)$ for the code of $x\in E$. In this way one can establish a continuous one-to-one correspondence between $\Omega^{\mathbb{N}}$ and E. The endpoints of $h_{\sigma}([0,1])$ for a $\sigma\in\Omega^*$ will be called the endpoints of E. So the set of endpoints of E is countable. Obviously, any endpoint e of E lies in E and except for a finite number of terms, its coding \tilde{e} consists of either only the symbol 0 if e is the left endpoint of some $h_{\sigma}([0,1])$, or only the symbol r if e is the right endpoint of some $h_{\sigma}([0,1])$.

Let μ be a self-similar Borel probability measure on E corresponding to the probability vector (p_0, p_1, \ldots, p_r) , where each $p_i > 0$ and $\sum_{i=0}^r p_i = 1$; i.e., the measure satisfying

$$\mu(A) = \sum_{j=0}^{r} p_j \mu(h_j^{-1}(A))$$
 for any Borel set A ,

and so

$$\mu(h_{\sigma}([0,1])) = \prod_{j=1}^{k} p_{\sigma(j)} =: p_{\sigma}, \text{ for any } \sigma \in \Omega^{k}, \ k \in \mathbb{N}.$$
 (3)

Obviously, μ is atomless. Consider the distribution function of such a probability measure μ , also called *Cantor function* or a self-affine 'devil's staircase' function,

$$F(x) = \mu([0, x]), \ x \in [0, 1]. \tag{4}$$

Then F(x) is a non-decreasing continuous function with F(0) < F(1); that is, constant off the support of μ . Obviously, the derivative of F(x) is zero for each $x \in [0,1] \setminus E$. In particular, the set S of points of non-differentiability of F(x); that is, those x where

$$\lim_{\delta \to 0} \frac{F(x+\delta) - F(x)}{\delta} = \lim_{\delta \to 0} \frac{\mu((x,x+\delta])}{\delta} \ \left(\text{ or } \frac{\mu((x+\delta,x])}{-\delta} \text{ if } \delta < 0 \right)$$

does not exist either as a finite number or ∞ , has Lebesgue measure 0. The Hausdorff dimension of S has been obtained (ref. [1, 2, 3, 5] for the case $p_i = a_i^{\xi}$, [8] for the case $p_i = a_i(\sum_{i=0}^r a_i)^{-1}$ and [7] for the case $p_i > a_i$). Let

$$E^* = E \setminus \{\text{endpoints of } E\},\$$

and

$$T = \left\{ t \in E^* : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \log \frac{p_{t(i)}}{a_{t(i)}} = \sum_{i=0}^r p_i (\log p_i - \log a_i) \right\}.$$
 (5)

Then $\mu(T) = 1$ by the law of large numbers. We decompose the set S into

$$S = N^+ \cup N^- \cup Z,$$

where $N^+(N^-)$ is the set of points in E^* at which the right (left) derivative of F(x) doesn't exist, finite or infinite, Z is a subset of the set of endpoints of E, so at most countable. In the present paper, we prove the following theorem.

Theorem 1.1. Let (p_0, p_1, \ldots, p_r) be an arbitrarily given probability vector. Let μ and F(x) be determined by (3) and (4) respectively. Then $F'(x) = +\infty$ for μ -a.e. $x \in E$. So $\mu(S) = 0$.

2 Proofs.

In this section, we first prove in the following Proposition 2.1 that F(x) has infinite upper derivatives for μ -a.e. $x \in E$ (although it can be obtained directly from (1)) by showing that both of the upper right and the upper left derivatives of F(x) are infinite for each $x \in T$. Then the set $T \cap N^+$ $(T \cap N^-)$ consists of those points of T at which F(x) has finite lower right (left) derivatives by the definition of N^+ (N^-) . We characterize $T \cap N^+$ $(T \cap N^-)$ by the coding property of its elements in Lemma 2.2. Theorem 1.1 then is proved by showing that $\mu(T \cap N^+) = 0$ $(\mu(T \cap N^-) = 0)$.

Proposition 2.1. Both the upper right and the upper left derivatives of F(x) are infinite for each $x \in T$.

PROOF. Let $t \in T$ with code $\tilde{t} = (t(1), t(2), \ldots)$. Then \tilde{t} has infinitely many entries lying in $\Omega \setminus \{r\}$. Suppose \tilde{t} has an entry from $\Omega \setminus \{r\}$ in position j. Then t lies in the interval $h_{\tilde{t}|(j-1)}([0,1])$, but is not equal to the right endpoint u of $h_{\tilde{t}|(j-1)}([0,1])$, where $\tilde{u} = (t(1), \ldots, t(j-1), r, r, \ldots)$. Note that u is also the right endpoint of $h_{\tilde{u}|j}([0,1])$ and that $t \notin h_{\tilde{u}|j}([0,1])$. Thus we have that $t, u \in h_{\tilde{t}|(j-1)}([0,1])$ and $(t, u] \supseteq h_{\tilde{u}|j}([0,1])$. Consider the slope of the line segment from the point P = (t, F(t)) on the graph of F(x) to the

point Q = (u, F(u)). We have

$$\frac{F(u) - F(t)}{u - t} = \frac{\mu((t, u])}{u - t} \ge \frac{\mu(h_{\tilde{u}|j}([0, 1]))}{|h_{\tilde{t}|(j-1)}([0, 1])|} = \frac{p_{\tilde{t}|(j-1)}p_r}{a_{\tilde{t}|(j-1)}}$$

$$= p_r \exp\left((j - 1)\frac{1}{j - 1}\sum_{i=1}^{j-1}\log\frac{p_{t(i)}}{a_{t(i)}}\right).$$
(6)

Note that by corollary 1.5 in [4].

$$\sum_{i=0}^{r} p_i (\log p_i - \log a_i) \ge -\log \sum_{j=0}^{r} a_j > 0.$$

Thus, the upper right derivative of F(x) at t is infinite by (6) and (5) when $j \to +\infty$. Symmetrically, the upper left derivative of F(x) at t of E is also infinite.

Lemma 2.2. Let $\Gamma = \{0, 1, \dots, r-1\}$. Let $t \in E^*$ and let z(t, n) denote the position of the n-th occurrence of elements of Γ in \tilde{t} . Then

(I)
$$T \cap N^{+} \subseteq T \cap \left\{ t \in E^{*} : \limsup_{n \to \infty} \frac{z(t, n+1)}{z(t, n)} \ge 1 - \frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i} (\log p_{i} - \log a_{i}) \right\};$$

(II) $T \cap \left\{ t \in E^{*} : \limsup_{n \to \infty} \frac{z(t, n+1)}{z(t, n)} > 1 - \frac{1}{\log p_{r}} \sum_{i=0}^{r} p_{i} (\log p_{i} - \log a_{i}) \right\} \subseteq \mathbb{R}^{n}$

(II)
$$T \cap \left\{ t \in E^* : \limsup_{n \to \infty} \frac{z(t, n+1)}{z(t, n)} > 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i (\log p_i - \log a_i) \right\} \subseteq T \cap N^+$$
.

Symmetrically, if we replace Γ by $\{1,2,\ldots,r\}$, then

$$\begin{aligned} &\text{(I') } T \cap N^- \subseteq T \cap \left\{ t \in E^* : \limsup_{n \to \infty} \frac{z(t,n+1)}{z(t,n)} \ge 1 - \frac{1}{\log p_0} \sum_{i=0}^r p_i (\log p_i - \log a_i) \right\}; \\ &\text{(II') } T \cap \left\{ t \in E^* : \limsup_{n \to \infty} \frac{z(t,n+1)}{z(t,n)} > 1 - \frac{1}{\log p_0} \sum_{i=0}^r p_i (\log p_i - \log a_i) \right\} \subseteq T \cap N^-. \end{aligned}$$

PROOF. We first prove statement (I); i.e., the lower-right derivative of F(x)is infinite at $t \in T$ when

$$\limsup_{n \to \infty} \frac{z(t, n+1)}{z(t, n)} < 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i(\log p_i - \log a_i).$$
 (7)

Consider such a point t with $\tilde{t} = (t(1), t(2), \dots)$. By (7) and (5) let k be a positive integer such that for $n \geq k$

$$\frac{z(t, n+1)}{z(t, n)} < 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i (\log p_i - \log a_i) + 2q, \tag{8}$$

and

$$\frac{1}{z(t,n)} \sum_{i=1}^{z(t,n)} \log \frac{p_{t(i)}}{a_{t(i)}} > \sum_{i=0}^{r} p_i (\log p_i - \log a_i) - q \log p_r, \tag{9}$$

for some negative real number q. Let u be a positive number such that u is smaller than the distance between t and $[0,1]\setminus E_{\tilde{t}|l}$ with l=z(t,k). Let x be a point in the segment (t,t+u). Then $t,x\in h_{\tilde{t}|l}([0,1])$. We will see that (F(x)-F(t))/(x-t) is large relative to k, so t is not in N^+ . Let i denote the level at which $x\notin h_{\tilde{t}|i}([0,1])$ but $x\in h_{\tilde{t}|(i-1)}([0,1])$. Note also that $t\in h_{\tilde{t}|(i-1)}([0,1])$. Thus $x-t\le |h_{\tilde{t}|(i-1)}([0,1])|=a_{\tilde{t}|(i-1)};$ also i=z(t,n) for some n>k. Put j=z(t,n+1)-1, and by v we denote the right endpoint of $h_{\tilde{t}|j}([0,1])$, which implies that $\tilde{v}=(t(1),\ldots,t(j),r,r,\ldots)$ and $(t,v]\supseteq h_{\tilde{v}|(j+1)}([0,1])$. Then we have t< v< x and $F(v)-F(t)=\mu((t,v])\ge \mu(h_{\tilde{v}|(j+1)}([0,1]))=p_{\tilde{t}|j}p_r$. Therefore, we have

$$\frac{F(x) - F(t)}{x - t} \ge \frac{p_{\tilde{t}|j}p_r}{a_{\tilde{t}|(i-1)}} = \frac{p_r \prod_{m=1}^{z(t,n+1)-1} p_{t(m)}}{\prod_{m=1}^{z(t,n)-1} a_{t(m)}}$$

$$= a_{t(z(t,n))} p_r^{z(t,n+1)-z(t,n)} \prod_{m=1}^{z(t,n)} \frac{p_{t(m)}}{a_{t(m)}}$$

$$\ge (\min_{0 \le m \le r} a_m) \left[p_r^{\frac{z(t,n+1)}{z(t,n)}-1} \left(\prod_{m=1}^{z(t,n)} \frac{p_{t(m)}}{a_{t(m)}} \right)^{\frac{1}{z(t,n)}} \right]^{z(t,n)}.$$
(10)

Let

$$Q = p_r^{\frac{z(t,n+1)}{z(t,n)} - 1} \left(\prod_{m=1}^{z(t,n)} \frac{p_{t(m)}}{a_{t(m)}} \right)^{\frac{1}{z(t,n)}}.$$

Taking logs, and by (8) and (9), we have

$$\log Q = \left(\frac{z(t, n+1)}{z(t, n)} - 1\right) \log p_r + \frac{1}{z(t, n)} \sum_{m=1}^{z(t, n)} \log \frac{p_{t(m)}}{a_{t(m)}} > q \log p_r.$$
 (11)

Since t is a non-end point, $z(t,n) \to \infty$ and the lower-right derivative of F(x) is infinite at t by (10) and (11).

Now we turn to the proof of statement (II). Let $t \in T$ be such that

$$\limsup_{n\to\infty} \frac{z(t,n+1)}{z(t,n)} > 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i(\log p_i - \log a_i).$$

Then there exists a sequence $\{n_k\}$ of positive integers such that for some positive constant c,

$$\frac{z(t, n_k + 1)}{z(t, n_k)} > 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i(\log p_i - \log a_i) + 2c, \tag{12}$$

and in addition by (5),

$$\frac{1}{z(t, n_k)} \sum_{i=1}^{z(t, n_k)} \log \frac{p_{t(i)}}{a_{t(i)}} < \sum_{i=0}^r p_i (\log p_i - \log a_i) - c \log p_r.$$
 (13)

Let x_k be the left endpoint of $h_{(\tilde{t}|j_k)*(t(j_k+1)+1)}([0,1])$, where $j_k = z(t,n_k) - 1$. Thus we have $\tilde{x}_k = (t(1), \dots, t(j_k), t(j_k+1) + 1, 0, \dots, 0, \dots)$. Let u_k be the right endpoint of $h_{\tilde{t}|(j_k+1)}([0,1])$. Then $\tilde{u}_k = (t(1), \dots, t(j_k), t(j_k+1), r, r, r, r, \dots)$. Thus, (u_k, x_k) is the gap on the right side of $h_{\tilde{t}|(j_k+1)}([0,1])$ and $\lambda([u_k, x_k]) = x_k - u_k = a_{\tilde{t}|j_k}\beta_{t(j_k+1)}$ where by $\beta_j, \ j = 0, 1, \dots, r-1$, we denote length of the gap between images $h_j([0,1])$ and $h_{j+1}([0,1])$. Note that $[t, x_k] \supseteq [u_k, x_k]$ and $\mu((t, x_k]) = \mu((t, u_k]) + \mu((u_k, x_k]) = \mu((t, u_k]) \le \mu(h_{\tilde{t}|(z(t,n_k+1)-1)}([0,1]))$ since $\tilde{t}|(z(t,n_k+1)-1) = \tilde{u}_k|(z(t,n_k+1)-1)$. Therefore we have

$$F(x_k) - F(t) = \mu((t, x_k]) \le \mu(h_{\tilde{t}|(z(t, n_k + 1) - 1)}([0, 1])) = p_{\tilde{t}|(z(t, n_k + 1) - 1)},$$

and

$$x_k - t \ge \lambda([u_k, x_k]) = a_{\tilde{t}|(z(t, n_k) - 1)} \beta_{t(z(t, n_k))}.$$

Let $\beta_* = \min_{j \in \{0,1,\dots,r-1\}} \beta_j$ and $a^* = \max_{j \in \{0,1,\dots,r\}} a_j$. Then we obtain, by a similar reasoning which led to (10),

$$\frac{F(x_k) - F(t)}{x_k - t} \leq \frac{p_{\tilde{t}|(z(t, n_k + 1) - 1)}}{a_{\tilde{t}|(z(t, n_k) - 1)} \beta_{\tilde{t}(z(t, n_k))}}
= \frac{a_{z(t, n_k)}}{\beta_{\tilde{t}(z(t, n_k))} p_r} p_r^{z(t, n_k + 1) - z(t, n_k)} \prod_{i=1}^{z(t, n_k)} \frac{p_{t(i)}}{a_{t(i)}}
\leq \frac{a^*}{\beta_* p_r} \left(p_r^{\frac{z(t, n_k + 1)}{z(t, n_k)}} - 1 \left(\prod_{i=1}^{z(t, n_k)} \frac{p_{t(i)}}{a_{t(i)}} \right)^{\frac{1}{z(t, n_k)}} \right)^{z(t, n_k)} .$$
(14)

Let

$$Q = p_r^{\frac{z(t, n_k + 1)}{z(t, n_k)} - 1} \left(\prod_{i=1}^{z(t, n_k)} \frac{p_{t(i)}}{a_{t(i)}} \right)^{\frac{1}{z(t, n_k)}}.$$

Taking logs and using (12) and (13), we obtain

$$\log Q = \left(\frac{z(t, n_k + 1)}{z(t, n_k)} - 1\right) \log p_r + \frac{1}{z(t, n_k)} \sum_{i=1}^{z(t, n_k)} \log \frac{p_{t(i)}}{a_{t(i)}} < c \log p_r < 0.$$
(15)

From (14) and (15) it follows that the lower-right derivative of F(x) at t is finite by letting $k \longrightarrow \infty$. Finally, (I') and (II') can be proved similarly. \square

PROOF OF THEOREM 1.1. Since μ is atomless, we only need to prove that $\mu(N^+ \cap T) = \mu(N^- \cap T) = 0$. Below we prove $\mu(N^+ \cap T) = 0$; $\mu(N^- \cap T) = 0$ can be obtained in the same way. By lemma 2.2 (I), we have $N^+ \cap T \subseteq M$ where

$$M = \left\{ t \in T : \limsup_{n \to \infty} \frac{z(t, n+1)}{z(t, n)} \ge 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i(\log p_i - \log a_i) \right\}.$$

Now fix a positive real number

$$\alpha < -\frac{1}{\log p_r} \sum_{i=0}^r p_i (\log p_i - \log a_i). \tag{16}$$

Choose n^* large enough to assure that when $k \geq n^*$

$$-\frac{2\log k}{k\log n_x} < \frac{\alpha}{2} \text{ and } \frac{1}{k} < \frac{\alpha}{8}.$$
 (17)

Now for each $k \geq n^*$, we can choose $u_k > k$ such that

$$\frac{u_k}{k} > 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i (\log p_i - \log a_i) - \frac{\alpha}{2}, \tag{18}$$

and

$$\frac{u_k - 1}{k} \le 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i (\log p_i - \log a_i) - \frac{\alpha}{2}.$$
 (19)

Then we have

$$1 - \frac{1}{\log p_r} \sum_{i=0}^{r} p_i (\log p_i - \log a_i) - \frac{\alpha}{2} < \frac{u_k}{k}$$

$$< 1 - \frac{1}{\log p_r} \sum_{i=0}^{r} p_i (\log p_i - \log a_i) - \frac{\alpha}{4},$$
(20)

by (18), (19) and the second inequality in (17). Let

$$J_k = \{x \in E : x(i) = r \text{ for } k < i \le u_k\}, k \ge n^*,$$

and

$$J^{\infty} = \limsup_{k \to \infty} J_k = \bigcap_{m=n^*}^{\infty} \bigcup_{k > m} J_k.$$

Now for each point $t \in M$, there exists a strictly increasing sequence $\{n_i, i \in \mathbb{N}\}$ of positive integers such that $z(t, n_1) \geq n^*$ and

$$\frac{z(t, n_i + 1)}{z(t, n_i)} > 1 - \frac{1}{\log p_r} \sum_{i=0}^r p_i(\log p_i - \log a_i) - \frac{\alpha}{4}.$$
 (21)

Taking $k_i = z(t, n_i)$ and using (21) as well as the second inequality in (20), we have $z(t, n_i + 1) > u_{k_i}$, which implies that $t \in J_{k_i}$. Thus we have $M \subseteq J^{\infty}$. Note that for $k \ge n^*$ and by the first inequality in (17), (18) and (16),

$$\frac{u_k}{k} - 1 \ge -\frac{2\log k}{k\log p_r}; i.e., p_r^{u_k - k} \le k^{-2}.$$
 (22)

Therefore for any $m \geq n^*$,

$$\mu(N^+ \cap T) \le \mu(M) \le \mu(\bigcup_{k \ge m} J_k) \le \sum_{k \ge m} p_r^{u_k - k} \le \sum_{k \ge m} k^{-2},$$

by (22). Finally, we obtain $\mu(N^+ \cap T) = 0$ by letting $m \to \infty$.

References

- [1] R. Darst, The Hausdorff Dimension of the Nondifferentiability Set of the Cantor Function is $[\ln(2)/\ln(3)]^2$, Proc. Amer. Math. Soc., 119 (1993), 105–108.
- [2] R. Darst, Hausdorff Dimension of Sets of Non-differentiability Points of Cantor Functions, Math. Proc. Camb. Phi. Soc., 117 (1995), 185–191.
- [3] F. M. Dekking, W. X. Li, How Smooth is a Devil's Staircase?, Fractals, 11 (2003), 101–107.
- [4] K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, 1997.

 [5] K. J. Falconer, One-sided Multifractal Analysis and Points of Nondifferentiability of Devil's Staircases, Math. Proc. Camb. Phi. Soc., 136 (2004), 167–174.

- [6] J. E. Hutchinson, Fractals and Self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747.
- [7] W. X. Li, Non-differentiability Points of Cantor Functions, Math. Nachr., to appear.
- [8] J. Morris, The Hausdorff Dimension of the Nondifferentiability Set of a Nonsymmetric Cantor Function, Rocky Mountain Journal of Mathematics, 32 (2002), 357–370.