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PERCENTILES

Abstract

It is shown that, similarly to the median, percentiles of a random
variable can be characterized as minima of suitable functionals.

In our previous work, [1], we studied a functional r(X) which assigns to a
random variable X the real variable ¢ at which the expected value E(F(X —
t)) attains its minimum. Function F' was assumed to be convex and even.
For specific choices of F', £r(X) corresponds to quantities of significance in
statistics — if F(z) = |z|, then &x(X) is the median of X, if F(z) = |z|*,
k > 1, then {x(X) is the k-th moment of X. In the present note we consider
a special case of F' which is not even. For this choice of F' = f the resulting
functional is a percentile of X.

The r-percentile of a real valued random variable (r.v.) X is defined as any
number (or set of numbers) m such that P(X <m) > rand P(X >m) > 1—r.
We denote this percentile by m,.(X). For r =  this is the median of X. Note
that m,.(X) may be multivalued.

For a real number s > 0 let Fy(z) = z for © > 0 and Fy(x) = —sx for
x < 0. In particular, Fy(x) = |z|.

The following theorem is an extension of a well known result about the
median.

Theorem 1. For every r.v. X with finite expected value E(|X|) the function

E(Fy(X — 1)) of the real variable t attains its minimum at t € m,.(X) where
1

r =

s+1°

PRrROOF. Replacing X by X —m, m € m,(X) we may assume that 0 € m,.(X).
For t > 0 we want to show that E(Fy (X +t)) — E(Fs(X)) = BE(Fs(X £1t) —
Fy(X)) = E(A4Fs(X)) > 0. Observe that A_;F,(x) equals respectively to
stifx <0,t0os(t—x)—a>—-tif 0 <z <t and to —t if x > ¢t. To translate
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this into the desired conclusion, denote by 1g the indicator function of an
event S, and write

A_th(X) = 5t1{X§0}+1{0<X§t}(S(th)fX)+1{X>t}(7t) Z Stl{XSO}ft]-{X>O}

and

E(A_Fy(X)) > t(— ° y=o.

=N+l s+1
The inequality E(A;Fs(X)) > 0 is obtained in the same manner by writing
1=1(x< 4 +1{_tcx<0} + 1{x>0} giving rise to the inequality

E(AFs(X)) > —stP(X <0)+tP(X >0)>0
O

Similarly as in the case of the median, see [1], there is the following converse
to Theorem 1.

Theorem 2. If f is a function such that for every two-valued r.v. X, E(f(X—
t)) attains its minimum at every t € m,(X), where r = ﬁ, then f is of the
form f(x) = aFs(x) + B, where a, B are constants, o > 0.

PROOF. We carry the argument under the assumption that f is continuous
and then similarly as in [1] observe that this assumption is a consequence of
the hypothesis of the theorem.

Replacing f(z) by f(z) — f(0) we may assume that f(0) = 0. Let X be
a two-valued r.v., P(X =a) =p, P(X =b) =q=1—p,and a < b. Tt is
easily checked that the r-percentile of X, m,(X) =a if p > r, m.(X) = b if
p < r and m,(X) = [a,b] when p = r (in this case m, is multivalued). For
this choice of p, that is, p = 3-1%1 and ¢ = 3-1%1’ the hypothesis on f can now
be stated as follows:

For all real ¢, a, b, 7, a < b, 0 < 7 < 1, we have

@) = f (1) 2 o flam (e (=) + [ (ra+ (1-T)))
= (=)= ) + = f (b a)).
With t = a and 7 =0 we get 35 f(b—a) > Sil (a—10), ie., f(—x) <sf(x)

for £ > 0. Similarly, with t = b and 7 = 1 we get the reverse inequality, to
conclude that f(—x) = sf(z) for x > 0. Now we complete the argument by
showing that for > 0 f(x) = az. To this effect observe that f(a—t)+sf(b—t)
is minimized by every t = Ta+(1—7)b, 0 < 7 < 1. It follows that as a function
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of 7 € [0, 1], F(1-7)(a—b)+5(r(b—a)) = s(f(1-7)(b—a))+s/ (r(b—a)) is
constant and equals sf(b—a). Letting t = 0 and a = b we get f(b) > f(0) =0
for all b. Also, letting 7(b — a) = x, (1 — 7)(b — a) = y this implies that
fle+y) = f(z)+ f(y) for 0 < z,y < b— a. Equivalently, f(%ﬂ) = w
which using continuity implies that f is positive homogenous (note that this
is the only place where the continuity of f is used). Letting b — a — oo yields
the conclusion.

We now finish the proof by showing that the hypotheses of the theorem
imply that f is continuous at any x > 0. This is done in a similar way as in the
proof of Lemma 4 in [1], where instead of being additive f is subadditive. First
we notice that for 0 <ax < M, M > 0, we have 0 < f(x) = f(M)+ f(M—z) <
f(M) and f is bounded on any finite interval in [0, 00). Let 2 > 0. Then both
limsup,_,, f(y) = L and liminfy — xf(y) = [ exist at x and are finite. For
€ > 0 we write f(z) = f(&tr=<) = f(ZJrE);f(I*e) implying by taking the
limsup,_,, that f(x) < L. With x, — z such that f(z,) — [ we have
[ < liminf f(2£n) = %, hence f(z) > I. Next we choose z, — =,
Yn — @ such that f(Z2F¥) — [ and f(z,) — [ to conclude that L < L
so that L < I. Hence | = f(z) = L and f is continuous at x. The proof is
complete. O
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