Roman Dwilewicz^{*}, Department of Mathematics, University of Missouri, Rolla, MO 65409. e-mail: romand@umr.edu and Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw, Poland. e-mail: rd@impan.gov.pl

AN ESTIMATE OF THE FIRST DERIVATIVE BY THE LAPLACIAN

Abstract

In this note a particular case of the following general problem is considered: how to control lower order derivatives by higher ones, at least over a sequence of points. The following particular case is proved: if a C^2 negative-valued function h = h(w) depends on one complex variable in the unit disc and $h(1) = h_w(1) = 0$, then the first derivative h_w is controlled by the Laplacian of h over a sequence of points converging to w = 1. Such kind of estimates have applications to delicate problems of convexity with respect to various families of functions

1 Introduction

For real functions of one real variable it is a very easy exercise to show that: If $h \in C^2([0,1])$, h(1) = h'(1) = 0, h(x) < 0 for $x \in (0,1)$, then there is a sequence $x_n \to 1$ such that $h'(x_n) > 0$, $h''(x_n) < 0$, and $h'(x_n) \le -\frac{1}{n}h''(x_n)$. The main goal of this note is to prove a corresponding property for functions of one complex variable.

Theorem I. Let $D = \{w \in \mathbb{C}; |w| < 1\}$, $h\overline{D} \to \mathbb{R}$, $h \in C^2(\overline{D})$, h(w) < 0for $w \in D$, and $h(1) = h_w(1) = 0$. Then there is a sequence $\{w_n\}_{n=1}^{\infty} \subset D$, $\lim_{n\to\infty} w_n = 1$, such that $\Delta h(w_n) < 0$, $|h_w(w_n)| < -\frac{1}{n}\Delta h(w_n)$ for $n = 1, 2, \ldots$, where Δ denotes the Laplacian.

A motivation to consider such question came from complex analysis, harmonic analysis, and the theory of convex functions, especially dealing with

Key Words: Real functions, Laplacian

Mathematical Reviews subject classification: Primary 26B25, Secondary 31A05, 32F05, 52A41 Received by the editors May 2, 2002

^{*}Research partially supported by a grant of the Polish Committee for Scientific Research (KBN 2 P03A 044 15)

¹⁴⁵

pseudoconvexity and plurisubharmonic functions (see [1], [2], [3] where some applications can be found). The theorem holds under weaker assumptions, but then the formulation is more technical.

2 Notation and Formulation of a More General Theorem

Let D be the unit disc in the complex plane \mathbb{C} ; i.e., $D = \{w \in \mathbb{C}; |w| < 1\}$, and let

$$h:\overline{D}\to\mathbb{R},\ h\in C^2(\overline{D}),\ h(w)<0\ \text{for }w\in D,$$

and such that

$$S = \{ w \in \partial D; h(w) = 0 \} = \{ 1 \}, h_w(1) = 0.$$

For convenience, we write $h(r, \theta) = h(re^{i\theta})$ and we let

$$\vartheta_r = \{\theta \in [0, 2\pi]; h(r, \theta) = \sup_{0 \le t \le 2\pi} h(r, t)\},$$
$$\varphi(r) = h(r, \vartheta_r) = \sup_{0 \le t \le 2\pi} h(r, t) \text{ for } 0 \le r \le 1,$$

$$h_r(r,\vartheta_r) = \sup\{h_r(r,\theta); \ \theta \in \vartheta_r\}, \ h_r(r,\theta_r) = [h(\rho,\theta_r)]'_{\rho=r}, \quad \text{if} \ \theta_r \in \vartheta_r$$

Theorem II. With the above assumptions and notation, there exist a sequence $r_n \nearrow 1$ and a sequence $\theta_{r_n} \in \vartheta_{r_n}$ such that

$$h_{rr}(r_n, \theta_{r_n}) < 0 \text{ and } 0 < h_r(r_n, \theta_{r_n}) \le -\frac{1}{n} h_{rr}(r_n, \theta_{r_n}).$$
 (2.1)

We note that Theorem I immediately follows from Theorem II because at points $(r, \theta), \theta \in \vartheta_r$, we have $h_{\theta}(r, \theta) = 0, h_{\theta\theta}(r, \theta) \leq 0, h_w(w) = \frac{1}{2}e^{-i\theta}h_r(r, \theta)$, and (2.1) immediately yields the estimate from Theorem 1 when we rewrite the Laplacian in the polar coordinates:

$$\Delta h(w) = \Delta h(r,\theta) = h_{rr}(r,\theta) + \frac{1}{r}h_r(r,\theta) + \frac{1}{r^2}h_{\theta\theta}(r,\theta).$$

3 Proof of Theorem II

We divide the proof of Theorem II into four lemmas. Before we formulate and prove the lemmas, we need more notation.

The image of \overline{D} under h is an interval [-a, 0] for some a > 0. We denote by $\mathfrak{C} = \mathfrak{C}^h$ the set of critical points of h,

$$\mathfrak{C} = \mathfrak{C}^h = \{ w \in \overline{D}; h_w(w) = 0 \}.$$

By Sard's theorem (see e.g. [4]) we have $meas(h(\mathfrak{C})) = 0$. We put

$$B = [-a, 0] \setminus h(\mathfrak{C}) = (-a, 0) \setminus h(\mathfrak{C}).$$
(3.1)

Obviously, the sets \mathfrak{C} and $h(\mathfrak{C})$ are compact. Therefore B is open in \mathbb{R} .

Remark 1. In order to apply Sard's theorem for h, the minimum differentiability assumption is class C^2 , which follows, for instance, from the remarks in [4], p. 20.

Lemma 1. Let $H : \overline{D} \longrightarrow \mathbb{R}$, $H \in C^2(\overline{D})$. We can define the corresponding sets ϑ_r for H and also use the other notation. If $H_r(r, \vartheta_r) \leq 0$ for 0 < r < 1, then the function $r \longrightarrow H(r, \vartheta_r)$ decreases.

PROOF. We put

$$E = \{ w = re^{i\theta} \in \overline{D}; \ H_r(r,\theta) = 0, \ \forall \theta \in \vartheta_r \} \subset \mathfrak{C}^H, \ F = H(\mathfrak{C}^H),$$

and we have $0 \leq \max(H(E)) \leq \max(F) = 0$. We note that the function $\phi(r) = H(r, \vartheta_r)$ is continuous for $r \in [0, 1]$ and its image is an interval $I \subset \mathbb{R}$. If the interval I is degenerate; i.e., contains only a point, then the lemma is obvious. So we can assume that I is not just one point. Take $\phi^{-1}(I \setminus F)$, which is open and nonempty in [0, 1]. It is enough to show that ϕ decreases on this set. If $r \in \phi^{-1}(I \setminus F)$, then there exists $\theta_0 \in \vartheta_r$ such that $H_r(r, \theta_0) < 0$, which gives the inequalities

$$\phi(\rho) = H(\rho, \vartheta_{\rho}) \ge H(\rho, \theta_0) > H(r, \theta_0) = \phi(r) \quad \text{for } \rho < r \ (\rho \text{ close to } r).$$

This means that ϕ strictly decreases on each component of $\phi^{-1}(I \setminus F)$, and consequently, decreases on [0, 1].

Remark 2. We use Lemma 1 several times later in this section. Each time we need a slightly different version of the lemma, which follows easily from the version given above. Adjusting Lemma 1 to each individual case is left to the reader.

Lemma 2. With the notation from §2, there exist 0 < r < 1 and $\theta_r \in \vartheta_r$ such that $h_r(r, \theta_r) > 0$.

PROOF. Assume to the contrary that $\forall_{0 < r < 1} \forall_{\theta_r \in \vartheta_r} h_r(r, \theta_r) \leq 0$. Then, by Lemma 1, the function $r \to h(r, \vartheta_r)$ decreases, and we get a contradiction $-a = h(0) \geq h(1, \vartheta_1) = 0, 0 < a \leq 0$.

Up to the end of this section, we fix $r_0 \in \varphi^{-1}(B)$ (φ is defined in Section 2 and B is defined in (3.1)) such that $h_r(r_0, \vartheta_{r_0}) > 0$, and define

$$r^{0} = \inf\{\rho > r_{0}; h_{r}(\rho, \vartheta_{\rho}) \le 0\} = \inf\{\rho > r_{0}; h_{r}(\rho, \vartheta_{\rho}) = 0\}.$$

Since the set under inf is nonempty, $r^0 \leq 1$.

Lemma 3. With the above notation, we have $r_0 < r^0$.

PROOF. Assume to the contrary that $r_0 = r^0$. The point r_0 belongs to $\varphi^{-1}(B)$. Therefore for r from a small neighborhood of r_0 we have $h_r(r,\theta) \neq 0$, $\theta \in \vartheta_r$. Consequently,

$$r_0 = r^0 = \inf\{\rho > r_0; h_r(\rho, \vartheta_\rho) < 0\}.$$
(3.2)

Since $h_r(r_0, \theta_{r_0}) > 0$ for some $\theta_{r_0} \in \vartheta_{r_0}$, $\varphi(r) > \varphi(r_0)$ for $r > r_0$ close to r_0 . From (3.2) and the last argument, we get that there exist points $r_n > r_0$, arbitrarily close to r_0 , where the function φ attains local maxima. But at these points we have $h_r(r_n, \theta) = 0$, $\theta \in \vartheta_{r_n}$, which contradicts the choice of r_0 and, consequently, proves the lemma.

Lemma 4. The function $h(r, \theta)$ has the property

$$\forall_{C>0} \exists_{r_0 \leq r < r^0} \exists_{\theta_r \in \vartheta_r} h_{rr}(r, \theta_r) < 0 \text{ and } 0 < h_r(r, \theta_r) \leq -Ch_{rr}(r, \theta_r).$$

BEGINNING OF THE PROOF LEMMA 4. Assume to the contrary that

$$\exists_{C>0} \forall_{r_0 \le r < r^0} \forall_{\theta_r \in \vartheta_r} h_{rr}(r, \theta_r) \ge 0 \text{ or } h_r(r, \theta_r) > -Ch_{rr}(r, \theta_r).$$
(3.3)

Condition (3.3) implies one of the following three cases:

$$h_{rr}(r,\theta_r) > 0 \text{ for some } \theta_r \in \vartheta_r,$$

$$(3.4)$$

$$h_r(r,\theta_r) > -Ch_{rr}(r,\theta_r) \text{ and } h_{rr}(r,\theta_r) < 0 \text{ for some } \theta_r \in \vartheta_r,$$
 (3.5)

$$h_{rr}(r,\theta_r) = 0 \text{ for some } \theta_r \in \vartheta_r.$$
(3.6)

Now we consider these three cases in the subsequent three sublemmas.

Sub Lemma 4-1. If (3.4) is satisfied, then

$$\forall_{\varepsilon>0} \exists_{r<\rho< r+\varepsilon} \exists_{\theta_{\rho}\in\vartheta_{\rho}} h_r(\rho,\theta_{\rho}) > h_r(r,\theta_r).$$

PROOF OF SUBLEMMA 4-1. Assume to the contrary that there exists ε_0 such that for any $r < \rho < r + \varepsilon_0$ we have $h_r(\rho, \theta_\rho) \leq h_r(r, \theta_r)$ for any $\theta_\rho \in \vartheta_\rho$. We define the function $H(\rho, \theta) = h(\rho, \theta) - \rho h_r(r, \theta_r)$. Obviously

$$\forall_{\theta_{\rho} \in \vartheta_{\rho}} H_r(\rho, \theta_{\rho}) = h_r(\rho, \theta_{\rho}) - h_r(r, \theta_r) \le 0.$$

We can apply Lemma 1 to the function $H(\rho, \theta)$, $r < \rho < r + \varepsilon_0$, $\theta \in [0, 2\pi]$, and obtain that the function $(r, r + \varepsilon_0) \ni \rho \to H(\rho, \vartheta_\rho)$ decreases, which gives

$$h(\rho, \vartheta_{\rho}) \le h(r, \vartheta_{r}) + (\rho - r)h_{r}(r, \theta_{r}).$$
(3.7)

On the other hand, by (3.4), we have

$$h(\rho, \vartheta_{\rho}) \ge h(\rho, \theta_{r}) \ge h(r, \theta_{r}) + (\rho - r)[h_{r}(r, \theta_{r}) + \delta],$$

where $\delta = \delta(r, \rho) > 0$, and hence

$$h(\rho, \vartheta_{\rho}) \ge h(r, \vartheta_{r}) + (\rho - r)h_{r}(r, \theta_{r}) + \delta(\rho - r),$$

which contradicts (3.7).

Sub Lemma 4-2. If (3.5) holds, then

$$\forall_{\varepsilon>0} \exists_{r<\rho< r+\varepsilon} \exists_{\theta_{\rho}\in\vartheta_{\rho}} \ln h_{r}(\rho,\theta_{\rho}) \ge \ln h_{r}(r,\theta_{r}) - \frac{2}{C}(\rho-r).$$
(3.8)

PROOF OF SUBLEMMA 4-2. By the assumptions of the sublemma we have $-\frac{1}{C} < \frac{h_{rr}(r,\theta_r)}{h_r(r,\theta_r)} < 0$, and from this we get $-\frac{1}{C} < [\ln h_r(\rho,\theta_r)]'_{\rho} < 0$ for ρ close to r. After integration with respect to ρ , we obtain

$$-\frac{1}{C}(\rho-r) + \ln h_r(r,\theta_r) < \ln h_r(\rho,\theta_r) < \ln h_r(r,\theta_r) \text{ for } \rho > r, \rho \text{ close to } r.$$

Now we take the exponential of the expressions at the left inequality, and we get $h_r(\rho, \theta_r) > e^{\left[-\frac{1}{C}(\rho-r)\right]} h_r(r, \theta_r)$ for $\rho > r$, ρ close to r. Again integrating with respect to ρ , we obtain

$$h(\rho, \theta_r) - h(r, \theta_r) > C\left[1 - e^{\left[-\frac{1}{C}(\rho - r)\right]}\right] h_r(r, \theta_r),$$

and from this

$$h(\rho,\vartheta_{\rho}) \ge h(\rho,\theta_{r}) > h(r,\theta_{r}) - Ch_{r}(r,\theta_{r}) e^{\left[-\frac{1}{C}(\rho-r)\right]} + Ch_{r}(r,\theta_{r}).$$
(3.9)

Assume that (3.8) does not hold; i.e.,

$$\exists_{\varepsilon>0} \forall_{r<\rho< r+\varepsilon} \forall_{\theta_{\rho}\in\vartheta_{\rho}} \ln h_r(\rho,\theta_{\rho}) < \ln h_r(r,\theta_r) - \frac{2}{C}(\rho-r),$$

which gives $h_r(\rho, \theta_\rho) < e^{\left[-\frac{2}{C}(\rho-r)\right]} h_r(r, \theta_r)$ for ρ close to r. As in the previous sublemma, we introduce the function

$$H(\rho,\theta) = h(\rho,\theta) + \frac{C}{2} e^{\left[-\frac{2}{C}(\rho-r)\right]} h_r(r,\theta_r).$$

Since $H_{\rho}(\rho, \vartheta_{\rho}) < 0$, by Lemma 1, the function $\rho \to H(\rho, \vartheta_{\rho})$ decreases on the interval $[r, r + \varepsilon]$, which yields

$$h(\rho, \vartheta_{\rho}) \le h(r, \vartheta_{r}) + \frac{C}{2} h_{r}(r, \theta_{r}) \left[1 - e^{\left[-\frac{2}{C}(\rho - r)\right]} \right] \text{ for } \rho \in (r, r + \varepsilon).$$
(3.10)

Comparing (3.9) and (3.10) we get a contradiction.

The last case (3.6) can be easily reduced to Sublemma 4-2; so we leave the proof to the reader. We only formulate the following.

Sub Lemma 4-3. If (3.6) is satisfied, then

$$\forall_{\varepsilon>0} \exists_{r<\rho< r+\varepsilon} \exists_{\theta_{\rho}\in\vartheta_{\rho}} \ln h_r(\rho,\theta_{\rho}) \ge \ln h_r(r,\theta_r) - (\rho-r).$$

We need one more sublemma before finishing the proof of Lemma 4.

Sub Lemma 4-4. Let a sequence (r_n, θ_{r_n}) , $n = 1, 2, ..., be given such that <math>r_n \to r^*$ and $\theta_{r_n} \in \vartheta_{r_n}$. Then $\limsup_{n \to \infty} h_r(r_n, \theta_{r_n}) \leq h_r(r^*, \vartheta_{r^*})$.

PROOF OF SUBLEMMA 4-4. Without loss of generality we can assume that $r_n \to r^*$ and $\theta_{r_n} \to \theta^*$. Since

$$\lim_{n \to \infty} h(r_n, \theta_{r_n}) = h(r^*, \theta^*) = \sup_{0 \le \theta \le 2\pi} h(r^*, \theta),$$

 $\theta^* \in \vartheta_{r^*}$. By smoothness of h we obtain $\lim_{n \to \infty} h_r(r_n, \theta_{r_n}) = h_r(r^*, \theta^*) \le h_r(r^*, \vartheta_{r^*})$, and consequently, $\limsup_{n \to \infty} h_r(r_n, \theta_{r_n}) \le h_r(r^*, \vartheta_{r^*})$. \Box

END OF THE PROOF OF LEMMA 4. In the beginning of the proof of this lemma, we assumed (3.3). As we already mentioned, (3.3) implies (3.4)–(3.6). Now we shall get a contradiction to the definition of r^0 .

Without loss of generality, we can assume that the constant C in (3.5) is smaller than 1/2. We let

$$R = \sup\{\rho \in (r_0, r^0); \ln h_r(\rho, \vartheta_\rho) \ge \ln h_r(r_0, \vartheta_{r_0}) - \frac{2}{C}(\rho - r_0)\}.$$

150

From Sublemmas 4-1–4-3 we have that $R > r_0$. Assume that $R < r^0$. Then there exist sequences $r_n \to R^-$ and $\theta_{r_n} \in \vartheta_{r_n}$ such that

$$\ln h_r(r_n, \theta_{r_n}) \ge \ln h_r(r_0, \vartheta_{r_0}) - \frac{2}{C}(r_n - r_0).$$

By Sublemma 4-4 we get

$$\ln h_r(R,\vartheta_R) \ge \ln h_r(r_0,\vartheta_{r_0}) - \frac{2}{C}(R-r_0).$$

Again applying Sublemmas 4-1–4-3, we obtain that there exists r^* , $r^* > R$, close to R such that

0

$$\ln h_r(r^*, \vartheta_{r^*}) \ge \ln h_r(R, \vartheta_R) - \frac{2}{C}(r^* - R)$$

$$\ge \ln h_r(r_0, \vartheta_{r_0}) - \frac{2}{C}(R - r_0) - \frac{2}{C}(r^* - R)$$

$$= \ln h_r(r_0, \vartheta_{r_0}) - \frac{2}{C}(r^* - r_0).$$

But the above contradicts the definition of R. Therefore $R = r^0$. Consequently, there exist sequences $r_n \to r^{0-}$ and $\theta_{r_n} \in \vartheta_{r_n}$ such that

$$\lim_{n \to \infty} \ln h_r(r_n, \theta_{r_n}) \ge \ln h_r(r_0, \vartheta_{r_0}) - \frac{2}{C} (r^0 - r_0).$$

From Sublemma 4-4 we get

$$h_r(r^0, \vartheta_{r^0}) \ge e^{\left[-\frac{2}{C}(r^0 - r_0)\right]} h_r(r_0, \vartheta_{r_0}) > 0.$$

On the other hand $h_r(r^0, \vartheta_{r^0}) = 0$, which contradicts the above inequality. This completes the proof of Lemma 4.

PROOF OF THEOREM II. We have two cases:

- 1⁰ There exists $\varepsilon > 0$ such that $h_r(r, \vartheta_r) > 0$, for $1 \varepsilon < r < 1$,
- 2⁰ There exists a sequence $r_n \nearrow 1$ such that $h_r(r_n, \vartheta_{r_n}) \le 0$.

In the first case, we immediately apply Lemma 4, where $r^0 = 1$, and we get the theorem. In the second case, it is very easy to construct a sequence of intervals $(\sigma_n, \tau_n), \sigma_n < \tau_n, \sigma_n \to 1, \tau_n \to 1$, such that

$$h_r(\sigma_n, \vartheta_{\sigma_n}) > 0, \ h_r(\tau_n, \vartheta_{\tau_n}) = 0, \ h_r(r, \vartheta_r) > 0 \quad \text{for } \sigma_n < r < \tau_n.$$

We apply Lemma 4 to each interval (σ_n, τ_n) , and again the theorem follows.

References

- R. Dwilewicz, *Pseudoconvexity and analytic discs*, Annals of Global Analysis and Geometry, **17** (1999), 539–561.
- [2] R. Dwilewicz and C.D. Hill, Spinning analytic discs and domains of dependence, Manuscripta Math., 97 (1998), 407–427.
- [3] R. Dwilewicz and C.D. Hill, *The conormal type function for CR manifolds*, Publicationes Math. Debrecen, **60**, (2002), 245–282.
- [4] R. Narasimhan, Analysis on Real and Complex Manifolds, 1985, Amsterdam, North-Holland.