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AN ESTIMATE OF THE FIRST
DERIVATIVE BY THE LAPLACIAN

Abstract

In this note a particular case of the following general problem is con-
sidered: how to control lower order derivatives by higher ones, at least
over a sequence of points. The following particular case is proved: if a
C2 negative-valued function h = h(w) depends on one complex variable
in the unit disc and h(1) = hw(1) = 0, then the first derivative hw is
controlled by the Laplacian of h over a sequence of points converging to
w = 1. Such kind of estimates have applications to delicate problems of
convexity with respect to various families of functions

1 Introduction

For real functions of one real variable it is a very easy exercise to show that:
If h ∈ C2([0, 1]), h(1) = h′(1) = 0, h(x) < 0 for x ∈ (0, 1), then there is a
sequence xn → 1 such that h′(xn) > 0, h′′(xn) < 0, and h′(xn) ≤ − 1

nh′′(xn).
The main goal of this note is to prove a corresponding property for functions
of one complex variable.

Theorem I. Let D = {w ∈ C; |w| < 1}, h D → R, h ∈ C2(D), h(w) < 0
for w ∈ D, and h(1) = hw(1) = 0. Then there is a sequence {wn}∞n=1 ⊂ D,
limn→∞ wn = 1, such that ∆h(wn) < 0, |hw(wn)| < − 1

n∆h(wn) for n =
1, 2, . . ., where ∆ denotes the Laplacian.

A motivation to consider such question came from complex analysis, har-
monic analysis, and the theory of convex functions, especially dealing with
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pseudoconvexity and plurisubharmonic functions (see [1], [2], [3] where some
applications can be found). The theorem holds under weaker assumptions,
but then the formulation is more technical.

2 Notation and Formulation of a More General Theorem

Let D be the unit disc in the complex plane C; i.e., D = {w ∈ C; |w| < 1},
and let

h : D → R, h ∈ C2(D), h(w) < 0 for w ∈ D,

and such that

S = {w ∈ ∂D; h(w) = 0} = {1}, hw(1) = 0.

For convenience, we write h(r, θ) = h(reiθ) and we let

ϑr = {θ ∈ [0, 2π]; h(r, θ) = sup
0≤t≤2π

h(r, t)},

ϕ(r) = h(r, ϑr) = sup
0≤t≤2π

h(r, t) for 0 ≤ r ≤ 1,

hr(r, ϑr) = sup{hr(r, θ); θ ∈ ϑr}, hr(r, θr) = [h(ρ, θr)]
′

ρ=r, if θr ∈ ϑr.

Theorem II. With the above assumptions and notation, there exist a sequence
rn ↗ 1 and a sequence θrn ∈ ϑrn such that

hrr(rn, θrn) < 0 and 0 < hr(rn, θrn) ≤ − 1
n

hrr(rn, θrn). (2.1)

We note that Theorem I immediately follows from Theorem II because at
points (r, θ), θ ∈ ϑr, we have hθ(r, θ) = 0, hθθ(r, θ) ≤ 0, hw(w) = 1

2e−iθhr(r, θ),
and (2.1) immediately yields the estimate from Theorem 1 when we rewrite
the Laplacian in the polar coordinates:

∆h(w) = ∆h(r, θ) = hrr(r, θ) +
1
r
hr(r, θ) +

1
r2

hθθ(r, θ).

3 Proof of Theorem II

We divide the proof of Theorem II into four lemmas. Before we formulate and
prove the lemmas, we need more notation.

The image of D under h is an interval [−a, 0] for some a > 0. We denote
by C = Ch the set of critical points of h,

C = Ch = {w ∈ D; hw(w) = 0}.
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By Sard’s theorem (see e.g. [4]) we have meas(h(C)) = 0. We put

B = [−a, 0] \ h(C) = (−a, 0) \ h(C). (3.1)

Obviously, the sets C and h(C) are compact. Therefore B is open in R.

Remark 1. In order to apply Sard’s theorem for h, the minimum differentia-
bility assumption is class C2, which follows, for instance, from the remarks in
[4], p. 20.

Lemma 1. Let H : D −→ R, H ∈ C2(D). We can define the corresponding
sets ϑr for H and also use the other notation. If Hr(r, ϑr) ≤ 0 for 0 < r < 1,
then the function r −→ H(r, ϑr) decreases.

Proof. We put

E = {w = reiθ ∈ D; Hr(r, θ) = 0, ∀θ ∈ ϑr} ⊂ CH , F = H(CH),

and we have 0 ≤ meas(H(E)) ≤ meas(F ) = 0. We note that the function
φ(r) = H(r, ϑr) is continuous for r ∈ [0, 1] and its image is an interval I ⊂ R.
If the interval I is degenerate; i.e., contains only a point, then the lemma is
obvious. So we can assume that I is not just one point. Take φ−1(I \ F ),
which is open and nonempty in [0, 1]. It is enough to show that φ decreases on
this set. If r ∈ φ−1(I \ F ), then there exists θ0 ∈ ϑr such that Hr(r, θ0) < 0,
which gives the inequalities

φ(ρ) = H(ρ, ϑρ) ≥ H(ρ, θ0) > H(r, θ0) = φ(r) for ρ < r (ρ close to r).

This means that φ strictly decreases on each component of φ−1(I \ F ), and
consequently, decreases on [0, 1].

Remark 2. We use Lemma 1 several times later in this section. Each time
we need a slightly different version of the lemma, which follows easily from
the version given above. Adjusting Lemma 1 to each individual case is left to
the reader.

Lemma 2. With the notation from §2, there exist 0 < r < 1 and θr ∈ ϑr such
that hr(r, θr) > 0.

Proof. Assume to the contrary that ∀0<r<1∀θr∈ϑr hr(r, θr) ≤ 0. Then, by
Lemma 1, the function r → h(r, ϑr) decreases, and we get a contradiction
−a = h(0) ≥ h(1, ϑ1) = 0, 0 < a ≤ 0.
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Up to the end of this section, we fix r0 ∈ ϕ−1(B) (ϕ is defined in Section
2 and B is defined in (3.1)) such that hr(r0, ϑr0) > 0, and define

r0 = inf{ρ > r0; hr(ρ, ϑρ) ≤ 0} = inf{ρ > r0; hr(ρ, ϑρ) = 0}.

Since the set under inf is nonempty, r0 ≤ 1.

Lemma 3. With the above notation, we have r0 < r0.

Proof. Assume to the contrary that r0 = r0. The point r0 belongs to
ϕ−1(B). Therefore for r from a small neighborhood of r0 we have hr(r, θ) 6= 0,
θ ∈ ϑr. Consequently,

r0 = r0 = inf{ρ > r0; hr(ρ, ϑρ) < 0}. (3.2)

Since hr(r0, θr0) > 0 for some θr0 ∈ ϑr0 , ϕ(r) > ϕ(r0) for r > r0 close to
r0. From (3.2) and the last argument, we get that there exist points rn > r0,
arbitrarily close to r0, where the function ϕ attains local maxima. But at
these points we have hr(rn, θ) = 0, θ ∈ ϑrn , which contradicts the choice of r0

and, consequently, proves the lemma.

Lemma 4. The function h(r, θ) has the property

∀C>0 ∃r0≤r<r0 ∃θr∈ϑr hrr(r, θr) < 0 and 0 < hr(r, θr) ≤ −Chrr(r, θr).

Beginning of the Proof Lemma 4. Assume to the contrary that

∃C>0 ∀r0≤r<r0 ∀θr∈ϑr hrr(r, θr) ≥ 0 or hr(r, θr) > −Chrr(r, θr). (3.3)

Condition (3.3) implies one of the following three cases:

hrr(r, θr) > 0 for some θr ∈ ϑr, (3.4)
hr(r, θr) > −Chrr(r, θr) and hrr(r, θr) < 0 for some θr ∈ ϑr, (3.5)

hrr(r, θr) = 0 for some θr ∈ ϑr. (3.6)

Now we consider these three cases in the subsequent three sublemmas.

Sub Lemma 4-1. If (3.4) is satisfied, then

∀ε>0 ∃r<ρ<r+ε ∃θρ∈ϑρ hr(ρ, θρ) > hr(r, θr).
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Proof of Sublemma 4-1. Assume to the contrary that there exists ε0 such
that for any r < ρ < r + ε0 we have hr(ρ, θρ) ≤ hr(r, θr) for any θρ ∈ ϑρ. We
define the function H(ρ, θ) = h(ρ, θ)− ρhr(r, θr). Obviously

∀θρ∈ϑρ
Hr(ρ, θρ) = hr(ρ, θρ)− hr(r, θr) ≤ 0.

We can apply Lemma 1 to the function H(ρ, θ), r < ρ < r + ε0, θ ∈ [0, 2π],
and obtain that the function (r, r + ε0) 3 ρ → H(ρ, ϑρ) decreases, which gives

h(ρ, ϑρ) ≤ h(r, ϑr) + (ρ− r)hr(r, θr). (3.7)

On the other hand, by (3.4), we have

h(ρ, ϑρ) ≥ h(ρ, θr) ≥ h(r, θr) + (ρ− r)[hr(r, θr) + δ],

where δ = δ(r, ρ) > 0, and hence

h(ρ, ϑρ) ≥ h(r, ϑr) + (ρ− r)hr(r, θr) + δ(ρ− r),

which contradicts (3.7).

Sub Lemma 4-2. If (3.5) holds, then

∀ε>0 ∃r<ρ<r+ε ∃θρ∈ϑρ
lnhr(ρ, θρ) ≥ lnhr(r, θr)−

2
C

(ρ− r). (3.8)

Proof of Sublemma 4-2. By the assumptions of the sublemma we have

− 1
C

<
hrr(r, θr)
hr(r, θr)

< 0, and from this we get − 1
C < [lnhr(ρ, θr)]

′

ρ < 0 for ρ

close to r. After integration with respect to ρ, we obtain

− 1
C

(ρ− r) + lnhr(r, θr) < lnhr(ρ, θr) < lnhr(r, θr) for ρ > r, ρ close to r.

Now we take the exponential of the expressions at the left inequality, and we
get hr(ρ, θr) > e[− 1

C (ρ−r)] hr(r, θr) for ρ > r, ρ close to r. Again integrating
with respect to ρ, we obtain

h(ρ, θr)− h(r, θr) > C
[
1− e[− 1

C (ρ−r)]
]
hr(r, θr),

and from this

h(ρ, ϑρ) ≥ h(ρ, θr) > h(r, θr)− Chr(r, θr) e[− 1
C (ρ−r)] + Chr(r, θr). (3.9)
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Assume that (3.8) does not hold; i.e.,

∃ε>0 ∀r<ρ<r+ε ∀θρ∈ϑρ lnhr(ρ, θρ) < lnhr(r, θr)−
2
C

(ρ− r),

which gives hr(ρ, θρ) < e[− 2
C (ρ−r)] hr(r, θr) for ρ close to r. As in the previous

sublemma, we introduce the function

H(ρ, θ) = h(ρ, θ) +
C

2
e[− 2

C (ρ−r)] hr(r, θr).

Since Hρ(ρ, ϑρ) < 0, by Lemma 1, the function ρ → H(ρ, ϑρ) decreases on the
interval [r, r + ε], which yields

h(ρ, ϑρ) ≤ h(r, ϑr) +
C

2
hr(r, θr)

[
1− e[− 2

C (ρ−r)]
]

for ρ ∈ (r, r + ε). (3.10)

Comparing (3.9) and (3.10) we get a contradiction.

The last case (3.6) can be easily reduced to Sublemma 4-2; so we leave the
proof to the reader. We only formulate the following.

Sub Lemma 4-3. If (3.6) is satisfied, then

∀ε>0 ∃r<ρ<r+ε ∃θρ∈ϑρ lnhr(ρ, θρ) ≥ lnhr(r, θr)− (ρ− r).

We need one more sublemma before finishing the proof of Lemma 4.

Sub Lemma 4-4. Let a sequence (rn, θrn), n = 1, 2, . . . , be given such that
rn → r∗ and θrn

∈ ϑrn
. Then lim sup

n→∞
hr(rn, θrn

) ≤ hr(r∗, ϑr∗).

Proof of Sublemma 4-4. Without loss of generality we can assume that
rn → r∗ and θrn → θ∗. Since

lim
n→∞

h(rn, θrn
) = h(r∗, θ∗) = sup

0≤θ≤2π
h(r∗, θ),

θ∗ ∈ ϑr∗ . By smoothness of h we obtain limn→∞ hr(rn, θrn
) = hr(r∗, θ∗) ≤

hr(r∗, ϑr∗), and consequently, lim supn→∞ hr(rn, θrn) ≤ hr(r∗, ϑr∗).

End of the Proof of Lemma 4. In the beginning of the proof of this lemma,
we assumed (3.3). As we already mentioned, (3.3) implies (3.4)–(3.6). Now
we shall get a contradiction to the definition of r0.

Without loss of generality, we can assume that the constant C in (3.5) is
smaller than 1/2. We let

R = sup{ρ ∈ (r0, r
0); lnhr(ρ, ϑρ) ≥ lnhr(r0, ϑr0)−

2
C

(ρ− r0)}.
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From Sublemmas 4-1–4-3 we have that R > r0. Assume that R < r0. Then
there exist sequences rn → R− and θrn ∈ ϑrn such that

lnhr(rn, θrn) ≥ lnhr(r0, ϑr0)−
2
C

(rn − r0).

By Sublemma 4-4 we get

lnhr(R,ϑR) ≥ lnhr(r0, ϑr0)−
2
C

(R− r0).

Again applying Sublemmas 4-1–4-3, we obtain that there exists r∗, r∗ > R,
close to R such that

lnhr(r∗, ϑr∗) ≥ lnhr(R,ϑR)− 2
C

(r∗ −R)

≥ lnhr(r0, ϑr0)−
2
C

(R− r0)−
2
C

(r∗ −R)

= lnhr(r0, ϑr0)−
2
C

(r∗ − r0).

But the above contradicts the definition of R. Therefore R = r0. Conse-
quently, there exist sequences rn → r0− and θrn

∈ ϑrn
such that

lim
n→∞

lnhr(rn, θrn) ≥ lnhr(r0, ϑr0)−
2
C

(r0 − r0).

From Sublemma 4-4 we get

hr(r0, ϑr0) ≥ e[− 2
C (r0−r0)] hr(r0, ϑr0) > 0.

On the other hand hr(r0, ϑr0) = 0, which contradicts the above inequality.
This completes the proof of Lemma 4.

Proof of Theorem II. We have two cases:

10 There exists ε > 0 such that hr(r, ϑr) > 0, for 1− ε < r < 1,

20 There exists a sequence rn ↗ 1 such that hr(rn, ϑrn
) ≤ 0.

In the first case, we immediately apply Lemma 4, where r0 = 1, and we get
the theorem. In the second case, it is very easy to construct a sequence of
intervals (σn, τn), σn < τn, σn → 1, τn → 1, such that

hr(σn, ϑσn
) > 0, hr(τn, ϑτn

) = 0, hr(r, ϑr) > 0 for σn < r < τn.

We apply Lemma 4 to each interval (σn, τn), and again the theorem follows.
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