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Abstract

Necessary and sufficient for f: fgn — fab fg for all Henstock—Kurzweil
integrable functions f is that g be of bounded variation, g, be uni-
formly bounded and of uniform bounded variation and, on each com-
pact interval in (a,b), gn — g in measure or in the L' norm. The
same conditions are necessary and sufficient for || f(gn — g)|| — 0 for all
Henstock—Kurzweil integrable functions f. If g, — g a.e., then conver-
gence || fgn|| — || fg|l for all Henstock—Kurzweil integrable functions f
is equivalent to || f(gn — g)|| — 0. This extends a theorem due to Lee
Peng-Yee.

Let —0o < a < b < oo and denote the Henstock—Kurzweil integrable func-
tions on (a,b) by HK. The Alexiewicz norm of f € HK is || f|| = sup;| [, f|
where the supremum is taken over all intervals I C (a,b). If g is a real-valued
function on [a, b], we write Vi, ;g for the variation of g over [a,b], dropping
the subscript when the identity of [a, b] is clear. The set of functions of nor-
malized bounded variation, N'BYV, consists of the functions on [a, b] that are of
bounded variation, are left continuous and vanish at a. It is known that the
multipliers for HK are NBV; i.e., fg € HK for all f € HK if and only if g is
equivalent to a function in A’/BY. This paper is concerned with necessary and
sufficient conditions under which f: fon — f: fg for all f € HK. One such
set of conditions was given by Lee Peng-Yee in [2, Theorem 12.11]. If ¢ is of
bounded variation, changing g on a countable set will make it an element of
NBY. With this observation, a minor modification of Lee’s theorem produces
the following result.
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Theorem 1. [2, Theorem 12.11] Let —co < a < b < 00, let g, and g be real-
valued functions on [a,b] with g of bounded variation. In order for f{f fgn —
f: fg for all f € HK it is necessary and sufficient that

for each interval (¢,d) C (a,b), fcd Jn — fcdg as n — 0o,
for each n > 1, g, is equivalent to a function h, € NBV, (1)
and there is M € [0,00) such that Vh, < M for alln > 1.

We extend this theorem to unbounded intervals, show that the condition
(Y0 — [Tgin (1 be replaced b h t interval i
. In . 9 in (1) can be replaced by g, — g on each compact interval in
(a,b) either in measure or in the L' norm, and that this also lets us conclude
I/ (gn—g)|l — 0. We also show that if g, — ¢ in measure or almost everywhere,
then || fgnll — | fg| for all f € HK if and only if ||fg, — fg]| — 0 for all
feHK.

One might think the conditions (1) imply g, — ¢ almost everywhere. This
is not the case, as is illustrated by the following example [1, p. 61].

Example 2. Let g;, = X(jo—k (j41)2-*) Where 0 < j < 2% and n = j+2*. Note
that [|gnlle = 1, gu € NBY, Vg, <2, and | [ gu| < ||lgal = 27 < 2/n — 0,
so that (1) is satisfied with g = 0. For each z € (0, 1] we have inf,, g, (z) = 0,
sup,, gn(z) = 1, and for no x € (0, 1] does g, (x) have a limit. However, g, — 0
in measure since if T, = {z € [0,1] : |gn ()| > €}, then for each 0 < € < 1, we
have A\(T},) < 2/n — 0 as n — oo (A is Lebesgue measure).

We have the following extension of Theorem 1.

Theorem 3. Let [a,b] be a compact interval in R, let g, and g be real-valued

functions on [a,b] with g of bounded variation. In order for f: fon — f: fg
for all f € HKC it is necessary and sufficient that

Jgn — g N measure as n — oo,
for each m > 1, g, is equivalent to a function h, € NBY, (2)
and there is M € [0,00) such that Vh, < M for alln > 1.

If (a,b) C R is unbounded, then change the first line of (2) by requiring g,X —
gX1 in measure for each compact interval I € (a,b).

PrOOF. By working with g, — ¢ we can assume g = 0. First consider the case
when (a,b) is a bounded interval. If fab fgn — 0 for all f € HK, then using
Theorem 1 and changing g, on a countable set, we can assume g, € NBYV,
Vgn < M, ||gn]loc < M and fcdgn — 0 for each interval (¢,d) C (a,b).
Suppose g, does not converge to 0 in measure. Then there are d,¢ > 0 and
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an infinite index set J C N such that A(S,) > ¢ for each n € J, where
Sp = {z € (a,b) : gn(x) > €}. (Or else there is a corresponding set on which
gn(z) < —€ for all n € J.) Now let n € J. Since g, is left continuous,
if € S, there is a number ¢, , > 0 such that [z — ¢, ,, 2] C S,. Hence,
Vi == A{le,z] : ¢ € S, and [¢,x] C S,} is a Vitali cover of S,,. So there is
a finite set of disjoint closed intervals, o,, C V,,, with A(S,, \ Ures, 1) < §/2.
Write (a,b)\Ureo, I = Urer, I where 7, is a set of disjoint open intervals with
card(r,) = card(o,,) + 1. Let

P, =card({I € 7, : gn(x) < €/2 for some = € I}).

Each interval I € 7, that does not have a or b as an endpoint has contiguous
intervals on its left and right that are in o, (for each of which g, > €). The
interval I then contributes more than (e —€/2) + (¢ — €/2) = € to the variation
of g,,. If I has a as an endpoint, then since g, (a) = 0, I contributes more than
€ to the variation of g,. If I has b as an endpoint, then I contributes more
than €/2 to the variation of g,,. Hence,

Vgn > (P, —1)e+¢€/2= (P, —1/2)e.

(This inequality is still valid if P, = 1.) But, Vg, < M; so P, < P for all
n € J and some P € N. Then we have a set of intervals, U,,, formed by taking
unions of intervals from o, and those intervals in 7,, on which g,, > ¢/2. Now,
AUrev, I) > §/2, card(U,) < P+ 1 and g, > €/2 on each interval I € U,.
Therefore, there is an interval I,, € U, such that A(I,) > §/[2(P + 1)]. The
sequence of centers of intervals I,, has a convergent subsequence. There is
then an infinite index set J' C J with the property that for all n € J' we
have g, > €/2 on an interval I C (a,b) with A\(I) > 0/[3(P + 1)]. Hence,
limsup,,>; [; gn > 0¢/[6(P + 1)]. This contradicts the fact that [, g, — 0,
showing that indeed g,, — 0 in measure.

Suppose (2) holds. As above, we can assume g, € NBY, Vg, < M,
lgnllooc < M and g, — 0 in measure. Let € > 0. Define

T = {z € (a,0) : |gn(z) > €}.

b
/ In é/ \gnH/ |9n]
a T, (a,b)\Ty,

< MMT,) + e(b—a).
Since lim A(7,,) = 0, it now follows that fcd gn — 0 for each (c,d) C (a,b).
Theorem 1 now shows f: fgn — 0 for all f € HK.

Then
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Now consider integrals on R. If ffooo fgn — 0 for all f € HLK, then it

is necessary that | j fgn — 0 for each compact interval [a,b]. By the current
theorem, g,, — ¢ in measure on each [a,b]. And, it is necessary that floo fogn —
0. The change of variables  +— 1/x now shows it is necessary that g, be
equivalent to a function that is uniformly bounded and of uniform bounded
variation on [1,00]. Similarly with f_loo fgn — 0. Hence, it is necessary that
gn be uniformly bounded and of uniform bounded variation on R.

Suppose (2) holds with g, — ¢ in measure on each compact interval in R.
Write [* fgn = " fan+ [ fn + [° fgn. Use Lemma 24 in [4] to write
‘ ffoo fgn| < ||fX(foo,a)||V[foo,a}gn < ||fX(foo,a)HM — 0 as a — —oo. We can
then take a large enough interval [a,b] C R and apply the current theorem on
[a,b]. Other unbounded intervals are handled in a similar manner. O

Remark 4. If (2) holds, then dominated convergence shows ||g, — g|l1 — 0.
And, convergence in || - ||; implies convergence in measure. Therefore, in the
first statement of (2) and in the last statement of Theorem 3, ‘convergence in
measure’ can be replaced with ‘convergence in || - ||;’. Similar remarks apply
to Theorem 6.

Remark 5. The change of variables argument in the second last paragraph of
Theorem 3 can be replaced with an appeal to the Banach—Steinhaus Theorem
on unbounded intervals. See [3, Lemma 7]. A similar remark holds for the
proof of Theorem 8.

The sequence of Heaviside functions g, = X(,,o0) shows (2) is not necessary
to have [~ fg, — 0 for all f € HK. For then, [~ fg, = [ f — 0. In
this case, g, € NBY and Vg, = 1. However, A(T;,) = oo for all 0 < ¢ < 1.
Note that for each compact interval [a,b] we have fab gn — 0 and g, — 0 in
measure on [a, b].

It is somewhat surprising that condition (2) is also necessary and sufficient
to have || f(gn — g)|| — 0 for all f € HK.

Theorem 6. Let [a,b] be a compact interval in R, let g, and g be real-valued
functions on [a,b] with g of bounded variation. In order for || f(gn — g)|| — 0
for all f € HK it is necessary and sufficient that

gn — g N measure as n — oo,
for each m > 1, g, is equivalent to a function h, € NBYV, (3)
and there is M € [0,00) such that Vh, < M for alln > 1.

If (a,b) C R is unbounded, then change the first line of (3) by requiring gnX; —
gX1 in measure for each compact interval I € (a,b).
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PRrROOF. Certainly (3) is necessary in order for || f (g, —g)|| — 0 for all f € HK.
If we have (3), let I,, be any sequence of intervals in (a,b). We can again
assume g = 0. Write g, = ¢, X1,. Then

||£~7n||oo < ”gnHom Vgn <Vgn+ 2”911”00 and g, — 0 in measure.

The result now follows by applying Theorem 3 to fg,.
Unbounded intervals are handled as in Theorem 3. O

By combining Theorem 3 and Theorem 6 we have the following.

Theorem 7. Let (a,b) C R. Then fab fon — f: fg for all f € HK if and only
if | fgn — fgll — 0 for all f € HK.

Note that [|f(gn — 9l = [Ifgnll = lFgll]; so if [|f(gn — g}l — O, then
Ifgnll = |Ifgll. Thus, (3) is sufficient to have || fg.| — ||fg|l for all f € HK.
However, this condition is not necessary. For example, let [a,b] = [0, 1]. Define
gn(z) = (—=1)". Then ||gn|loc =1 and Vg, = 0. Let g = ¢g1. Forno z € [—1, 1]
does the sequence g, (x) converge to g(z). For no open interval I C [0,1] do
we have | 1(9n—9) — 0. And, g,, does not converge to g in measure. However,
let f € HK with ||f|| > 0. Then ||f(g» — g)|| = 0 when n is odd and when n
is even, [[£(gn — )l = 21|l And yet, for all n, ||fga]l = I/ = [l £l

It is natural to ask what extra condition should be given so that || fg.| —
I fgll will imply || fg. — fg|| — 0. We have the following.

Theorem 8. Let g, — g in measure or almost everywhere. Then || fg,| —
lfgll for all f € HIC if and only if ||fgn — fgl| — O for all f € HK.

PROOF. Let [a, b] be a compact interval. If || fg,|| — || fgl|, then g is equivalent
to h € NBYV (2, Theorem 12.9] and for each f € HK there is a constant C'y such
that || fgn|| < Cy. By the Banach-Steinhaus Theorem [2, Theorem 12.10], each
gn is equivalent to a function h, € NBY with Vh, < M and ||h,]|e < M.

Let (¢,d) C (a,b). By dominated convergence, fj In — fcd g. It now follows

from Theorem 1 that f; fgn — fj fg for all f € HK. Hence, by Theorem 7,
|fgn — fgll — 0 for all f € HK.

Now suppose (a,b) = R and || fgn| — || fgll for all f € HK. The change of
variables x — 1/x shows the Banach—Steinhaus Theorem still holds on R. We
then have each g, equivalent to h,, € NBY with Vh, < M and ||hy|lcc < M.
As with the end of the proof of Theorem 3, given ¢ > 0 we can find ¢ € R such
that | f_coo fgn| < e for all n > 1. The other cases are similar. O

Acknowledgment. An anonymous referee provided reference [3] and pointed
out that in place of convergence in measure we can use convergence in || - ||z

(cf. Remark 4).
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