Roman Dwilewicz*, Department of Mathematics, University of Missouri, Rolla, MO 65409. e-mail: romand@umr.edu and Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw, Poland. e-mail: rd@impan.gov.pl

AN ESTIMATE OF THE FIRST DERIVATIVE BY THE LAPLACIAN

Abstract

In this note a particular case of the following general problem is considered: how to control lower order derivatives by higher ones, at least over a sequence of points. The following particular case is proved: if a C^{2} negative-valued function $h=h(w)$ depends on one complex variable in the unit disc and $h(1)=h_{w}(1)=0$, then the first derivative h_{w} is controlled by the Laplacian of h over a sequence of points converging to $w=1$. Such kind of estimates have applications to delicate problems of convexity with respect to various families of functions

1 Introduction

For real functions of one real variable it is a very easy exercise to show that: If $h \in C^{2}([0,1]), h(1)=h^{\prime}(1)=0, h(x)<0$ for $x \in(0,1)$, then there is a sequence $x_{n} \rightarrow 1$ such that $h^{\prime}\left(x_{n}\right)>0, h^{\prime \prime}\left(x_{n}\right)<0$, and $h^{\prime}\left(x_{n}\right) \leq-\frac{1}{n} h^{\prime \prime}\left(x_{n}\right)$. The main goal of this note is to prove a corresponding property for functions of one complex variable.

Theorem I. Let $D=\{w \in \mathbb{C} ;|w|<1\}, h \bar{D} \rightarrow \mathbb{R}, h \in C^{2}(\bar{D}), h(w)<0$ for $w \in D$, and $h(1)=h_{w}(1)=0$. Then there is a sequence $\left\{w_{n}\right\}_{n=1}^{\infty} \subset D$, $\lim _{n \rightarrow \infty} w_{n}=1$, such that $\Delta h\left(w_{n}\right)<0,\left|h_{w}\left(w_{n}\right)\right|<-\frac{1}{n} \Delta h\left(w_{n}\right)$ for $n=$ $1,2, \ldots$, where Δ denotes the Laplacian.

A motivation to consider such question came from complex analysis, harmonic analysis, and the theory of convex functions, especially dealing with

[^0]pseudoconvexity and plurisubharmonic functions (see [1], [2], [3] where some applications can be found). The theorem holds under weaker assumptions, but then the formulation is more technical.

2 Notation and Formulation of a More General Theorem

Let D be the unit disc in the complex plane \mathbb{C}; i.e., $D=\{w \in \mathbb{C} ;|w|<1\}$, and let

$$
h: \bar{D} \rightarrow \mathbb{R}, h \in C^{2}(\bar{D}), h(w)<0 \text { for } w \in D
$$

and such that

$$
S=\{w \in \partial D ; h(w)=0\}=\{1\}, h_{w}(1)=0
$$

For convenience, we write $h(r, \theta)=h\left(r e^{i \theta}\right)$ and we let

$$
\begin{gathered}
\vartheta_{r}=\left\{\theta \in[0,2 \pi] ; h(r, \theta)=\sup _{0 \leq t \leq 2 \pi} h(r, t)\right\} \\
\varphi(r)=h\left(r, \vartheta_{r}\right)=\sup _{0 \leq t \leq 2 \pi} h(r, t) \text { for } 0 \leq r \leq 1, \\
h_{r}\left(r, \vartheta_{r}\right)=\sup \left\{h_{r}(r, \theta) ; \theta \in \vartheta_{r}\right\}, \quad h_{r}\left(r, \theta_{r}\right)=\left[h\left(\rho, \theta_{r}\right)\right]_{\rho=r}^{\prime}, \quad \text { if } \theta_{r} \in \vartheta_{r}
\end{gathered}
$$

Theorem II. With the above assumptions and notation, there exist a sequence $r_{n} \nearrow 1$ and a sequence $\theta_{r_{n}} \in \vartheta_{r_{n}}$ such that

$$
\begin{equation*}
h_{r r}\left(r_{n}, \theta_{r_{n}}\right)<0 \text { and } 0<h_{r}\left(r_{n}, \theta_{r_{n}}\right) \leq-\frac{1}{n} h_{r r}\left(r_{n}, \theta_{r_{n}}\right) . \tag{2.1}
\end{equation*}
$$

We note that Theorem I immediately follows from Theorem II because at points $(r, \theta), \theta \in \vartheta_{r}$, we have $h_{\theta}(r, \theta)=0, h_{\theta \theta}(r, \theta) \leq 0, h_{w}(w)=\frac{1}{2} e^{-i \theta} h_{r}(r, \theta)$, and (2.1) immediately yields the estimate from Theorem 1 when we rewrite the Laplacian in the polar coordinates:

$$
\Delta h(w)=\Delta h(r, \theta)=h_{r r}(r, \theta)+\frac{1}{r} h_{r}(r, \theta)+\frac{1}{r^{2}} h_{\theta \theta}(r, \theta)
$$

3 Proof of Theorem II

We divide the proof of Theorem II into four lemmas. Before we formulate and prove the lemmas, we need more notation.

The image of \bar{D} under h is an interval $[-a, 0]$ for some $a>0$. We denote by $\mathfrak{C}=\mathfrak{C}^{h}$ the set of critical points of h,

$$
\mathfrak{C}=\mathfrak{C}^{h}=\left\{w \in \bar{D} ; h_{w}(w)=0\right\}
$$

By Sard's theorem (see e.g. [4]) we have meas $(h(\mathfrak{C}))=0$. We put

$$
\begin{equation*}
B=[-a, 0] \backslash h(\mathfrak{C})=(-a, 0) \backslash h(\mathfrak{C}) . \tag{3.1}
\end{equation*}
$$

Obviously, the sets \mathfrak{C} and $h(\mathfrak{C})$ are compact. Therefore B is open in \mathbb{R}.
Remark 1. In order to apply Sard's theorem for h, the minimum differentiability assumption is class C^{2}, which follows, for instance, from the remarks in [4], p. 20.

Lemma 1. Let $H: \bar{D} \longrightarrow \mathbb{R}, H \in C^{2}(\bar{D})$. We can define the corresponding sets ϑ_{r} for H and also use the other notation. If $H_{r}\left(r, \vartheta_{r}\right) \leq 0$ for $0<r<1$, then the function $r \longrightarrow H\left(r, \vartheta_{r}\right)$ decreases.

Proof. We put

$$
E=\left\{w=r e^{i \theta} \in \bar{D} ; \quad H_{r}(r, \theta)=0, \forall \theta \in \vartheta_{r}\right\} \subset \mathfrak{C}^{H}, F=H\left(\mathfrak{C}^{H}\right)
$$

and we have $0 \leq \operatorname{meas}(H(E)) \leq \operatorname{meas}(F)=0$. We note that the function $\phi(r)=H\left(r, \vartheta_{r}\right)$ is continuous for $r \in[0,1]$ and its image is an interval $I \subset \mathbb{R}$. If the interval I is degenerate; i.e., contains only a point, then the lemma is obvious. So we can assume that I is not just one point. Take $\phi^{-1}(I \backslash F)$, which is open and nonempty in $[0,1]$. It is enough to show that ϕ decreases on this set. If $r \in \phi^{-1}(I \backslash F)$, then there exists $\theta_{0} \in \vartheta_{r}$ such that $H_{r}\left(r, \theta_{0}\right)<0$, which gives the inequalities

$$
\phi(\rho)=H\left(\rho, \vartheta_{\rho}\right) \geq H\left(\rho, \theta_{0}\right)>H\left(r, \theta_{0}\right)=\phi(r) \quad \text { for } \rho<r(\rho \text { close to } r)
$$

This means that ϕ strictly decreases on each component of $\phi^{-1}(I \backslash F)$, and consequently, decreases on $[0,1]$.

Remark 2. We use Lemma 1 several times later in this section. Each time we need a slightly different version of the lemma, which follows easily from the version given above. Adjusting Lemma 1 to each individual case is left to the reader.

Lemma 2. With the notation from §2, there exist $0<r<1$ and $\theta_{r} \in \vartheta_{r}$ such that $h_{r}\left(r, \theta_{r}\right)>0$.

Proof. Assume to the contrary that $\forall_{0<r<1} \forall_{\theta_{r} \in \vartheta_{r}} h_{r}\left(r, \theta_{r}\right) \leq 0$. Then, by Lemma 1, the function $r \rightarrow h\left(r, \vartheta_{r}\right)$ decreases, and we get a contradiction $-a=h(0) \geq h\left(1, \vartheta_{1}\right)=0,0<a \leq 0$.

Up to the end of this section, we fix $r_{0} \in \varphi^{-1}(B)(\varphi$ is defined in Section 2 and B is defined in (3.1)) such that $h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)>0$, and define

$$
r^{0}=\inf \left\{\rho>r_{0} ; h_{r}\left(\rho, \vartheta_{\rho}\right) \leq 0\right\}=\inf \left\{\rho>r_{0} ; h_{r}\left(\rho, \vartheta_{\rho}\right)=0\right\}
$$

Since the set under inf is nonempty, $r^{0} \leq 1$.
Lemma 3. With the above notation, we have $r_{0}<r^{0}$.
Proof. Assume to the contrary that $r_{0}=r^{0}$. The point r_{0} belongs to $\varphi^{-1}(B)$. Therefore for r from a small neighborhood of r_{0} we have $h_{r}(r, \theta) \neq 0$, $\theta \in \vartheta_{r}$. Consequently,

$$
\begin{equation*}
r_{0}=r^{0}=\inf \left\{\rho>r_{0} ; h_{r}\left(\rho, \vartheta_{\rho}\right)<0\right\} \tag{3.2}
\end{equation*}
$$

Since $h_{r}\left(r_{0}, \theta_{r_{0}}\right)>0$ for some $\theta_{r_{0}} \in \vartheta_{r_{0}}, \varphi(r)>\varphi\left(r_{0}\right)$ for $r>r_{0}$ close to r_{0}. From (3.2) and the last argument, we get that there exist points $r_{n}>r_{0}$, arbitrarily close to r_{0}, where the function φ attains local maxima. But at these points we have $h_{r}\left(r_{n}, \theta\right)=0, \theta \in \vartheta_{r_{n}}$, which contradicts the choice of r_{0} and, consequently, proves the lemma.

Lemma 4. The function $h(r, \theta)$ has the property

$$
\forall_{C>0} \exists_{r_{0} \leq r<r^{0}} \exists_{\theta_{r} \in \vartheta_{r}} h_{r r}\left(r, \theta_{r}\right)<0 \text { and } 0<h_{r}\left(r, \theta_{r}\right) \leq-C h_{r r}\left(r, \theta_{r}\right)
$$

Beginning of the Proof Lemma 4. Assume to the contrary that

$$
\begin{equation*}
\exists \exists_{C>0} \forall_{r_{0} \leq r<r^{0}} \forall_{\theta_{r} \in \vartheta_{r}} h_{r r}\left(r, \theta_{r}\right) \geq 0 \text { or } h_{r}\left(r, \theta_{r}\right)>-C h_{r r}\left(r, \theta_{r}\right) \tag{3.3}
\end{equation*}
$$

Condition (3.3) implies one of the following three cases:

$$
\begin{align*}
h_{r r}\left(r, \theta_{r}\right) & >0 \text { for some } \theta_{r} \in \vartheta_{r} \tag{3.4}\\
h_{r}\left(r, \theta_{r}\right) & >-C h_{r r}\left(r, \theta_{r}\right) \text { and } h_{r r}\left(r, \theta_{r}\right)<0 \text { for some } \theta_{r} \in \vartheta_{r}, \tag{3.5}\\
h_{r r}\left(r, \theta_{r}\right) & =0 \text { for some } \theta_{r} \in \vartheta_{r} \tag{3.6}
\end{align*}
$$

Now we consider these three cases in the subsequent three sublemmas.
Sub Lemma 4-1. If (3.4) is satisfied, then

$$
\forall_{\varepsilon>0} \exists_{r<\rho<r+\varepsilon} \exists_{\theta_{\rho} \in \vartheta_{\rho}} h_{r}\left(\rho, \theta_{\rho}\right)>h_{r}\left(r, \theta_{r}\right) .
$$

Proof of Sublemma 4-1. Assume to the contrary that there exists ε_{0} such that for any $r<\rho<r+\varepsilon_{0}$ we have $h_{r}\left(\rho, \theta_{\rho}\right) \leq h_{r}\left(r, \theta_{r}\right)$ for any $\theta_{\rho} \in \vartheta_{\rho}$. We define the function $H(\rho, \theta)=h(\rho, \theta)-\rho h_{r}\left(r, \theta_{r}\right)$. Obviously

$$
\forall_{\theta_{\rho} \in \vartheta_{\rho}} H_{r}\left(\rho, \theta_{\rho}\right)=h_{r}\left(\rho, \theta_{\rho}\right)-h_{r}\left(r, \theta_{r}\right) \leq 0
$$

We can apply Lemma 1 to the function $H(\rho, \theta), r<\rho<r+\varepsilon_{0}, \theta \in[0,2 \pi]$, and obtain that the function $\left(r, r+\varepsilon_{0}\right) \ni \rho \rightarrow H\left(\rho, \vartheta_{\rho}\right)$ decreases, which gives

$$
\begin{equation*}
h\left(\rho, \vartheta_{\rho}\right) \leq h\left(r, \vartheta_{r}\right)+(\rho-r) h_{r}\left(r, \theta_{r}\right) . \tag{3.7}
\end{equation*}
$$

On the other hand, by (3.4), we have

$$
h\left(\rho, \vartheta_{\rho}\right) \geq h\left(\rho, \theta_{r}\right) \geq h\left(r, \theta_{r}\right)+(\rho-r)\left[h_{r}\left(r, \theta_{r}\right)+\delta\right]
$$

where $\delta=\delta(r, \rho)>0$, and hence

$$
h\left(\rho, \vartheta_{\rho}\right) \geq h\left(r, \vartheta_{r}\right)+(\rho-r) h_{r}\left(r, \theta_{r}\right)+\delta(\rho-r)
$$

which contradicts (3.7).
Sub Lemma 4-2. If (3.5) holds, then

$$
\begin{equation*}
\forall_{\varepsilon>0} \exists_{r<\rho<r+\varepsilon} \exists_{\theta_{\rho} \in \vartheta_{\rho}} \ln h_{r}\left(\rho, \theta_{\rho}\right) \geq \ln h_{r}\left(r, \theta_{r}\right)-\frac{2}{C}(\rho-r) \tag{3.8}
\end{equation*}
$$

Proof of Sublemma 4-2. By the assumptions of the sublemma we have $-\frac{1}{C}<\frac{h_{r r}\left(r, \theta_{r}\right)}{h_{r}\left(r, \theta_{r}\right)}<0$, and from this we get $-\frac{1}{C}<\left[\ln h_{r}\left(\rho, \theta_{r}\right)\right]_{\rho}^{\prime}<0$ for ρ close to r. After integration with respect to ρ, we obtain

$$
-\frac{1}{C}(\rho-r)+\ln h_{r}\left(r, \theta_{r}\right)<\ln h_{r}\left(\rho, \theta_{r}\right)<\ln h_{r}\left(r, \theta_{r}\right) \text { for } \rho>r, \rho \text { close to } r \text {. }
$$

Now we take the exponential of the expressions at the left inequality, and we get $h_{r}\left(\rho, \theta_{r}\right)>e^{\left[-\frac{1}{C}(\rho-r)\right]} h_{r}\left(r, \theta_{r}\right)$ for $\rho>r, \rho$ close to r. Again integrating with respect to ρ, we obtain

$$
h\left(\rho, \theta_{r}\right)-h\left(r, \theta_{r}\right)>C\left[1-e^{\left[-\frac{1}{C}(\rho-r)\right]}\right] h_{r}\left(r, \theta_{r}\right)
$$

and from this

$$
\begin{equation*}
h\left(\rho, \vartheta_{\rho}\right) \geq h\left(\rho, \theta_{r}\right)>h\left(r, \theta_{r}\right)-C h_{r}\left(r, \theta_{r}\right) e^{\left[-\frac{1}{C}(\rho-r)\right]}+C h_{r}\left(r, \theta_{r}\right) \tag{3.9}
\end{equation*}
$$

Assume that (3.8) does not hold; i.e.,

$$
\exists_{\varepsilon>0} \forall_{r<\rho<r+\varepsilon} \forall_{\theta_{\rho} \in \vartheta_{\rho}} \ln h_{r}\left(\rho, \theta_{\rho}\right)<\ln h_{r}\left(r, \theta_{r}\right)-\frac{2}{C}(\rho-r),
$$

which gives $h_{r}\left(\rho, \theta_{\rho}\right)<e^{\left[-\frac{2}{C}(\rho-r)\right]} h_{r}\left(r, \theta_{r}\right)$ for ρ close to r. As in the previous sublemma, we introduce the function

$$
H(\rho, \theta)=h(\rho, \theta)+\frac{C}{2} e^{\left[-\frac{2}{C}(\rho-r)\right]} h_{r}\left(r, \theta_{r}\right)
$$

Since $H_{\rho}\left(\rho, \vartheta_{\rho}\right)<0$, by Lemma 1 , the function $\rho \rightarrow H\left(\rho, \vartheta_{\rho}\right)$ decreases on the interval $[r, r+\varepsilon]$, which yields

$$
\begin{equation*}
h\left(\rho, \vartheta_{\rho}\right) \leq h\left(r, \vartheta_{r}\right)+\frac{C}{2} h_{r}\left(r, \theta_{r}\right)\left[1-e^{\left[-\frac{2}{C}(\rho-r)\right]}\right] \text { for } \rho \in(r, r+\varepsilon) \tag{3.10}
\end{equation*}
$$

Comparing (3.9) and (3.10) we get a contradiction.
The last case (3.6) can be easily reduced to Sublemma 4-2; so we leave the proof to the reader. We only formulate the following.
Sub Lemma 4-3. If (3.6) is satisfied, then

$$
\forall_{\varepsilon>0} \exists_{r<\rho<r+\varepsilon} \exists_{\theta_{\rho} \in \vartheta_{\rho}} \ln h_{r}\left(\rho, \theta_{\rho}\right) \geq \ln h_{r}\left(r, \theta_{r}\right)-(\rho-r) .
$$

We need one more sublemma before finishing the proof of Lemma 4.
Sub Lemma 4-4. Let a sequence $\left(r_{n}, \theta_{r_{n}}\right), n=1,2, \ldots$, be given such that $r_{n} \rightarrow r^{*}$ and $\theta_{r_{n}} \in \vartheta_{r_{n}}$. Then $\limsup _{n \rightarrow \infty} h_{r}\left(r_{n}, \theta_{r_{n}}\right) \leq h_{r}\left(r^{*}, \vartheta_{r^{*}}\right)$.

Proof of Sublemma 4-4. Without loss of generality we can assume that $r_{n} \rightarrow r^{*}$ and $\theta_{r_{n}} \rightarrow \theta^{*}$. Since

$$
\lim _{n \rightarrow \infty} h\left(r_{n}, \theta_{r_{n}}\right)=h\left(r^{*}, \theta^{*}\right)=\sup _{0 \leq \theta \leq 2 \pi} h\left(r^{*}, \theta\right)
$$

$\theta^{*} \in \vartheta_{r^{*}}$. By smoothness of h we obtain $\lim _{n \rightarrow \infty} h_{r}\left(r_{n}, \theta_{r_{n}}\right)=h_{r}\left(r^{*}, \theta^{*}\right) \leq$ $h_{r}\left(r^{*}, \vartheta_{r^{*}}\right)$, and consequently, $\lim \sup _{n \rightarrow \infty} h_{r}\left(r_{n}, \theta_{r_{n}}\right) \leq h_{r}\left(r^{*}, \vartheta_{r^{*}}\right)$.
End of the Proof of Lemma 4. In the beginning of the proof of this lemma, we assumed (3.3). As we already mentioned, (3.3) implies (3.4)-(3.6). Now we shall get a contradiction to the definition of r^{0}.

Without loss of generality, we can assume that the constant C in (3.5) is smaller than $1 / 2$. We let

$$
R=\sup \left\{\rho \in\left(r_{0}, r^{0}\right) ; \ln h_{r}\left(\rho, \vartheta_{\rho}\right) \geq \ln h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)-\frac{2}{C}\left(\rho-r_{0}\right)\right\}
$$

From Sublemmas 4-1-4-3 we have that $R>r_{0}$. Assume that $R<r^{0}$. Then there exist sequences $r_{n} \rightarrow R^{-}$and $\theta_{r_{n}} \in \vartheta_{r_{n}}$ such that

$$
\ln h_{r}\left(r_{n}, \theta_{r_{n}}\right) \geq \ln h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)-\frac{2}{C}\left(r_{n}-r_{0}\right) .
$$

By Sublemma 4-4 we get

$$
\ln h_{r}\left(R, \vartheta_{R}\right) \geq \ln h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)-\frac{2}{C}\left(R-r_{0}\right) .
$$

Again applying Sublemmas 4-1-4-3, we obtain that there exists $r^{*}, r^{*}>R$, close to R such that

$$
\begin{aligned}
\ln h_{r}\left(r^{*}, \vartheta_{r^{*}}\right) & \geq \ln h_{r}\left(R, \vartheta_{R}\right)-\frac{2}{C}\left(r^{*}-R\right) \\
& \geq \ln h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)-\frac{2}{C}\left(R-r_{0}\right)-\frac{2}{C}\left(r^{*}-R\right) \\
& =\ln h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)-\frac{2}{C}\left(r^{*}-r_{0}\right) .
\end{aligned}
$$

But the above contradicts the definition of R. Therefore $R=r^{0}$. Consequently, there exist sequences $r_{n} \rightarrow r^{0-}$ and $\theta_{r_{n}} \in \vartheta_{r_{n}}$ such that

$$
\lim _{n \rightarrow \infty} \ln h_{r}\left(r_{n}, \theta_{r_{n}}\right) \geq \ln h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)-\frac{2}{C}\left(r^{0}-r_{0}\right) .
$$

From Sublemma 4-4 we get

$$
h_{r}\left(r^{0}, \vartheta_{r^{0}}\right) \geq e^{\left[-\frac{2}{C}\left(r^{0}-r_{0}\right)\right]} h_{r}\left(r_{0}, \vartheta_{r_{0}}\right)>0 .
$$

On the other hand $h_{r}\left(r^{0}, \vartheta_{r^{0}}\right)=0$, which contradicts the above inequality. This completes the proof of Lemma 4.

Proof of Theorem II. We have two cases:
1^{0} There exists $\varepsilon>0$ such that $h_{r}\left(r, \vartheta_{r}\right)>0$, for $1-\varepsilon<r<1$,
2^{0} There exists a sequence $r_{n} \nearrow 1$ such that $h_{r}\left(r_{n}, \vartheta_{r_{n}}\right) \leq 0$.
In the first case, we immediately apply Lemma 4 , where $r^{0}=1$, and we get the theorem. In the second case, it is very easy to construct a sequence of intervals $\left(\sigma_{n}, \tau_{n}\right), \sigma_{n}<\tau_{n}, \sigma_{n} \rightarrow 1, \tau_{n} \rightarrow 1$, such that

$$
h_{r}\left(\sigma_{n}, \vartheta_{\sigma_{n}}\right)>0, h_{r}\left(\tau_{n}, \vartheta_{\tau_{n}}\right)=0, h_{r}\left(r, \vartheta_{r}\right)>0 \quad \text { for } \sigma_{n}<r<\tau_{n}
$$

We apply Lemma 4 to each interval (σ_{n}, τ_{n}), and again the theorem follows.

References

[1] R. Dwilewicz, Pseudoconvexity and analytic discs, Annals of Global Analysis and Geometry, 17 (1999), 539-561.
[2] R. Dwilewicz and C.D. Hill, Spinning analytic discs and domains of dependence, Manuscripta Math., 97 (1998), 407-427.
[3] R. Dwilewicz and C.D. Hill, The conormal type function for $C R$ manifolds, Publicationes Math. Debrecen, 60, (2002), 245-282.
[4] R. Narasimhan, Analysis on Real and Complex Manifolds, 1985, Amsterdam, North-Holland.

[^0]: Key Words: Real functions, Laplacian
 Mathematical Reviews subject classification: Primary 26B25, Secondary 31A05, 32F05, 52 A 41

 Received by the editors May 2, 2002
 *Research partially supported by a grant of the Polish Committee for Scientific Research (KBN 2 P03A 044 15)

