Pawel Szeptycki, Department of Mathematics, University of Kansas, Lawrence, KS 66045. email: szeptyck@math.ukans.edu

PERCENTILES

Abstract

It is shown that, similarly to the median, percentiles of a random variable can be characterized as minima of suitable functionals.

In our previous work, [1], we studied a functional $\xi_F(X)$ which assigns to a random variable X the real variable t at which the expected value E(F(X-t)) attains its minimum. Function F was assumed to be convex and even. For specific choices of F, $\xi_F(X)$ corresponds to quantities of significance in statistics – if F(x) = |x|, then $\xi_F(X)$ is the median of X, if $F(x) = |x|^k$, k > 1, then $\xi_F(X)$ is the k-th moment of X. In the present note we consider a special case of F which is not even. For this choice of $F = f_s$ the resulting functional is a percentile of X.

The r-percentile of a real valued random variable (r.v.) X is defined as any number (or set of numbers) m such that $P(X \leq m) \geq r$ and $P(X \geq m) \geq 1-r$. We denote this percentile by $m_r(X)$. For $r = \frac{1}{2}$ this is the median of X. Note that $m_r(X)$ may be multivalued.

For a real number s > 0 let $F_s(x) = x$ for $x \ge 0$ and $F_s(x) = -sx$ for $x \le 0$. In particular, $F_1(x) = |x|$.

The following theorem is an extension of a well known result about the median.

Theorem 1. For every r.v. X with finite expected value E(|X|) the function $E(F_s(X-t))$ of the real variable t attains its minimum at $t \in m_r(X)$ where $r = \frac{1}{s+1}$.

PROOF. Replacing X by $X-m, m \in m_r(X)$ we may assume that $0 \in m_r(X)$. For t > 0 we want to show that $E(F_s(X \pm t)) - E(F_s(X)) = E(F_s(X \pm t) - F_s(X)) = E(\Delta_{\pm t}F_s(X)) \ge 0$. Observe that $\Delta_{-t}F_s(x)$ equals respectively to st if s < 0, to $s(t-s) - s \ge -t$ if $s \le t$, and to $s \ge t$. To translate

Key Words: convexity, moments

Mathematical Reviews subject classification: 26A51, 60A99

Received by the editors September 23, 2002 Communicated by: Krzysztof Chris Ciesielski 462 PAWEL SZEPTYCKI

this into the desired conclusion, denote by $\mathbf{1}_S$ the indicator function of an event S, and write

$$\Delta_{-t}F_s(X) = st\mathbf{1}_{\{X \le 0\}} + \mathbf{1}_{\{0 < X \le t\}}(s(t-X) - X) + \mathbf{1}_{\{X > t\}}(-t) \ge st\mathbf{1}_{\{X \le 0\}} - t\mathbf{1}_{\{X > 0\}}$$

and

$$E(\Delta_{-t}F_s(X)) \ge t(\frac{s}{s+1} - \frac{s}{s+1}) = 0.$$

The inequality $E(\Delta_t F_s(X)) \geq 0$ is obtained in the same manner by writing $\mathbf{1} = \mathbf{1}_{\{X \leq -t\}} + \mathbf{1}_{\{-t < X < 0\}} + \mathbf{1}_{\{X \geq 0\}}$ giving rise to the inequality

$$E(\Delta_t F_s(X)) \ge -stP(X<0) + tP(X\ge 0) \ge 0$$

.

Similarly as in the case of the median, see [1], there is the following converse to Theorem 1.

Theorem 2. If f is a function such that for every two-valued r.v. X, E(f(X-t)) attains its minimum at every $t \in m_r(X)$, where $r = \frac{1}{s+1}$, then f is of the form $f(x) = \alpha F_s(x) + \beta$, where α, β are constants, $\alpha \geq 0$.

PROOF. We carry the argument under the assumption that f is continuous and then similarly as in [1] observe that this assumption is a consequence of the hypothesis of the theorem.

Replacing f(x) by f(x) - f(0) we may assume that f(0) = 0. Let X be a two-valued r.v., P(X = a) = p, P(X = b) = q = 1 - p, and a < b. It is easily checked that the r-percentile of X, $m_r(X) = a$ if p > r, $m_r(X) = b$ if p < r and $m_r(X) = [a,b]$ when p = r (in this case m_r is multivalued). For this choice of p, that is, $p = \frac{1}{s+1}$ and $q = \frac{s}{s+1}$, the hypothesis on f can now be stated as follows:

For all real t, a, b, τ , a < b, $0 \le \tau \le 1$, we have

$$\begin{split} \frac{1}{s+1}f(a-t) + \frac{s}{s+1}f(b-t) &\geq \frac{1}{1+s}f(a - (\tau a + (1-\tau)b)) + \frac{s}{s+1}f(b - (\tau a + (1-\tau)b))) \\ &= \frac{1}{s+1}f((1-\tau)(a-b)) + \frac{s}{s+1}f(\tau(b-a)). \end{split}$$

With t=a and $\tau=0$ we get $\frac{s}{s+1}f(b-a) \geq \frac{1}{s+1}f(a-b)$, i.e., $f(-x) \leq sf(x)$ for $x \geq 0$. Similarly, with t=b and $\tau=1$ we get the reverse inequality, to conclude that f(-x)=sf(x) for $x \geq 0$. Now we complete the argument by showing that for x>0 $f(x)=\alpha x$. To this effect observe that f(a-t)+sf(b-t) is minimized by every $t=\tau a+(1-\tau)b$, $0\leq \tau\leq 1$. It follows that as a function

Percentiles 463

of $\tau \in [0,1]$, $f((1-\tau)(a-b)) + sf(\tau(b-a)) = s(f((1-\tau)(b-a)) + sf(\tau(b-a))$ is constant and equals sf(b-a). Letting t=0 and a=b we get $f(b) \geq f(0) = 0$ for all b. Also, letting $\tau(b-a) = x$, $(1-\tau)(b-a) = y$ this implies that f(x+y) = f(x) + f(y) for $0 \leq x, y \leq b-a$. Equivalently, $f(\frac{x+y}{2}) = \frac{f(x) + f(y)}{2}$ which using continuity implies that f is positive homogenous (note that this is the only place where the continuity of f is used). Letting $b-a \to \infty$ yields the conclusion.

We now finish the proof by showing that the hypotheses of the theorem imply that f is continuous at any x>0. This is done in a similar way as in the proof of Lemma 4 in [1], where instead of being additive f is subadditive. First we notice that for $0 \le x \le M$, M>0, we have $0 \le f(x) = f(M) + f(M-x) \le f(M)$ and f is bounded on any finite interval in $[0,\infty)$. Let x>0. Then both $\limsup_{y\to x} f(y) = L$ and $\liminf y\to xf(y) = l$ exist at x and are finite. For $\epsilon>0$ we write $f(x)=f(\frac{x+\epsilon+x-\epsilon}{2})=\frac{f(x+\epsilon)+f(x-\epsilon)}{2}$ implying by taking the $\limsup_{\epsilon\to 0}$ that $f(x)\le L$. With $x_n\to x$ such that $f(x_n)\to l$ we have $l\le \liminf f(\frac{x+x_n}{2})=\frac{f(x)+l}{2}$, hence $f(x)\ge l$. Next we choose $x_n\to x$, $y_n\to x$ such that $f(\frac{x_n+y_n}{2})\to L$ and $f(x_n)\to l$ to conclude that $L\le \frac{l+L}{2}$ so that $L\le l$. Hence l=f(x)=L and f is continuous at x. The proof is complete.

References

[1] Jan Mycielski, Pawel Szeptycki, *Minimizing moments*, Real Anal. Exchange, this issue.