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ON THE SUM OF FUNCTIONS WITH
CONDITION (s3)

Abstract

A function f : R — R satisfies condition (s3) if for each real ¢ > 0, for
each z and for each set U 2 x belonging to the density topology there
is an open interval I such that A(f) D INU # 0 and f(UNI) C
(f(z) — €, f(z) + €), where A(f) denotes the set of all approximate
continuity points of f. In this article it is show that the sum of two
functions with the condition (s3) is the sum of two Darboux functions
satisfying this condition (s3) and that every a.e.-continuous function
with some special condition is the sum of two functions with condition

(s3)-

Let R be the set of all reals. Denote by u Lebesgue measure in R and by
Le the outer Lebesgue measure in R.

For a set A C R and a point = we define the upper (lower) outer density
dy(A,x) (di(A,x)) of the set A at the point x as

pe(AN [z — h,x + b))

limsu
h4>0+p 2h
(A — h, h .
(liniérif pe(AN [IQh z+h]) respectively).

A point z is said to be an outer density point (a density point) of a set A if
di(A,z) =1 (if there is a measurable set B C A such that d;(B,z) = 1).
The family

Teo={ACR:z € A= z is a density point of A}
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is a topology called the density topology [1, 4]. The sets A € Ty are Lebesgue
measurable ([1]).

Let T. denotes the Euclidean topology in R. A function f : (R,Ty) —
(R, T.) continuous at x is called approximately continuity at x ([1]).

For a function f : R — R let C(f) denote the set of all continuity points
of f, let A(f) denote the set of all approximate continuity points of f, let
D(f) =R\ C(f) denote the set of all discontinuity points of f, and finally let
Dyp(f) = R\ A(f) denote the set of all approximate discontinuity points of f.

In [2] the following properties are investigated.

A function f: R — R has the property (s3) [ the property (s1)] at a point
x (f € s3(x)) [f € s1(x) respectively] if for each real ¢ > 0 and for each set
U € T, containing x there is an open interval I such that § £ I NU C A(f)
[0 £ INU C C(f) respectively] and f(INU) C (f(z) —¢, f(z) +¢€).

A function f: R — R has the property (s4) at a point x (f € s4(x)) if for
each nonempty open set U € T, containing = there is an open interval I such
that 0 #INU C A(f).

A function f has the property (s3) (the property (s1), the property (s4)
respectively) if f € s3(z) (f € si(x), f € sa(x) respectively) for every point
z eR.

The class of all functions f : R — R with the property (s3) (with the
property (s1), with the property s4(z) respectively) we denote by S3 (by Si,
by Ss respectively). It is obvious that S C S5 C S4. Some examples of
functions from 83 \ 81,84 \ S are given in [2].

From the definition of the property (s3) it follows that if f : R — R satisfies
condition (s3), then the set Dg,(f) is nowhere dense and of Lebesgue measure
zero. But there are functions f : R — R satisfying (s3) such that
cl(Dqp(f)) is of positive measure.

Example 1. Let C' C [0,1] be a Cantor set of positive measure, (I,,) - an
enumeration of all components of the set [0,1] \ C such that I,, # I, for
n # m and let J,, C I, be nondegenerate closed intervals (n,m = 1,2,...).
Then the function

1
flz)=—forx e J,, n=1,2,..., and f(z) = 0 otherwise on R
n
has the property (s3) but for the set Dg,(f) = D(f) and containing the
endpoints of J,, (n > 1) we have u(cl(Dqp(f))) > 0.

In [2] it is shown that a function f having property (s3) is almost every-
where continuous; i.e., u(D(f)) = 0. Since there are approximately continuous
functions f such that u(D(f)) > 0 ([1]), approximate continuity does not im-

ply the property (ss3).
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Part I. In the paper [3] Z. Grande proved that if f : R — R is the sum of
two functions g, h € &1, then there are two Darboux functions ¢ and i with
property (s1) such that f = ¢+1. In this part, by using Grande’s method from
the proof of theorem 1 in [3], T will prove a similar theorem for the functions
with condition (s3).

It is well known, that the class D of Darboux functions f : R — R is not
closed under certain operations and that every function f : R — R can be
represented as the sum of Darboux functions ([1]). Observe too, that the sum
of two functions satisfying condition (s3) can be without this property.

Example 2. The functions
f(z) =0for x <0 and f(z) =1 for z > 0,

g(z)=1for x <0 and g(z) =0 for x >0

are continuous at x # 0 and unilaterally continuous at x = 0. So, they satisfy
condition (s1) (and (s3) also), but the sum

0 forz=0

(f+9)@) = {1 e 20

does not satisfy condition (s3).
Remark 1. There are approxzimately continuous functions f € Sz \ Si.

For example, there are functions f approximately continuous everywhere
and almost everywhere continuous with dense set D(f).

Remark 2. There are functions f € &1 which are not approximately contin-
UOUS.

For example, the functions f, g from Example 2 are such.

Theorem 1. If a function f is the sum of two functions g,h € Ss, then there
are two functions ¢, € S3ND such that f = ¢ + 1.

PROOF. Let E = cl(Dyp(g) U Dgyp(h)) and D = cl(D(g) U D(h)). It is known
that Dyy,(g) C D(g), Dap(h) C D(h);s0 D D E. Moreover the set E is nowhere
dense in R.

If D = (), then we can define ¢ = g and 1) = h and the proof is done. So
we suppose that D # (). We will consider two cases:

ILu(D) =0 and IL.u(D) > 0.
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Case I. Let (D) = 0. In this case let (a®,b%)2°, be a sequence of all
components of the complement R\ D such that (a*,b*)N(a?,b7) = () for k # j.
If, for a fixed £ € N, where N denotes the set of all positive integers, the
interval (a*,b*) is a bounded component of the complement R \ D, we find
two monotone sequences of points

" <oo<ak <adl <ab <l <o <<t < <R

such that lim,, ., af = a* and lim,,_ . b¥ = b and

. bn+1 by, ay, — a§+1
e L M

In each interval (a%, ,,a%) ((b%,bF ,)) we find disjoint nondegenerate closed
intervals 1%, C (ak, 1, af) (JF, C (bk, 0% ,)) for i = 1,2 such that

l(Irli,i) 1 Z(Jﬁ,i) 1
ak —ak ., < gurk (bfLJr1 — bk 2”+k) 2)

for i = 1,2, where I(H) denotes the length of the interval H, and

1 Un=1 Ik Jk
MU U0 ) 1 "

If (a®, b°) is an unbounded component of the complement R\ D; i.e., a®* = —oc0
or b = oo, we find two sequences only, (J; ;) (i = 1,2) or respectively (I, ;)
(i = 1,2), satisfying the above conditions (1), (2).

For a fixed k, for i = 1,2 and for n > 1 let gfm — R and hk : J,’fﬂ- —
R be continuous functions such that gfm.(x) =0if z is an endpomt of Iﬁ’i,
hk .(y) = 0 if y is an endpoint of J¥ ; and

ni

(9+9n0) L) N (b 1) (5 1) 0 (g + i 5) (T 2) N (g5 ) (I 2) D [=n,nl.

If (a*,b*) is a bounded component of the complement R\ D, then we put
(for fixed k)

g(x)+ gk (x) forzell,, n>1
g(z) + h o(x) forze i, n>1
ki(x) forxe J,’fyl, n>1

)

5]

et
I
el
S
o
—~
&

for z € I,’,Z% n>1
otherwise on (a*, b%)

8

s}
Ea
—
S
~
Il
s} <
—~ e~~~
\./\./\%/\_/\./
|
>

and
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h(z)+hk (z) forze i, n>1
h(z)+gho(x) forzell, n>1
h*(z) = { h(z) — gi(z) forzell,, n>1
h(z) —hk o(z) forze i, n>1
h(x) otherwise on (a*,b*).

Similarly we define the functions g®* and h* on unbounded components (a®, b*)
of the set R\ D.

Putting ¢(z) = ¢g*(z), ¥(x) = h¥(z) on every component (a”,b*) of the
complement R\ D and ¢(z) = g(z), ¥(z) = h(xz) on D we obtain Darboux
functions ¢ and v continuous on R\ D such that ¢+ = g+ h = f. Since ¢, 9
are continuous on R\ D, for every x € R\ D we have ¢ € s3(x) and ¢ € s3(x).
Now, let x € D, let U € Ty be the set containing = and let ¢ > 0 be a real.
By (1), (2) and (3) the lower density

co oo 2
(Jyyak,uro\n,z) =1,

k=1n=1:i=1

Observe that

oo 2
T3 (R\ ( U UI’“ UJEI\D)NU)U{z} #0

\|C8

and g(t) = ¢(t), h(t) = (1) for t € {a} U RN\ (U, Ui, U2, (15, U JE ).

Since g € s3(x), there is an open interval

2
U Ik, I )\ D)
such that INU # () and |g(t) — g(z)| < e for all t € INU. So,
¢(t) — o(z)| = |g(t) —g(z)| <€
for all t € INU and consequently ¢ € s3(z). Similarly we can prove that

P € s3(x).
Case II. Suppose that u(D) > 0. In this case there are positive numbers

CS
C8

k 14

1n

€1 >cg > > ¢y > - > 0 such that ch<oo
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and the sets
Ey = {x;o0scg(x) > e1} U{x;0sch(z) > 1},

Eny1 ={z;cn > 0scg(x) > cpyp1y U{z;cn > 0sch(x) > cpy1}

are nonempty for n > 1.

In the first step of the inductive construction of functions ¢ and ¥ we con-
sider the closed set E; which is of measure zero evidently. Let ((a®1,bF1))2°
be a sequence of all components of the complement R\ F; such that (a*!, b¥1)N
(¥, 001 = () for k # j.

If, for a fixed k € N, the interval (a¥'1,b%1) is a bounded component of the
complement R\ E7, we find two monotone sequences of points

<-o<abl <albt<odPt <Pt <o <bB <pll < <P

okl
such that lim,, o, af! = a®! and lim, ., b%! = b%* and
k,1 k1 k,1 k1
bn+1 - bn B | -0 1.1
n—oo hk,1 k,1 _TLHOO k,1 k,1 o ( : )

brl — by, an — a®

In each interval (ai’il, akty (b1, b,’ij_l)) we find disjoint nondegenerate closed
intervals (for ¢ = 1, 2)

Iyi © (apiy,ay )\ By € (03! 05) \ B)

with endpoints from the set C(g) (with endpoints from the set C(h) respec-
tively) such that

(L) 1 ( (Tp) 1 ) 12)
aml — af{-;l-l 2ntk’ bﬁil —bpt T 2ntk ) .
for i =1,2, and
2 o k1 k1
1= n= In)i U Jn)i 1
(U =1 U _1( , , ) < (1.3)

bk,l _ ak,l 2k;'

If (a*1,b*!) is an unbounded component of the complement R\ Ey; i.e., a®! =
—o0 or b*! = oo, we find two sequences only, (JZi) (i = 1,2) or respectively
(17811) (i = 1,2), satisfying the above conditions (1.1), (1.2). For a fixed k, for

t=1,2and for n > 1 let gfbi 1M1 S R and hﬁ} : J"!' R be continuous

n,t B n,
functions such that gsi (z) = 0 if z is an endpoint of ™! hfﬁ (y) =01ify is

n,i

an endpoint of ijzl and

(g+ge ) UMD N (R+hED IR N (g+hey) (Te) N (h+gh3)(Tny) O [-n,n].
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Now, we define the functions ¢; and 7 by

g(z) + gfli(x) for z € Iﬁ:}, n,k>1
g(x) + hfbé(x) for z € J,’f:;, n,k>1
p1(x) =< g(x) — hflll (x) forx e ij, n,k > 1
g(x) — gﬁé(m) for z € IS:;, n,k>1
g(x) otherwise on R
and
h(z) + hiﬁ () forxe J,]f,’}, nyk>1
h(z) + gsé(aj) for z € IS:;, nk>1
1(z) = ¢ hix) — gfﬁ(x) for z € Iﬁj, nk>1
h(z) — hﬁ;(x) for z € J,]f:;, n,k>1
h(zx) otherwise on R.

The functions ¢1 and v have the Darboux property and for all u € R\ E;
osc ¢1(u) = osc g(u) and osc ) (u) = osc h(u).

Moreover ¢1+11 = g+h = f. Also note that Dy, (¢1) = Dqyp(g) and Dgp(v1) =
Dgp(h).

In the second step we consider the closed set E; U Ey which is of measure
zero evidently. Let ((a*2,b%2))22 | be a sequence of all components of the set
R\ (B U Ey) such that (a®2,6%2) N (a?2,b72) = () and k # j. If, for a fixed
k € N, (a®2,b%2) is a bounded component of the complement R\ (E; U E),
then we find two monotone sequences of points

ab? < <adf? <db? <l <alP <P < <R <l < < k2

k2 = %2 lim,, o 52 = b52 and

such that lim,, . a;

k2 1k,2 k2 _ k2
bn+1 bn n a’n+1 — 0 (2 1)

n—oo bk‘,2 o bﬁl - n—oo (14?2 _ ak,Q

a

In each interval (ai?,,af?), ((b52,b57))) we find disjoint nondegenerate

closed intervals (for i = 1,2)
Li? Capty,al®) \ B, (Jy7 C (032, 02)) \ E)

with endpoints from the set C(¢1) (with endpoints from the set C(t)1) respec-
tively) such that, for ¢ = 1,2 we have

1(Iy7) 1 ( 157 1 )
k2 k.2 ntk’ k2 2 ntk
an — Qpyq n bn+1 - bn 2

(2.2)
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and 2 k,2 k,2
o0
Uiz Unzi (5 U J5750)) 1 53
bk2 — gk:2 < 27 ( . )
and also
0SC k.2 P1 < C2,08C jr,2 Y1 < C2 (2.4)

form>1landi=1,2.

If (a®?,b%?) is an unbounded component of the complement R\ (E; U E»);
ie., a®? = —o0 or b*>? = oo, we find two sequences only, (Jflf)ff:l (1=1,2)
or (Iflf)ff:l (i = 1,2) respectively, satisfying above conditions (2.1), (2.2) and
(2.4).

For a fixed k € N, for ¢ = 1,2 and for a fixed n > 1 we will construct
continuous functions 95? : IS? — R and hﬁf : Jﬁf — R. Fix k,n € N. For
i =1,2 the set gbl(Ifff) is an interval of the length less than cp. Let 72 be the
mid point of the interval ¢1(IZ’3), for i = 1,2. In the interval int(]rlff), where
int(H) denotes the interior of the set H, choose two points a? and 37 such
that, for i = 1,2, ¢1(a?) <7 < ¢1(B3).

The continuous function gﬁf : IS? — R (for ¢ = 1,2) we define by

gﬁf(m) =0 if x is any endpoint of IS?,

k,2
gn,i (a?)

k
gni(57) = ¢z and

= —C2;

gf”Q is linear on the closures of the components of the set IS? \{aZ,32}.

Similarly we define the continuous functions hflf : Jff — R (i =1,2). The set
wl(JSf), for fixed k,n € N and ¢ = 1,2, is an interval of the length less than
c2. Let 12 be the center of the interval zbl(J,]f:?) for ¢ = 1,2. In the set int(Jfff)
choose two points £2 and n? such that, for i = 1,2, 11(£2) < v? < 11(n?). Let
the continuous function hflf : JS? — R (i = 1,2) be such that

hif (z) = 0 if z is any endpoint of J*2

n,t’
k,2
hn,i (612) = —C2,
P207) = 3 and

h? is linear on the closures of the components of the set J5'7\{¢?,n?}.
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Finally, for the second step, we define the functions ¢ and ¥y by

o1(x) + gZ?(w) for x € Isf, nk>1
¢1(2) — hii(x) forx e Jit, nk>1
p2(x) = ¢1(x) — gi%(m) for x € Iﬁ:g, nk>1
o1(z) + hﬁ%(x) for v € Jf:g, n,k>1
¢1(x) otherwise on R
and
Y1(x) — gﬁ?(x) for z € Iﬁf, n,k>1
() + hfﬁ (z) forze JS:%, nk>1
Va(x) =  ¥1(2) +g§§(m) for x € Iﬁﬁ, nk>1
Yi(z) = hyh(w) forw e 3, nk>1
P1(x) otherwise on R.

Observe that Dyp(¢2) = Dgp(g) and Dgp(1h2) = Dgp(h) and for each point
u € R\ (F1UE5) the oscillation osc ¢o(u) = osc g(u) and osc s (u) = osc h(u).
Observe too, that for i = 1,2 ¢2(I¥7) D ¢1(IF7), ¥a(JF7) D 41 (J27F) and
for all z € R, $|¢a(x) — ¢1(x)| < 3¢z and |tha(z) — b1 (z)| < 3ca. Moreover,
P2ttpr=p1+Y1=g+h=Ff

In the mth step (m > 2), we repeat the construction of the step (m—1), but
for the closed set U;n:_ll E; UE,, of measure zero. Let m > 2. In this inductive
step, let ((a®™,b%™))2° | be a sequence of all components of the complement
of the set R\ (U;n:l E;) such that (a®™ b)) N (a?™ b™) = () and k # j.
If (a®™ b*™), for fixed k € N, is a bounded component of the complement
R\ Uj~, Ej, we find two sequences of the points

P < <albl < abm < <al ™ < BT << b bl << i

such that lim,, o a®™ = a®™ lim,, o b5™ = 5™ and

k,m k k.m k,m

b, 1 — b ay™ —a
. 1 . 1
n—oo b mo__ bnv n—oo aﬂv —a ,m

In each interval (aﬁﬁ, akmy ((bkm, biﬂ)) we find two disjoint nondegenerate

closed intervals IV C (al}, ak™)\ E(JP™ C (bE™, by )\ E) (for i = 1,2)
with endpoints from the set C(¢,,—1) (with endpoints from the set C'(¢m,—1)

respectively) such that, for ¢ = 1,2 we have

() 1 ( () 1 )
_ aﬁﬂ 2k+n7 b};ﬁ - bf:l,m 2n+k

(m.2)

k,m
an



164 EwA STRONSKA

and N "
Un 1U7, 1(I mUJ m)) 1 3
pem — gk < 5k (m.3)
and also
0SC Om_1 < Crny OSC ghom Ym_1 < Cm (m.4)

formn>1andi=1,2.
If (a®™, b*>™) is an unbounded component of R\Um_1 Ej;ie., a®>™ = —00
or b®>™ = oo, then we find two sequences only: (IZT)n 1 (1 =1,2) or respec-

tively (J;7")oZy (i = 1,2) satisfying above conditions (m.1), (m.2) and (m.4).

k, k, k,
We will construct continuous functions gn’:n L7 — Rand by 2 T —

Rfori=1,2andn=1,2,...,and k =1,2. F1xk:n€NForz-12the

image ¢m—1 (I:Z") is the interval of the length less than ¢,. Let the point /™
be the center of the interval ¢,,_ 1(Ik’m) In the interval int(Ik:;n) choose two
numbers o* and 7" such that, for i = 1,2, ¢p,— 1( ) <A < dm—1(B).
k,m Ik m

Next, for ¢ = 1,2, the continuous functions g,,’; — R we define by

Ikm

’I’LZ’

gflzn(x) = 0 if z is any endpoint of
gn K ( m) = —Cm,

gn T(BM) = ¢, and

)

g:j;” is linear on the closures of the components of I T\ o™, B}

The construction of the continuous function hﬁzn : J:Zm — R (fori=1,2)
is similar. For fixed k,n € N and for i = 1,2 the image wm_l(Js,’zn) is
the interval of length less than c,,. Let v/" be the mid point of the interval
Y- 1( ™). In the set int (J"™) choose two points €™ and 7™ such that, for

n, [
Z_]- 2 wmfl(fzm‘)<yz <¢m 1(771 )
Let the continuous functions hfLT : J:Zm — R(i = 1,2) be such that

Hi(a) = 0 i any endpoit of 7
hk m(fm) — s
hk m(m ) =Cm and

h’f” is linear on the closures of the components of J T\, )



ON THE SUM OF FUNCTIONS WITH CONDITION (s3) 165

Finally, in the inductive step m > 2, we define the functions ¢,, and ,, by

)l
3

Pm—1(x) + g1 (x) forz e I,]f:{n, nk>1
Gm-1(z) — hiy T (2) for x € I, nk > 1
Sm(r) = dm—1(z) — g,’j;”(x) for x € IS:;", nk>1
Gm-1(x) + hflé"(x) for z € J:f:;n7 n,k>1
m—1(7) otherwise on R,
Ym—1(x) — QZT(:E) for z € I:,’T, n,k>1
Ym—1(x) + hZT(x) for z € Js:;", nk>1
Ym(T) = § Ym—1(2) +g§:;n(x) for z € 15,’5”7 nk>1
Um-1(z) — W3 (x) forz e oy, nk > 1
Ym—1(z) otherwise on R.
Observe that Dgp(¢m) = Dap(g) and Deap(0m) = Dap(h) and for each point

u € R\U?Ll E; the oscillation osc ¢, (u) = osc g(u) and osc )y, (u) = osc h(u).
Observe too, that for i = 1,2

Sm(IET) D Gt (IET), U (7Y D Yt (ST

and for all z € R, ¢ () — dm—1(2)| < 3cm, and [P (z) — Ym—1(2)| < 3cm,.
Moreover ¢, +Ym = Gm_1+Um_1 = ... = ¢1+9Y1 = g+h = f. The sequences
(¢m)22_; and (¥,)S°_; uniformly converge to functions ¢ and v respectively.
Observe that ¢ + 1 = limy,— 00 (¢m + ¥m) = g + b = f. The functions ¢ and
1, as the uniform limits, are continuous in each point of the set R\ D. Thus
they satisfy condition (s3) at all points of the complement R\ D.

We will prove that ¢ and v satisfy also the property (s3) at all points of
the set D. For this fix a point © € D, a real € > 0 and a set U € Ty such that
x € U. Let j be the integer such that |¢; — ¢| < 5. Since the function g has
the property (s3) and dy,({u; ¢;(u) # g(u)},x) = 0, there is an open interval
I C {w;¢j(u) = g(u)} such that

0 AINU CA() and g(INU) = 6;(10T) € (g(z) - =, 9(2) + 5 ).
Consequently, for u € I NU we have
[6(u) = 6()| < |B(w) — 65 (1) |+ (w) — 6;(x) | + 15 (x) —d(x)| < =45+ =€.

So the function ¢ € s3(z) for all z € D. In the same way we can check that
1 € s3(x) for these points. Thus ¢, 1) € Ss.
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Now we will prove that ¢ has the Darboux property. Suppose, to the
contrary, that it has not the Darboux property. Then there are points a, b with
a < b and ¢(a) # ¢(b) and a real ¢ € K = (min(¢(a), ¢(b)), max(p(a), ¢(b))
such that ¢=1(c) N [a,b] = 0. If there is a point x € Ey N [a,b], then there is
a nondegenerate closed interval I C [a,b] such that ¢(I) D ¢1(I) D K 3¢, a
contradiction. Fix a point

z € [a,b] Nel({u; ¢(u) < c}) Nel({u; p(u) > c}).

Observe that z € D and there is an integer m > 1 such that z € E,,. Thus
0SC pm—1(2) < ¢y and there is an open interval V' 3 z such that oscy ¢p—1 <
Cm. So we have either ¢(z) = ¢pm—1(2) < c or ¢(z) = pm-1(2) > c. Suppose
that ¢,,—1(z) < ¢. Then there is a point v € [a,b] NV such that ¢,,—1(v) > c.
Since v € V, we have ¢y, —1(v) —dm—1(2) < ¢, and consequently ¢— ¢, —1(2) <
Cm. From the construction of ¢,, it follows that there is a nondegenerate closed
interval I € [a,b] NV such that ¢(I) 2 ¢pm(I) D [Pm—-1(2),dm-1(V)] D ¢, a
contradiction. If ¢,,_1(2) > ¢ the reasoning is similar. So ¢ € D. The same
we can show that the function ¢ has the Darboux property. O

Part II. In this part I will show that every a.e. continuous function with
some special condition is the sum of two functions with condition (s3).

Remark 3. If f € Sy is almost everywhere continuous and approximately
continuous at least unilaterally at the point x, then f € s3(x).

PRrROOF. Let U € T, be the set containing x and let € > 0. There is a point
t € UNC(f) such that |f(t) — f(z)| < §. Since t € C(f), there is an open
interval I; such that ¢ € I; and [f(u) — f(t)| < § for all u € I;. Now, observe
that for all u € I} we have

|f(w) = f(@)] < [f(u) = F@O)+[f() = f(2)] <e. (4)
Since ) # I, NU € Ty and f € Sy, there is an open interval I, C I; such that
0 £ ILNU C A(f). So, by (4) the function f € s3(x). O

Obviously the sum of two functions almost everywhere continuous belong-
ing to Sy is also an almost everywhere continuous function belonging to Sy.
But the uniform limit of functions from the class S4 need not be a function
from Sy.

Example 3. Let {w;,ws,...} be a decreasing sequences of all rationals from
the interval [0,1] and let f, : [0,1] — [0,1] for n = 1,2,..., be defined by

1
fola) = 4 for € {wy,ws, ... w,}
1 for xz €[0,1]\ {wy,wa,...w,}.
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Then, for all n, the function f,, € S4, the sequence (f,) uniformly converges,
but lim, . fn & S4.

Now, by using Grande’s methods from the proof of theorem 2 in [3], T will
prove the fundamental theorems of this part. We need the following lemmas
below. Lemma 2 is a modification of Lemma 1.

Lemma 1. (see [3]) If A C R is a nonempty compact set of Lebesque measure
zero, U D A is an open set and E C U\ A is a dense set in U, then there is a
family K; ; CU\ A, i,j =1,2,..., of pairwise disjoint nondegenerate closed
intervals with the endpoints belonging to E such that for each positive integer
i and each point x € A the upper density

d (| Kijox) =1 (5)
j=1

and for each positive real € the set of all pairs (i,7) for which dist(K; ;, A) =
inf{|lz —y|;x € K, ;,y € A} > € is empty or finite.

Lemma 2. Let U C R be an open set. If A C U is nonempty compact set
of Lebesgue measure p zero and there is an open set V. C U \ A such that
w(U\V) =0 and E CV is dense in V, then there is a family of pairwise
disjoint nondegenerate closed intervals K;; C V , 1,5 = 1,2,... with the
endpoints belonging to E such that for each positive integer i and each point
x € A condition (5) holds, and for each real € > 0 the set of all pairs (i,j) for
which dist(K; j, A) > € is empty or finite.

PROOF. Observe that in the proof of Lemma 1 (see [3]) we can choose pairwise
disjoint nondegenerate closed intervals K; ; C V C U \ A satistying condition
(5) or, if K;; (4,5 = 1,2...) is the family of pairwise disjoint nondegenerate
closed intervals satisfying the conclusion of Lemma 1, consider the family
K;; NV (i,j =1,2,...) where V. C U \ A is an open set. In the set K;; N
V (i,7=1,2,...) we can choose a family Lé,j (I=1,2...,k(4,7)) of pairwise
disjoint nondegenerate closed intervals with the endpoints belonging to E such
that p(KG; \ Ufﬁl’j) L.;) =0forij=1,2,...,01 <k(i,j). Then, for each
point & € A the family Lé,j (i, =1,2,...,1 <k(i,7)) satisfies the conclusion
of Lemma 2. O

Theorem 2. If f : R — R is the sum of two functions g,h € S3, then f is
almost everywhere continuous and satisfies:

(a) the set Dqp(f) is nowhere dense,
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(b) for every nonempty set U € Ty contained in cl(Dqyy(f)) the set UND 4, (f)
is nowhere dense in U.

PROOF. Since h, g are almost everywhere continuous, f = ¢g + h is the same.
We have observed above that the sets D,p(g) and Dgp(h) are nowhere dense.
S0, Dap(f) C Dap(g) U Dgp(h) is also nowhere dense. Now we prove that
D, (f) satisfies condition (b). If u(cl(Dgp(f))) = 0, then f satisfies condition
(). So, we assume that u(cl(Dgp(f))) > 0 and fix a nonempty set U € T, and
an open interval I such that I N U # (). Since g has property (s3) and I N U
is a nonempty set belonging to T}, there is an open interval I; C I such that
0 #I,NU C A(g). Similarly, by property (s3) of h, there is an open interval
I, C I such that 0 # I, NU C A(h). But f =g+ h;so LNU C A(f). O

Theorem 3. Suppose that f : R — R is the function almost everywhere
continuous and p(cl(Dqap(f))) = 0. Then there are functions g,h € S3 such
that f = g+ h.

PRrROOF. First suppose that the set Dg,(f) is bounded. Then cl(Dgy(f))
is a compact set. If p(cl(Dyp(f)) = 0, then by Lemma 1 there is a family
K; ;(i,j =1,2,...) of pairwise disjoint nondegenerate closed intervals

Ki,j C R\Cl(Dap(f))viaj Z 1

with the endpoints belonging to C(f) such that for each real ¢ > 0 the set
of all pairs (¢, 7) for which dist(Kj; j,cl(Dqp(f))) > € is empty or finite and
such that for each positive integer ¢ and each point x € cl(Dy,(f)) the upper
density du(U;il K; j,xz) =1. Let (w;) be a sequence of all rationals and let

w; for x € Kogj—1,4,4,5 > 1
g(x) =< f(z) —w; forxe Ky ,i,j>1
f(z) otherwise on R
and
f(.’L') — w; for x € Kgifl’j,i,j >1
h(z) = ¢ w; for v € Ko; 5,4,5 > 1
0 otherwise on R.

Evidently, g + h = f. Moreover the functions g, h € Sy and g, h are almost
everywhere continuous. If z € R\ cl(Dgy(f)), then g, h are approximately
continuous at least unilaterally at x. So, by Remark 1, the functions g, h €

53(56).
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If © € cl(Dgp(f)), z € U € T; and € > 0, then there is an index k such
that [f(z) — wi| < e. Since dy(Uj2; Kar—1,j,2) = 1, there is an index m
such that 0 # int(Kog—1,,) NU C A(f). For u € int(Kar_1,., NU) we have
lg(u) — g(z)| = |wi — f(z)] < e. Thus g € s3(x). Similarly we can verify that
h € s3(x) for € cl(Dqp(f)).

Now, suppose that Dy, (f) is unbounded. Let (ax)(k = 0,£1,£2,...) be
a sequence of points of int(C(f)) which converges to —oo as k — —oo and
to 400 as k — +oo. Then, for k = 0,£1,£2,... the set D, (f) N (ak, ak+1)
is bounded and cl(Dqp(f) N (ak, ak+1)) is a compact set. On each interval
[ak,ak+1) K =0+£1,42,... we can define the functions g, hi, € S3 such that
f=hg+ g for k=0,-1,1,—-2,2,.... For this we repeat the construction of
the functions hg, g on (ag,ar+1), for a fixed k, which was presented for the
case of the set D,,(f) bounded in R but now, for fixed a k, in each interval
(ak,ar+1), U = Uy C (ag,ax+1) and cl(Dgp(f) N (ak, ax+1)) C Ug. Finally,
we define g,h : R — R by h(z) = hi(x), g(z) = gr(x) for = € [ag, ar+1) and
k=0+1,42,.... Then, in this case, h,g € S3 and f =h +g. O

Theorem 4. Let f € Sy be an almost everywhere continuous function satis-
fying conditions (a), (b) from Theorem 1 and the condition

(¢) Dap(f) is an Fy — set.
Then there are functions g, h € Ss such that f = g+ h.

ProOOF. If p(cl(Dqp(f))) = 0, the conclusion of the theorem follows from
Theorem 3. So, let pu(cl(Dqp(f))) > 0. At first suppose that Dgp(f) is bounded.
Since Dy, (f) is an F,-set, there is an increasing sequence of closed sets F; C
F, C ... such that Do, (f) = Ujeq Fi. Let (an)n be a sequence of positive real
numbers such that a, \, 0 and Y~ ; a, < co. For n =1,2,... let

Ay = {z305¢ f(2) = an}.

The sets A, (n = 1,2,...) are closed sets of measure p zero and D(f) =
U2, A;. Without loss of the generality we can assume that for i = 1,2,...
the set F; N A; # 0, because if not, we can consider a subsequence of (a, ).
Let H;=F;NA; fori=1,2,.... The sets H; (i =1,2,...) are closed sets of
1 measure zero and form an increasing sequence of subsets. We can assume
that for each i = 1,2,... H;11 \ H; # 0, because if not, we can consider
some subsequence of the sequence (H;). Obviously H; C A4; for i = 1,2,....
By Lemma 2 there is a family of pairwise disjoint closed intervals K;;; C
R\ Hy, i,5 =1,2,..., with endpoints belonging to C(f) such that for each
1=1,2,... and for each z € H; the upper density du(U;?il Ky, j,x)=1and
for each real € > 0 the set of pairs (¢, j) for which dist(K7 ; 5, H1) > € is empty
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or finite. In the interiors int(K ; ;) we find closed intervals Iy ; ; C int(Ky; ;)
such that for each point x € A; and for each integer ¢ = 1,2,... the upper
density d,(U;2; T1,i,5, ) = 1. Let (w1 ;); be a sequence of all rationals and let
g1, h1 : R — R be defined by

w1 4 fOI‘erl,Qi,j’ 1, =1,2,...
o0
f(l‘) for x € R\ U int(Kin)j)
g1(x) = ij=1
linear on the components of the sets
K1,2i,j \int([l,gm), Z,j = 1, 2, .

and hy(z) = f(z) — g1(z) for x € R. As in the proof of Theorem 1 we can
prove that g, hy € S3(x) for € Hy and

A(f) € Alg1) N A(l), C(f) € C(g1) N C ().

In the second step we consider the set As \ A1 = Ay N (R\ Ay). There
are pairwise disjoint open intervals Poj C R\ Aj,k > 1, with the centers
belonging to C(f) such that every set Ay N Ps , is nonempty and compact and
Ay \ A; = J,(A2 N Py ). A construction of such intervals P, may be the
following. We find a bounded open set G O Ay and divide each component of
the the set G \ A; by points belonging to C(f) into open intervals. As Py,
we take all from the above intervals which have common points with As.

If z € (A2 Nint(K7 24,5)) \ A1 for some pair (7, 7), then g; is continuous at
x, and consequently osc g1 (z) = 0 and osc hq(x) = osc f(z) < ay. If

x € Ax\ A1\ U K125,

4,521

then ¢1(t) = f(t) and h1(t) = 0 on an open interval containing  and contained
in R\ A4;3. So oscgi(x) = osc f(z) < a; and osc hy(z) = 0. Similarly we show
that max(osc g1 (z),0schy(z)) < a1 if * € As \ A; is an endpoint of some
K1.9;5. So for each integer k£ and each point € Ay N Py there is an open
interval Ja(x) C Py containing z such that on the interval Js(z) the
oscillation oscy, , (z) g1 < a1 and oscy, , (z) h1 < ai. Since the set Ay N Py is
compact, there are points z1, za, ..., ;) such that

As N Pg,k C Jg’k(xl) u...u J27k($j(k))-

Without loss of the generality we can assume that the above intervals Js (),
j < j(k), are pairwise disjoint. For each pair of positive integers (i, j) such
that A2 n Klﬂ"j 7& 0 we find an open set U(Klﬂ',j) C int(Ku,j) such that
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Ay N Ky, C U(Ky,,) and ”(Cigt(]lgf(?’fjj))) < g5 If for some integers i,
3]

J1, Jo the intersection Ap Nint(Ky ;, j,) N Jok(z),) # 0 then, by Lemma 2, we
find pairwise disjoint nondegenerate closed intervals

Ko i j (K1, jis J2.k(25,)) CU(K1, 5,) N J2k(z),) \ He

with the endpoints belonging to C'(f) such that for every positive integer ¢
and every point € Hy N Jo i (z;,) N K14, 5, the upper density

du(|J Ko (v o Jop(5)), ) = 1

j=1
and for every real £ > 0 the set of all pairs (¢, 7) for which
dist(Hz N J2k(@),) O Kiy gy Ko, (K g, J2,e(25,))) > €

is empty or finite.

In every interval int(Ks ; j (K14, 4,5 J2,5(xj,))) we find a closed interval
I i (Ko, (K1, jy, J2,6(25,)) such that for every integer ¢ and for every point
x € HyNJop(xj,) N Ky, 4 the upper density

du(|J T2 (K5 (K, gy 2 (25,))), ) = 1. (6)

Jj=1

For each positive integer j < j(k) let (w;(x;)) be an enumeration of all ratio-

nals of the interval (y; — %, y; + %), where y; is the center of the interval

[i0f 5,7, 4 (2;) 915 SUP AT . (2,) 91 and let (u;(25)) be an enumeration of all

rationals of the interval (z; — %, z; + %), where z; is the midpoint of the

interval [inf g, 7, , (2,) P1, SUP F,1 7, 1 () hi]. Put
92(z) = wi(x;,) and ha(z) = f(z) — g2(2)
2 <j(k), i, =1,2,...,
ha(z) = ui(zj,) and ga(z) = f(2) — ha(z)
for € I 91 (K14, 1 J2.k(xj,)), jo < j(k), 4,5 =1,2,...,
g2(x) = g1(x) and ho(z) = hyi(x)

for x € I3 2i j (K1, 4y J2.k(25,)), J

forwe K\ U U Koii(Kiivg k()

J2<j(k) ,5=1
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and assume that the function gs is linear and ho = f — g2 on the components
of the sets Kg,i’j (Kl,il,j1 s J2,k($j2))\l27i,j(Kl,il,jl7 Jz)k(.’lﬁjz)). In the same way,
modifying the values of g1 and hy on respectively constructed closed intervals,
we define the functions go and hy on components Lg ,, of the set Ps \ Hy \
Uij=1 K1, for which Ly, N Az # 0. Put g2(x) = g1(x) and ha(z) = hi(z)
otherwise on R. Observe that if the function f is continuous at a point z,
then from the constructions of g; and g it follows that © € R\ Ay, and ¢;
and go are continuous at z. Consequently, the functions h; and hy as the
differences of functions continuous at x, are also continuous at this point.
So, C(f) C C(g2) N C(hg). Similarly A(f) C A(g2) N A(h2). Moreover it is
evident that |go — g1| < a1, |ha — h1] < a1 and g2 + he = f. We will show
that g2, hy € s3(x) for & € Hy. For this fix a point @ € Ha, a set U > x
belonging to T;; and a real € > 0. If x € H;, then we find a rational w; , with

. WU (K1 2,5
|g1(x) —wi k| < e. Since dy(UjZ; T1,28,5, %) = 1 and ‘L(CIE([((L;‘:::‘)J))) o

we obtain d,((g1) " (wi,5) N UjZ; T12k,5,2) = 1 and consequently there is
an integer m and an open interval I C Iy okm \ cl(U(K1 2k,m)) such that
) #INU.But ga(u) = wy i foru € INU,s0 INU C C(g2) C A(gz). Moreover
for w € INU we have |g2(u) — g2(z)| = Jw1k — g2(2)] < €. So g2 € s3(x) for
x € Hy. Similarly we show that hy € s3(z) for z € H;.

Using (6) by similar reasoning we can show that go,hy € s3(z) for x €
H, \ Hy. Let (K, ;) be a double sequence of all closed intervals on which
we have modified the functions g; and h; to obtain go and hy. Similarly, in
the n'" step, we change the functions g,_, and h,_; on respectively taken
closed intervals K, 2;; and K, 2;_1; and define functions g, and h,, such
that g,, (and respectively h,,) has constant rational values on respective closed
intervals In,Qi,j C int(Kn72i7j) (resp. on In,Zi—l,j)v C(f) C O(gn) n O(hn),
A(f) C A(gn) ﬂA(hn)a gnahn € 53(1') for x € Hna |gn - gn—1| < Gp—1,
|hn — hn-1] < an—1 and g, + h, = f. Moreover, we suppose that for every
triple (k,i1,71), where k <n and 41,51 = 1,2,.. .,

1(Kgeir s \ Ui j=1 Knsij) 1

1- — .
1( K i 1) T “

Let g = limy, 00 g and A = lim,,_. o h,,. Observe that the above limits are
uniform. Evidently, g + h = f. Since f € S4 and A(f) C A(g) N A(h), the
functions g, h have the property (s4).

We will prove that the functions g, h have the property (ss). For this, fix
areal e > 0, a point € R and a set U € Ty containing z. If z € C(f), then
g is continuous at x and there is a real 7 > 0 such that |g(¢) — g(z)| < € for
t € (x —n,z+n). But g has the property (s4); so there are an open interval
J C (z —n,z 4+ n) such that A(g) D JNU # 0. Since |g(¢t) — g(z)] < € for
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t e JNU, we obtain g € s3(x). Similarly we can prove that h € s3(x).

If z € A(f),, then x € A(g) N A(h) and because the functions g,h € Sy
and they are approximately continuous at x, from Remark 3 it follows that
g, h € s3(x).

Suppose that € Dg,(g) N Dgp(h). Then there is an positive integer n such
that © € H, \ H,—1 (where Hy = (}). Let & > n be a positive integer such
that 327, .1 a; < §. There is a rational value w of the function g, such that
gn(2) —w| < £ and dy((gn) " (w),2) = 1. By condition (7) the upper density

dul(g2) " @)\ U U Knmigoo) = 1.

m>nl,j=1
So
k—1 00
dU((gn)il(w) \ U U Kpj,x) =1,
m=n+11j=1

and by the construction of g, and Ky, ; also

k—1 oo
du(int(ga) )\ | | Kmag)a) = 1.

m=n+11[,j=1
Since x € U € T,, we have
k—1 00
du (U Nint(g,) " (w) \ U U Kpij),z) =1
m=n+11,j=1

Consequently, there is an open interval

k—1 0o
I Cint(g,) (w)\ U U Kin5) \ Ak
m=n+11[,j=1

such that I NU # 0. Evidently, # # INU C A(f) C A(g). Fort €e INU we
obtain g, (t) = gx(t) and

l9(t) — g(@)| = 1g(t) — ge(t) +w — gn(2)| < > a +§ < % <&
i=k+1

So g € s3(x). The proof that h € s3(zx) is analogous.
Up to now we have supposed that the set D(f) is bounded. Now we con-
sider the general case. Since D(f) is a first category set, there are points x €
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R\D(f),k=0,1,—-1,2,—2,...such that limy_, _ o z = —00, limy_,cc T = 00
and xj, < 4 for all integers k. Then R = |J7— ___[#k, Zx+1]. Every restricted
function fr = f/[xk, xx41] is the sum of two functions gk, by : [Tk, Tri1] — R
having the property (s3) and continuous at the points z; and zx41. Let

gr(x) — (a1 + -+ + ag) for x € [z, xp41], k> 1
g9(@) = { go0(x) for z € [0, 1]
gr(x) + (ao+ a1+ -+ apq1) forx € [z, x444], b < -1,
where a, = gi(k) — gr—1(k) for k =0+ 1,4£2,... and h(z) = f(z) — g(z) for
x € R. Observe that the functions g and h have property (s3) and f = g+h. O
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