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PERCENTILES

Abstract

It is shown that, similarly to the median, percentiles of a random
variable can be characterized as minima of suitable functionals.

In our previous work, [1], we studied a functional ξF (X) which assigns to a
random variable X the real variable t at which the expected value E(F (X −
t)) attains its minimum. Function F was assumed to be convex and even.
For specific choices of F , ξF (X) corresponds to quantities of significance in
statistics – if F (x) = |x|, then ξF (X) is the median of X, if F (x) = |x|k,
k > 1, then ξF (X) is the k-th moment of X. In the present note we consider
a special case of F which is not even. For this choice of F = fs the resulting
functional is a percentile of X.

The r-percentile of a real valued random variable (r.v.) X is defined as any
number (or set of numbers) m such that P (X ≤ m) ≥ r and P (X ≥ m) ≥ 1−r.
We denote this percentile by mr(X). For r = 1

2 this is the median of X. Note
that mr(X) may be multivalued.

For a real number s > 0 let Fs(x) = x for x ≥ 0 and Fs(x) = −sx for
x ≤ 0. In particular, F1(x) = |x|.

The following theorem is an extension of a well known result about the
median.

Theorem 1. For every r.v. X with finite expected value E(|X|) the function
E(Fs(X − t)) of the real variable t attains its minimum at t ∈ mr(X) where
r = 1

s+1 .

Proof. Replacing X by X−m, m ∈ mr(X) we may assume that 0 ∈ mr(X).
For t > 0 we want to show that E(Fs(X ± t)) − E(Fs(X)) = E(Fs(X ± t)−
Fs(X)) = E(∆±tFs(X)) ≥ 0. Observe that ∆−tFs(x) equals respectively to
st if x < 0, to s(t− x)− x ≥ −t if 0 ≤ x ≤ t, and to −t if x ≥ t. To translate
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this into the desired conclusion, denote by 1S the indicator function of an
event S, and write

∆−tFs(X) = st1{X≤0}+1{0<X≤t}(s(t−X)−X)+1{X>t}(−t) ≥ st1{X≤0}−t1{X>0}

and
E(∆−tFs(X)) ≥ t(

s

s + 1
− s

s + 1
) = 0.

The inequality E(∆tFs(X)) ≥ 0 is obtained in the same manner by writing
1 = 1{X≤−t} + 1{−t<X<0} + 1{X≥0} giving rise to the inequality

E(∆tFs(X)) ≥ −stP (X < 0) + tP (X ≥ 0) ≥ 0

.

Similarly as in the case of the median, see [1], there is the following converse
to Theorem 1.

Theorem 2. If f is a function such that for every two-valued r.v. X, E(f(X−
t)) attains its minimum at every t ∈ mr(X), where r = 1

s+1 , then f is of the
form f(x) = αFs(x) + β, where α, β are constants, α ≥ 0.

Proof. We carry the argument under the assumption that f is continuous
and then similarly as in [1] observe that this assumption is a consequence of
the hypothesis of the theorem.

Replacing f(x) by f(x) − f(0) we may assume that f(0) = 0. Let X be
a two-valued r.v., P (X = a) = p, P (X = b) = q = 1 − p, and a < b. It is
easily checked that the r-percentile of X, mr(X) = a if p > r, mr(X) = b if
p < r and mr(X) = [a, b] when p = r (in this case mr is multivalued). For
this choice of p, that is, p = 1

s+1 and q = s
s+1 , the hypothesis on f can now

be stated as follows:
For all real t, a, b, τ , a < b, 0 ≤ τ ≤ 1, we have

1
s + 1

f(a−t)+
s

s + 1
f(b−t) ≥ 1

1 + s
f(a−(τa+(1−τ)b))+

s

s + 1
f(b−(τa+(1−τ)b)))

=
1

s + 1
f((1− τ)(a− b)) +

s

s + 1
f(τ(b− a)).

With t = a and τ = 0 we get s
s+1f(b− a) ≥ 1

s+1f(a− b), i.e., f(−x) ≤ sf(x)
for x ≥ 0. Similarly, with t = b and τ = 1 we get the reverse inequality, to
conclude that f(−x) = sf(x) for x ≥ 0. Now we complete the argument by
showing that for x > 0 f(x) = αx. To this effect observe that f(a−t)+sf(b−t)
is minimized by every t = τa+(1−τ)b, 0 ≤ τ ≤ 1. It follows that as a function
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of τ ∈ [0, 1], f((1−τ)(a−b))+sf(τ(b−a)) = s(f((1−τ)(b−a))+sf(τ(b−a)) is
constant and equals sf(b−a). Letting t = 0 and a = b we get f(b) ≥ f(0) = 0
for all b. Also, letting τ(b − a) = x, (1 − τ)(b − a) = y this implies that
f(x + y) = f(x) + f(y) for 0 ≤ x, y ≤ b− a. Equivalently, f(x+y

2 ) = f(x)+f(y)
2

which using continuity implies that f is positive homogenous (note that this
is the only place where the continuity of f is used). Letting b− a →∞ yields
the conclusion.

We now finish the proof by showing that the hypotheses of the theorem
imply that f is continuous at any x > 0. This is done in a similar way as in the
proof of Lemma 4 in [1], where instead of being additive f is subadditive. First
we notice that for 0 ≤ x ≤ M , M > 0, we have 0 ≤ f(x) = f(M)+f(M−x) ≤
f(M) and f is bounded on any finite interval in [0,∞). Let x > 0. Then both
lim supy→x f(y) = L and lim inf y → xf(y) = l exist at x and are finite. For
ε > 0 we write f(x) = f(x+ε+x−ε

2 ) = f(x+ε)+f(x−ε)
2 implying by taking the

lim supε→0 that f(x) ≤ L. With xn → x such that f(xn) → l we have
l ≤ lim inf f(x+xn

2 ) = f(x)+l
2 , hence f(x) ≥ l. Next we choose xn → x,

yn → x such that f(xn+yn

2 ) → L and f(xn) → l to conclude that L ≤ l+L
2

so that L ≤ l. Hence l = f(x) = L and f is continuous at x. The proof is
complete.
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