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SOME PECULIARITIES OF THE
HENSTOCK AND KURZWEIL INTEGRALS
OF BANACH SPACE-VALUED FUNCTIONS

Abstract

Some examples, due to G. Birkhoff, are used to explore the dif-
ferences and peculiarities of the Henstock and Kurzweil integrals in
abstract spaces. We also include a proof, due to C. S. Honig, of the
fact that the Bochner-Lebesgue integral is equivalent to the variational
Henstock-McShane integral.

1 Introduction

In 1988, Professor Stefan Schwabik came to Brazil on a visit to Professor
Chaim Samuel Honig and Professor Luciano Barbanti. On that occasion,
Professor Schwabik gave a series of lectures on generalized ODE’s which moti-
vated Professor Honig to deal with the Henstock-Kurzweil integration theory
for some years. In 1993, in a course on the subject at the University of Sao
Paulo, Sao Paulo, Brazil, Professor Honig presented some examples borrowed
from [1] in order to clarify the differences and peculiarities of the integrals
defined by Henstock ([12]) and by Kurzweil ([19]) for Banach space-valued
functions. The notes on such examples are contained here. We also include a
proof, due to Honig ([17]), of the fact that the Bochner-Lebesgue integral is
equivalent to the variational Henstock-McShane integral.

2 Basic Definitions and Terminology

Let [a, b] be a compact interval of the real line R. A division of [a, b] is any finite
set of closed non-overlapping intervals [t;_1,¢;] C [a,b] such that U; [t;—1,¢;] =
[CLJ)]. We write (ti) S D[a,b] in this case. When (ti) € D[a,b] and &; € [tifl,ti}
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for every i, then (§;,t;) is a tagged division of [a,b]. By TDj,p we mean the
set of all tagged divisions of [a, b].

A gauge of [a, b] is any function 0 : [a,b] — ]0, 00[. Given a gauge 0 of [a, b],
we say (fi,ti) S TD[a,b] is (5-ﬁne, if [ti—lati] C {t S [a,b] ; |t — €1| < (5(&)} for
every i.

In what follows X denotes a Banach space.

A function f : [a,b] — X is integrable in the sense of Kurzweil or Kurzweil
integrable (we write f € K ([a,b],X)) and I = (K) f:f = (K) f; f)dt e X
is its integral if given € > 0, there is a gauge ¢ of [a,b] such that for every
o-fine (fl, tz) S TD[a,b]a

b
H(K)/ f—Zf(fi)(ti —ti—1)

As it should be expected, the Kurzweil integral is linear and additive over
non-overlapping intervals. The basic literature on this subject includes [11],
[14], [20], [21], [22], [23], [26].

We use the notation “ 7 ” to indicate the indefinite integral of a function
f e K ([a,b],X), that is, f : [a,b] — X is given by f (t) = (K) fatf(s) ds for
all t € [a,b]. We have f € C([a,b], X) (see [6] for instance), where C([a, b], X)
is the Banach space of all continuous functions f : [a,b] — X equipped with
the usual supremum norm, ||f||..

A function f : [a,b] — X is integrable in the sense of Henstock or Henstock
integrable or even variationally Henstock integrable (we write f € H ([a,b] , X))
if given & > 0, there is a function F' : [a,b] — X and a gauge ¢ of [a, b] such
that for every d-fine (§;,t;) € TDjqy),

< €.

Z | F(ti) — F(ti—1) — f (&) (t — tica)|| < e

In this case, we write (H) fat f=F(@)— F(a), t € [a,b].
Let R([a,b], X) be the space of abstract Riemann integrable functions f :
[a,b] — X with integral fab f. It is immediate that

H([a,b], X) C K([a,b],X) and R([a,b],X) C K([a,b], X),

and the integrals coincide when they exist.

_ Two functions g, f € K ([a,b],X) are called equivalent, whenever §(t) =
f(t) for all t € [a,b]. When this is the case, K ([a,b], X ), denotes the space of
all equivalence classes of functions of K ([a, ] , X ) endowed with the Alexiewicz
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norm

re R ot x) - 1= |7 = s o) [ 5e)as

t€la,b]

In an analogous way, H ([a,b],X), denotes the space of all equivalence
classes of functions of H ([a,b], X) endowed with the Alexiewicz norm.

If g, f € H([a,b], X) are equivalent, then g = f almost everywhere in the
sense of the Lebesgue measure ([7]). On the other hand, we may have f €
R([a,b], X)\ H([a,b], X) (i.e., f belongs to R([a,b], X) but not to H([a,b], X))
such that f = 0 but f(¢) # 0 for almost every ¢t € [a,b] (see Example 2.1).
Thus g, f € R([a,b],X) C K([a,b],X) and f equivalent to g do not imply
g = [ almost everywhere.

Let I C R be an arbitrary set and let £ be a normed space. A family
(74)ier of elements of E is summable with sum = € E (we write ), z; = x)
if for every € > 0, there is a finite subset F. C I such that for every finite
subset F' C I with F' D F,

|z — szH <e.

=3
Let I5(I) be the set of all families (x;);cr, #; € R, such that the family
(\mi|2)iel is summable. We write

Io(I) = {x = (@i)ser> i Ry Y il < oo} .

i€l

The expression

<$, y> = Z TilYi

iel
defines an inner product and l5(I) equipped with the norm

lallz = (ZW) "

icl
is a Hilbert space. Moreover by the Basis Theorem {e;; i € I}, where

. 1, =i
«={ 5750

is a complete orthonormal system for l2(I). We refer to the relation

213 =D e edP = lwil®, Ve € la(D),

i€l iel
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as the Bessel equality.

Example 2.1. Let [a,b] be non-degenerate and X = l3([a,b]) be equipped
with the norm

i€la,b]

1/2
2
wezlly={ D il ) :

Consider a function f : [a,b] — X given by f(t) = e, t € [a,b]. Given
£ > 0, there exists § > 0, with 02 <

(§5,t5) € TDyq ),

T );7 such that for every (g)—ﬁne
—a)3

2 J

J

D FENt —ti1) =0 =Y ee,(t; —t;0)|| = [Zﬁj —tj—12] <
J 2
<6% |:Z(tjtj_1)] <e€
J

where we applied the Bessel equality. Thus f € R([a,b], X) C K([a,b], X) and
f =0, since f; f(s)ds = 0 for every t € [a,b].

If f € H([a,b],X), then (H) f;f = 0 for every t € [a, b], since H ([a,b], X) C
K(la,b),X) and (H) [} f = (K) [} f = [, f = 0. But

Z | f(&)(ti —tic1) =0, =b—a

for every (&,t;) € TDjoy). Hence f & H([a,b], X). O

Let £1([a,b], X) be the space of Bochner-Lebesgue integrable functions
f :[a,b] — X with finite absolute Lebesgue integral, that is, (L) f; Il f]] < oo.

We denote by (L) f; f the Bochner-Lebesgue integral of f € £4([a,b], X) (and
also the Lebesgue integral of f € £1([a,b],R)). The inclusion

L1([a,b], X) C H([a,b], X)

always holds (see [4], [17] or the Appendix).
In particular,

R([a,b],R) C £1(|a,b],R) C H([a,b],R) = K([a,b],R)
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(see [23], for instance, for a proof of the equality). On the other hand, when X
is a general Banach space it is possible to find a function f : [a,b] — X which is
abstract Riemann integrable but not Bochner-Lebesgue integrable. Both Ex-
amples 2.1 and 3.1 in the sequel show functions f € R([a,b], X) \ H([a, ], X)
(i.e., f belongs to R([a, b], X) but not to H([a, b], X)). In particular, such func-
tions belong to R([a,b], X)\ L1([a,b], X) and also to K ([a, b], X)\ H([a,b], X).

When real-valued functions are considered only, the Lebesgue integral is
equivalent to a modified version of the Kurzweil integral. The idea of slightly
modifying Kurzweil’s definition is due to E. J. McShane ([24], [25]). In-
stead of taking d-fine tagged divisions, McShane considered what we call §-
fine semi-tagged divisions (§;,t;) of [a,b], that is (t;) € Djayp) and [t;—1,t;] C
{t € a,b]; [t — & < 0 (&)} for every i. In this case, we write (&;,t;) € STDiq ).
Notice that in the definition of semi-tagged divisions, it is not required that
& € [ti—1,t;] for anyi. In this manner, McShane’s modification of the Kurzweil
integral gives an elegant characterization of the Lebesgue integral through Rie-
mann sums (see the Appendix).

Let us denote by KM S([a, b], R) the space of real-valued Kurzweil-McShane
integrable functions f : [a,b] — R, that is, f € KMS([a,b],R) is inte-
grable in the sense of Kurzweil with the modification of McShane. Formally,
f € KMS([a,b],R) if and only if there exists I € R such that for every ¢ > 0,
there is a gauge § of [a, b] such that

I — Zf (fz) (ti — ti—l) < E.

whenever (§;,t;) € STDy,y is d-fine. This definition can be extended to
Banach space-valued functions.
We have

R([a,b],R) € £1([a,b],R) = KMS([a,b],R) C K([a,b],R) = H([a,b],R).

Furthermore, K ([a,b],R) \ £1([a,b],R) # 0. The next classical example ex-
hibits an f € K([a,b],R) \ L1([a,d], R).

Example 2.2. Let F(t) = t?sin(¢t~2) for t €]0,1] and F(0) = 0. Let f = %F.
Because f is Riemann improper integrable, it follows that f € K([a,b],R) =
H([a,b],R), since the Kurzweil and the Henstock integrals contain their im-
proper integrals (see [21], Cauchy Extension). However f & £1([a,b],R) (see
[28]).

Example 2.2 says K([a,b],R) = H([a,b],R) is not an absolute integrable
space. More generally, H([a,b],X) and hence K([a,b],X) are non-absolute
integrable spaces (see Example 3.4 and Lemma 4.3 in the Appendix).
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The generalization of the Riemannian characterization of the Banach space-
valued Lebesgue-type integral, namely the Bochner-Lebesgue integral, is not
straightforward. In fact, Example 3.1 shows that the modification of McShane
applied to the abstract Kurzweil integral can give a more general space than
that of Bochner-Lebesgue. On the other hand, if McShane’s idea is used to
modify the variational definition of Henstock, then we obtain a Riemannian
definition of the Bochner-Lebesgue integral (see [4], [17] or the Appendix).
Thus, if HMS([a,b], X) denotes the space of Henstock-McShane integrable
functions f : [a,b] — X, that is, f € HMS([a,b], X) is integrable in the sense
of Henstock with the modification of McShane, then

HMS([a,b], X) = £1([a, b], X).

In addition,

HMS([a,b], X) € H([a,b], X),
KMS(la,b],X) C K([a,b], X) and
RMS([a,b], X) C R([a,b],X),

where KM S([a,b], X) and RMS([a,b], X) denote, respectively, the spaces of
Kurzweil-McShane and Riemann-McShane integrable functions f : [a,b] — X.
For other interesting results, the reader may want to consult [5].

3 Birkhoff’s Examples

The first example of this section shows a Banach space-valued function which
is integrable in the sense of Riemann-McShane, but not integrable in the vari-
ational sense of Henstock (and neither in the Bochner-Lebesgue sense).

Example 3.1. Let G([a,b], X) be the Banach space, endowed with the usual
supremum norm, |||, of all regulated functions f : [a,b] — X (i.e., f has
discontinuities of the first kind only - see [16], p. 16). Let X = G~ ([0, 1],R),
where

G~ ([0,1],R) = {f € G([0,1],R); fis left continuous},

and consider the function
f:te [0, 1] — f(t) = 1[t,1] e X,

where 14 denotes the characteristic function of a set A C [0,1]. Since f
is a function of weak bounded variation (we write f € BW([0,1], X) - see
[16], p. 23) and ¢(t) = ¢t, t € [0,1], is an element of C([0,1],R), it follows
from [16], Theorem 4.6, p. 24, that the abstract Riemann-Stieltjes integral,
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fol df ¢, exists. Moreover, the Riemann-Stieltjes integral, fol fd¢, exists and
the integration by parts formula

/Olf(t)dt=/Olfdsbzf(t)'té—/oldm

holds (see [16], Theorem 1.3, p. 18) Hence f € R([0,1],X) c K([0,1], X).
The indefinite integral f(t) fo r)dr, t € [0,1], of f is given by f(t)(s) =
t A s =inf{t, s}, since

</ f(r dr) = (/ 1, 1]dr> (s) = /Otl[m](s)dr = /OMS dr —t A s.

Hence, fis absolutely continuous. However fis nowhere differentiable as we
will show later. Then the Lebesgue Theorem implies f ¢ £1(]0,1], X). More
generally, f ¢ H([0,1],X) by the Fundamental Theorem of Calculus for the
Henstock integral (see [7]). Or we can prove directly that f ¢ H([0,1],X),

since .
‘f(éi)(ti —ti—1) —/tv’ f

for every (&,ti) € TDjy. Thus f € R([0,1],X) \ H([0,1],X) and, in
particular, f € R([0,1],X) \ £1([0,1], X). Moreover, we assert that f €
RMS([0,1], X), that is, f is Riemann-McShane integrable. It is enough to
show that for every ¢ > 0, there exists § > 0 such that for every J-fine
(&isti) € ST Doy,

1
> = (t —ti—1),
2 5 ( 1)

< E.

H Zf gz 7 z 1)

Given € > 0, let 0 < ¢ < ¢ and suppose (;,t;) € ST Djg 1y is 0-fine. If § < s
and t; < & + 6, then t; < s+ § which implies Z (t; —ti—1) < s+ ¢ and then

&i<s
s— Y (ti—ti1) <4 (1)
&i<s
If& >sand tj—1 > & — 6, then t; 1>5—5andthereforez —tj_1) <

§i>s
1—(5—5)—23(15—15z 1) —s+0. ThenO<Zt—tz 1) + 6 — s which
7 £:i<s
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implies
s— Y (ti—ti1) <4 (2)
&i<s
By (1) and (2), we have
Hf(l) - Zf(fi)(ti —ti)|l = sup F)(s) — Z FE&)(s)(ti —tia)| =

= sup S—Z(ti—ti,l) <d<e

Oss<l €<s

and the assertion follows.

Now we give a proof of the fact that f is neither strongly nor weakly
differentiable. We begin by showing that f is not strongly differentiable in the
sense that the limit

b |Gt =) ftre) — f)

104,204 €9 £1

, telo,1],

does not exist. In an analogous way, it can be proved that the limit

. &)= ft+e)  fO) = ft+e)

€1—0_,e20—0_ £9 €1

, te€]o,1],

does not exist.
For 0 < 1 < €3, we have

H flt+e) = f(t)  Fflt+e) - f)

€2 €1

(t+ex)As—tAs (t+e)As—tAs
= sup —
0<s<1 €2 €1
- (t+e2)As—tAs (t+e)As—tAs
B €2 €1 s=t+e1
:‘t+61—t_t+61—t‘: 51_1’_)17

1S €1 E9

as we suppose, without loss of generality, that e1 goes faster than &3 to zero.
Let us show that f is not weakly differentiable in the following sense: if Y
is a Banach space and Y’ is its topological dual, then g : [a,b] — Y is weakly
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right differentiable at a point ¢ € [a, b with weak right derivative denoted by
d7*g(t)

7 whenever for every y' € Y,

Ji <ww’> = <d02(t)7y’>-

Analogously we define the weak left derivative of g at a point ¢ € ]a, b].

Let BVy([0,1],R) be the Banach space of all functions h : [0,1] — R
of bounded variation which vanish at ¢ = 0 equipped with the norm given
by the variation of h, V(h). Then BVy([0,1],R) = G~ ([0,1],R)" (see [16],
Theorem 4.12, p. 26). Besides, for every a € BVp([0,1],R), the Riemann-
Stieltjes integral, f01 f da, exists (see [16]), since f is continuous. Given o €
BV,y([0,1],R), we will show that

i (7o - Fw) o) = s [ 1 [Fe+e) - 0] (aats

= [a(1) —a(t+)],

where a(t+) denotes the right lateral limit of « at ¢ € [0,1]. We have

"1 - 'l
lim - [f(t +e)— f(t)] (s)da(s) = lim —[(t+e)As—tAs]da(s)
e—=04 Jg € e—=04 Jo €
t+e 1 1
= Elir& t g(s —t)da(s) + alir(l)lJr . - [(t+¢e) —t]da(s)
t+e
= lim —(s —t)da(s) + a(l) — a(t+).
EH0+ t £
But
t+e 1 t+e t+e
li —(s—1t)d = lim - d — td
dig [ 2t = iy 2| [ sdat) - [ vdat)
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where we applied the integration by parts formula to obtain the second equal-
ity. Hence,

1

lim [ 1 [f(t te)— f(t)} (s)da(s) = a(1) — at+).

E—>0+ 0 £
In a similar way, it can be proved that

(2[i0 - fe-2].a) —ate-) - aq.

as € — 04, where a(t—) denotes the left lateral limit of a at ¢ €]0,1]. There-
fore, we showed that f is not weakly differentiable. O

As we mentioned before, the inclusion £4([a,b], X) C KMS([a,b], X) al-
ways holds. When X = G~ (][0, 1], R), for instance, one can find a function f €
KMS([a,b], X)\ L1([a,b], X) (see Example 3.1). In general, KM S([a,b], X)\
L1(Ja,b], X) # 0 for X of infinite dimension as we show next.

Proposition 3.1 (Honig). If X is an infinite dimensional Banach space, then
there exists f € KMS([a,b], X)\ £L1([a, b], X).

PrROOF. Let dim X denote the dimension of X. If dim X = oo, then the
Theorem of Dvoretsky-Rogers implies there exists a sequence (x,)nen in X
which is summable but not absolutely summable. Thus, if we define a function
f:[1,00] = X by f(t) = x, whenever n <t < n+ 1, then (KMS) fff =
>, %n € X if the integral exists (here, (KMS) [ denotes the KMS inte-
gral). On the other hand, f & £;([a,b], X), since (L) fab 1A= llz1ll + Nz +
lzs]| ... = oco. O

The next example exhibits a function which is integrable in the sense of
Kurzweil but not in Henstock’s sense. It also shows that the Monotone Con-
vergence Theorem, which holds for monotone ordered normed space-valued
Kurzweil integrals ([8]), may not be valid for Henstock integrals.

Example 3.2. Consider the space

o0
Z =l (N X N) =4 2= (Zij)i,jEN’ Zij € R; Z |Z¢j|2 < o0
ij=1
equipped with the norm

1/2
o0

2
ezl = | D il

4,J=1



PECULIARITIES OF THE HENSTOCK AND KURZWEIL INTEGRALS 449

and the function
f:00,1] - 2Z
' . . 1
given by f = >°, fi, where f;(t) = 2'e;; whenever % <t < %—&— 230
j=0,1,2,...,2" — 1, and f;(t) = 0 otherwise. By e;; we mean the doubly
infinite set of orthonormal vectors of Z. We have

2610; 0§t<1/4,
fl(t): 2611; 1/2§t<3/4,
0; 1/4<t<1/20r3/4<t<1.

! E i 1 1
/ f1=/ 2610-5-/ 2e11 = - e+ s e
0 0 1 2 2

Lol =114l
G0 -0)

Hence,

and therefore,

1
et sen

il =H
, |2 2

sup
0<t<1

2

Also,
degy; 0 <t < 1/16,
deoq; 1/4 <t< 5/16,
fQ(t): 4egs; 1/2§t<9/16,
deos; 3/4 <t < 13/16,
0; otherwise.
Then,
! 1 1 1 1
/0 fo= 16204—1621-1—1622-&-1623
and

/Ot (fi+ fa)

.
1 n 1 n 1 . 1 n 1 n 1
=13 = - - — —e
5 €10 T 5 €11 7 7 €20+ €1 o e+ €23
By induction, it can be proved that

nﬁ+ﬁu=sw]
0<t<1 )

/01f1+/01f2

N
, 24

1 1 112
||fl+f2+...+fn”A:|:2+22+...—|—2n:| < 1.
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for every n € N. Thus, if we define g, = >, fi, for every n € N, then
the sequence ([|gnll 4),,cy 15 bounded. Besides, gn(t) < gnt1(t) < f(t) for all
n € N and t € [0,1]. Hence the Monotone Convergence Theorem (see [8])
implies f € K([0,1],Z) and fol gn — (K) fol fasn— oo.

Since the Monotone Convergence Theorem also holds for the Kurzweil-
McShane integral with obvious adaptations, it follows that f € KM S([0,1], Z).

On the other hand, although g, € H ([0,1], Z) for every n € N, Birkhoff
asserted in [1] that the indefinite integral f of f is nowhere differentiable and,
therefore, f ¢ H ([0,1],Z) by the Fundamental Theorem of Calculus for the
Henstock integral (see [7]). O

It is known that the space of all equivalence classes of real-valued Kurzweil
(or Henstock) integrable functions, equipped with the Alexiewicz norm, is
non-complete ([2]). More generally, K([a,b],X)4 and H([a,b], X)4 are non-
complete spaces. However such spaces are ultrabornological ([9]) and, there-
fore, they have good functional analytic properties (see [18] for instance). The
next example shows a Cauchy sequence, in the Alexiewicz norm, of Henstock
integrable functions which is not convergent.

Example 3.3. Consider functions

fn:]0,1] = 2(NxN), neN

defined by f, = >_I" | g;, where g;(t) = e;; whenever )
1,2,...,2% and g;(t) = 0 otherwise. We have
€11; 0 <t< 1/27

gi(t)=4q e 1/2<t <1,
0; t=1.
Hence,
t 1 1
lg1ll4 = sup / gi|| = ‘ / a|l = Hen + - e
0<t<1||Jo 2 0 9 2 2 )
1\? 1\?2 5 1 3
[ 07 -6
Also,

ea; 0<t< 1/4,
€929; 1/4§t<1/2,

gg(t): €23} 1/2§t<3/4,
€243 3/4§t<17
0; t=1.
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Then,

1 I 3 b 1 1
/ g2 = / €21 +/ €22 +/ €23 +/ €24 = 1 (e21 + €22 + €23 + €24) .
0 0 : : 3

and therefore
t 1
lg2]l4 = sup /92 ‘/ 92
o<t<1 ||Jo 9 0

By induction, one can show that

2! L 1\2 3 1
il = =12 (= -
ol = |32 [ e “2” .
Jj=1 ot

for every i € N. Then

Zgi

1=n+1

1fn = fmlla =

1
gZQ.

A 1=n+1

ME

which goes to zero for sufficiently large n,m € N, with n > m. Thus (f,)
is a || - || a-Cauchy sequence.
On the other hand,

neN

@l = lg1(t) + g2(t) + ... + gn ()l = V7,

for every t € [0,1]. Hence there is no function f(t) € lo(N x N), ¢ € [0,1], such
that lim,, o || fn — fll4 = 0. O

The next example presents a Banach space-valued function which is both
Henstock and Kurzweil-McShane integrable but is not absolutely integrable.
i

2
Example 3.4. Let f : [0,1] — [3(N) be given by f(t) = —e;, whenever
i

1
— <t <

1
9 F,i:l,Q,....Then

1 .
i1 9t 1
/2 —edt=—¢
1 1 4

2%

which is summable in I5(N). Since the Henstock integral contains its im-
proper integrals (and the same applies to the Kurzweil integral), we have
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f € H([0,1],12(N)). However, f & L£1([0,1],12(N)) because the sequence
(% ei)ieN is not summable in £;([0,1],12(N)). By the Monotone Convergence
Theorem for the Kurzweil-McShane integral (which follows the ideas of [8] with
obvious adaptations), f € KMS([0,1],12(N)). But f ¢ RMS([0,1],12(N)),
since f is not bounded. O

The example that follows shows a function of the unit square to I3(N x N)
not satisfying the Fubini Theorem.

Example 3.5. Consider the function f : [0,1] x [0,1] — I5(N x N) given by
f(s,t) =2ig;(t) on 278 < s <27 §=1,23,..., and f(s,t) = 0 where not

1 .
otherwise defined, where g;(t) = e;; whenever I <t< 21, ji=1,2,...,2%

and g¢;(t) = 0 otherwise. Then, f(s,t) is mtegrable over [0,1] x [0, 1] with

.//01]><01 flo:t)ds dt = ZZW v

=1 j=1

The integral with respect to s on a single line t = constant exists, but the
integral with respect to t on a single line s = constant does not because

1
/ f(S,t)dt = 261j1 —+ 462j2 + 863j3 —+
0

for some 71, j2,j3, - - .. O

The next example presents a function f : [0, 1] — l3(N) such that || f(¢)||, =
1 for every t € [0,1], but || f|| 4, < e for a given € > 0.

Example 3.6. Let ¢ > 0,n € Nand f : [0,1] — [2(N) be defined by f(t) = e,

whenever % <t< %, k=1,2,...,n% and f(t) = 0 otherwise. Hence
1 n2 2 n2 )
=00 [ s =[5 [ ear] <50 Lo
k=1" "7 ) k=1 )
1
1 ,\* 1
()
Then taking n > 1, we have ||f||, < e. O

Example 3.7 in the sequel is a Birkhoff-type example due to Honig. It
gives a sequence of functions f, : [0,1] — I2(N) such that sup,, ||fn]la < o©
but || fn(®)|l2 T oo, for every ¢ € [a, b].
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Example 3.7. Let 1p denote the characteristic function of a set D C [0, 1].
We define a sequence of functions f,, : [0,1] — (N), n € N, as follows:

fn = Z:'Lzl 9i, where

gi—1
P = 17, -1 j 1€9i—1_4 ;5 1=1,2,....
gi ‘El [2717_172117_1] 2i=145—-1» y 4y
j=

Then sup,,_, o, ||fnlla < oo and, for every ¢ € [a,b] and every n € N, || f,,(£) ]2 <
[ 1)z and || fn(#)]]2 — oo. -

4 Appendix

The integrals introduced by J. Kurzweil ([19]) and independently by R. Hen-
stock ([12]) in the late fifties give a Riemannian definition of the Denjoy-Perron
integral which encompasses the Newton, Riemann and Lebesgue integrals. In
1969, McShane showed that a small change in this definition leads to the
Lebesgue integral.

The Kurzweil and Henstock integrals can be immediately extended to Ba-
nach space-valued functions. The extension of the McShane integral made by
Gordon, [10], gives a more general integral than that of Bochner-Lebesgue.
But the variational Henstock-McShane definition for functions defined on a
compact interval of the real line and taking values in a Banach space gives
precisely the Bochner-Lebesgue integral. This fact was proved by Congxin
and Xiabo ([4]) and independently by Honig ([17]). Later, Di Piazza and
Musal generalized this result ([5]).

Because reference [17] is unavailable to the majority of the mathematicians,
we include its results in this Appendix. Unlike the proof of Congxin and
Xiabo ([4]), which is based on the Frechet differentiability of the Bochner-
Lebesgue integral, the idea of Honig ([17]) to proof the equivalence of the
Bochner-Lebesgue and the Henstock-McShane integrals uses the fact that the
indefinite integral of Henstock-McShane and absolutely Henstock integrable
functions are of bounded variation. In this manner, the proof in ([17]) seems
to be more simple.

We say that a function f : [a,b] — X is Bochner-Lebesgue integrable (we
write f € L1([a,b], X), if there exists a sequence (fy), oy of simple functions,
fn i ]a,b] = X, n € N, such that

(i) fn — f almost everywhere (i.e., lim, o0 || fn(t) — f(¢)|] = 0 for almost
every ¢ € [a,b]), and

(i) Limp oo (L) [ |1fa(t) = fm(t)]| dt = 0.
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We define (L) [} f(t)dt = limy oo (L) [} fu(t)dt and | £, = (L) [} [ £(t)]] dt.
The space of all equivalence classes of Bochner-Lebesgue integrable functions,
equipped with the norm |/ f||;, is complete.

We say that f : [a,b] — X is measurable, whenever there is a sequence of
simple functions f,, : [a,b] — X such that f, — f almost everywhere. When
this is the case,

b
f € L£i([a,b],X) if and only if (L)/ Ilf(®)|dt < oo (3)

(see [29]).

Our next goal is to show that the integrals of Bochner-Lebesgue and
Henstock-McShane coincide, that is, £1([a,b], X) = HMS([a,b], X). In this
manner, we will prove that the inclusions £4([a,b], X) C HM S([a,b], X) and
HMS([a,b],X) C Li([a,b], X) hold and we will show that the integrals coin-
cide when defined.

We let (KMS) f: f denote the integral of a function f € KMS([a,b], X).

Lemma 4.1. Given a sequence (fpn),cy in KMS([a,b],X) and a function

f:]a,b] = X, suppose there exists lim, .o (L) f; | fn(t) — fF(@®)||dt =0. Then
fe KMS(la,b],X) and

lim (KMS) / ()t = (KMS) / " Foy.

n—oo

Proor. Given € > 0, take n. such that for m,n > n.,

b
(M) [ £2(6) = Fn(O) dt < =
and take a gauge ¢ of [a,b] such that for every d-fine (&;,t;) € ST Dy,
Zans(&) — JE) (i — tim1) <e. (4)

The limit I = lim,,_,o (KM S) f; fn(t)dt exists, since for m,n > n.,

<

H(KMS) / (i — (KMS) / ot

b b
< (KMS) / 1fult) — £l dt + (M) / 1F(E) = Funlt)] dt < 22.
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Hence, if I,, = (KMS) f fa(t)dt, then

Z fE)(ti —tica) =1 Z [f(&) = fu (&)l (ti — tiza)|| +
)t —tiz1) = Ln || + [[Tn. — 1| <
<Z||f (&) — fu( fz)“ ti—ti-1) (&)t — tica) — In, +HInE_IH‘

()

Then the first summand in (5) is smaller than ¢ by (4), the third summand
is smaller than € by the definition of n. and, if we refine the gauge § we may
suppose, by the definition of I,_, that the second summand is smaller than
and the proof is complete. O
We show next that Lemma 4.1 remains valid if we replace KMS by HMS.

Lemma 4.2. Consider a sequence (fn),cy ™ HMS([a,b], X) and let f :
[a,b] — X. If lim,, (L) ff I fn(t) — f(®)||dt =0, then f € HMS([a,b],X) and

lim (K5) / (e = (MS) / " fo)de

Proor. By Lemma 4.1, f € KMS([a,b], X) and we have the convergence of
the integrals. It remains to prove that f € HMS([a,b], X), that is, for every
e > 0 there exists a gauge ¢ of [a, b] such that for every o-fine (§;,¢;) € ST Djqy,

2.

i

<e.

‘(KMS) | 0= s~ 1)

>

%

<

|<KMS> | s = st -t

ears) [ 1500~ o)) +

ti—1

+

(M8) [ 100t = Fu€) b~ i)
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+Z|\fn(§z') — &) (8 — tiz1)- (6)

Because f; I fn(t) — f(®)||dt — 0, there exists n. > 0 such that the first
summand in (6) is smaller than /3 for all n > n.. Choose an n > n..
Then we can take ¢ such that the third summand is smaller than e/3, since it
approaches fj I fn(t) — f(®)|| dt. Also, because f, € HMS([a,b], X), we may
refine ¢ so that the second summand becomes smaller than /3 and we finished
the proof. O

Lemma 4.3. £4([a,b], X) C KMS([a,b], X).

For a proof of Lemma 4.3, see Theorem 16 in [10] for instance.
Now we are able to prove the inclusion

Theorem 4.1. £:([a,b], X) C HMS([a,b], X).

PrOOF. By Lemma 4.3, £1([a,b], X) C KMS([a,b],X). Then, following the
steps of the proof of Lemma 4.3 and using Lemma 4.2, we obtain the result. [J

Let BV ([a,b], X) denote the space of all functions f : [a,0] — X of
bounded variation. We show next that the indefinite integral of any func-
tion of HM S([a,b], X) belongs to BV ([a, b], X).

Lemma 4.4. If f € HMS([a,b], X), then f € BV ([a,b], X).

PROOF. It is enough to show that every £ € [a, b] has a neighborhood where
f is of bounded variation. By hypothesis, given € > 0, there exists a gauge §
of [a, b] such that for every -fine semi-tagged division d = (&;,t;) of [a, b],

7|7t = e = Fl&)E — i) < < 0

Since g = f almost everywhere implies g € HM S([a,b], X) and § = f (this
fact follows by straightforward adaptation of [11], Theorem 9.10 for Banach
space-valued functions; see also [7]), we may change f on a set of measure
zero and its indefinite integral does not change. We suppose, therefore, that
F(&) =o.

Let so < $1 < ... < 8, be any division of [ — d(£),£ + d(€)]. If we take
& = & for j = 1,2,...,m, then (§;,s;) is a 0-fine semi-tagged division of
(£ —0(£),€ +0(8)] and therefore from (7) and fact that f(&;) = f(§) = 0 for
all j, we have

i HJE(SJ') - f(sjﬂ)H <e
=1

and the proof is complete. O
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Lemma 4.5. Suppose f € H([a,b],X). The following properties are equiva-
lent:

(i) f is absolutely integrable;
(ii) f € BV ([a,b],X).

PROOF. (i) = (ii). Suppose [ is absolutely integrable. Since the variation of
[ V(f), is given by

—an{ 3 [ - e

i (t) € D[a,b]}

we have

||t~ ft)| :ZH(K) / F(tydt]| <
SZ(K)/:I I£(0)|| dt = /||f )| dt.

(i) = (i). Suppose f € BV([a b, X). We will prove that the integral

K) ff Il ()|l dt exists and ( f )| dt = V(f). Given e > 0, we need
to find a gauge ¢ of [a, b] such that

I (8 = tie1) = V()| <

<g,

whenever (&;,t;) € TDjqy) is 0-fine. But

) (6 — ti-1) ~ V()| <
S HOICE H / F(0)de
> ‘(K) s —v<f>‘

35

i

‘f(&)(ti tit) / f(t)dt
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By the definition of V'(f), we may take (t;) € D, ) such that the last summand
in (8) is smaller than /2. Because f € H([a,b], X), we may take a gauge §
such that for every d-fine (&;,%;) € TDjqp), the first summand in (8) is also
smaller than /2 (and we may suppose that the points chosen for the second
summand are the points of the J-fine tagged division (&;,;)). O

The next result follows from the fact that HMS([a,b], X) C H([a,b], X)
and Lemmas 4.4 and 4.5.

Corollary 4.1. All functions of HM S([a,b], X) are absolutely integrable.
Lemma 4.6. All functions of H([a,b], X) are measurable.

For a proof of Lemma 4.6, see Theorem 9 in [3] for instance.
Finally, we can prove the inclusion

Theorem 4.2. HMS([a,b], X) C L1([a,b], X).

PROOF. The result follows from the facts that all functions of H([a,b], X)
and hence of HM S([a, b], X) are measurable (Lemma 4.6) and all functions of
HMS(Ja,b], X) are absolutely integrable (Corollary 4.1) (see [29]). O
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