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AN INFINITE GAME ON GROUPS

Abstract

We consider an infinite game on a group G, defined relative to a
subset A of G. The game is denoted G(G, A). The finite version of the
game, introduced in [1], was inspired by an attack on the RSA crypto-
system as used in an implementation of SSL.

Besides identifying circumstances under which player TWO does not
have a winning strategy, we show for the topological group of real num-
bers that if C is a set of real numbers having a selection property (*) in-
troduced by Gerlits and Nagy, then for any interval J of positive length,
TWO has a winning strategy in the game G(R, J ∪ C).

1 Introduction

Let (G,+) be a group with identity element o and let A be a subset of G.
We consider the following game, denoted G(G,A), between players ONE and
TWO: In the first inning ONE first chooses a secret element x ∈ G. Then
TWO chooses an element a1 of G, and asks ONE if x + a1 is an element of
A. ONE answers truthfully by ε1, where ε1 = 1 indicates “yes”, while ε1 = 0
indicates “no”. They play an inning per positive integer, thus constructing a
sequence

x, a1, ε1, a2, ε2, . . . , an, εn, . . .

and after these moves TWO selects an element y ∈ G. TWO wins the play

x, a1, ε1, a2, ε2, . . . , y

if x = y. Else, ONE wins.
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The finite version of this game was introduced in [1]. The inspiration for
this game is a chosen ciphertext attack against certain implementations of
cryptographic tools using the RSA crypto-system. Our results show that the
infinite version of the game played even on such a standard group as the real
line with usual addition, is of independent interest. In particular, our results
make use of ideas from the field of selection principles in mathematics, and
from the set theory of the real line.

The paper is organized as follows. In Section 2 we study strategies for TWO
for general groups. In section 3 we study strategies for TWO specifically on the
real line. In the final section we make a few remarks, and pose two problems.

2 Strategies for TWO

A strategy for TWO is a function, ψ, which

1. has as domain the history of moves by ONE and known to TWO, and

2. during the finite innings prescribes TWO’s responses to these partial
histories, and

3. in the ω–th inning it prescribes TWO’s selection y, based on the total
history of the finite-numbered innings.

Thus a strategy for TWO is a function

ψ : <ω{0, 1} ∪ ω{0, 1} → G.

For subsets U and V of group G and element a of G we define:

• a+ U = {a+ u : u ∈ U}, U + a = {u+ a : u ∈ U},

• U + V = {u+ v : u ∈ U and v ∈ V } and

• −U = {−u : u ∈ U}.

The set a+ U is said to be a left translate and U + a is said to be a right
translate of U in G. For a subgroup H of the group G the set a+H, a ∈ G,
is said to be a left coset of H in G. Moreover, distinct left cosets of H in
G are pairwise disjoint, and each left coset of H in G has cardinality |H|.
Similarly, sets of the form H + a are said to be right cosets of H in G, and
similar remarks apply. Moreover, for each a in G there is a b in G such that
a+H = H + b, and vice versa.

The following lemma implies that when we consider strategies for TWO in
the game G(G,A), we may assume that o is an element of A:
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Lemma 1. For a given subset A of the group (G,+), and for any a in G the
following are equivalent:

1. TWO has a winning strategy in G(G,A).

2. TWO has a winning strategy in G(G,A+ a).

Proof. 1 ⇒ 2 : Let ψ be a winning strategy for TWO in the game G(G,A),
and define a strategy Γ for TWO in G(G,A + a) so that for each σ in <ω2,
Γ(σ) = ψ(σ) + a, and for each f in ω2, Γ(f) = ψ(f). Then Γ is a winning
strategy for TWO in G(G,A+ a).
2 ⇒ 1 : Let Γ be a winning strategy for TWO in G(G,A+a). Define a strategy
ψ for TWO in G(G,A) so that for each σ ∈<ω 2, ψ(σ) = Γ(σ)−a, and for each
f ∈ ω2, ψ(f) = Γ(f). Then ψ is a winning strategy for TWO in G(G,A).

We define the translation number of U over V as

translV (U) = min{|X| : X ⊂ G and U +X ⊇ V }.

Thus if H is a subgroup of G, then translG(H) = |G/H| is the number of
left cosets of H in G.

Theorem 2. If A is a subset of G such that translG(A) > ℵ0, then TWO
does not have a winning strategy in the game G(G,A).

Proof. By Lemma 1 we may assume that 0 is in A. Let Ψ be a strategy for
TWO. Put C = Ψ[<ω{0, 1}] ∪ {−Ψ(0)} where 0 denotes the infinite constant
sequence (0, 0, . . . , 0, . . . ). Since C is countable, the setG\(A−C) is nonempty.
Choose x ∈ G \ (A − C). Since Ψ(0) = o − (−Ψ(0)), Ψ(0) is an element of
A− C, and so x 6= Ψ(0).

Here is how ONE will defeat Ψ: ONE begins the game by choosing x.
When TWO computes Ψ(∅) ∈ C, ONE will answer ε1 = 0 because x+ Ψ(∅) ∈
x+C ⊂ G \A. Then TWO will play Ψ(0) ∈ C, and once again x+ Ψ(0) 6∈ A,
so that once again ONE responds with ε2 = 0. TWO plays Ψ(0, 0) ∈ C and
again by choice of x, x+ Ψ(0, 0) 6∈ A. Continuing in this way we see that the
resulting play will be

x,Ψ(∅), 0,Ψ(0), 0,Ψ(0, 0), 0,Ψ(0, 0, 0), . . . ,Ψ(0)

and since x 6= Ψ(0), this play is lost by TWO.

Theorem 3. Let A be a subgroup of more than one element of the infinite
group G. Then TWO has no winning strategy in G(G,A).
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Proof. Let σ be a strategy for TWO. Consider any x ∈ G and construct,
using TWO’s strategy σ, a σ-play:

x, σ(∅), ε1, σ(ε1), ε2, σ(ε1, ε2), ε3, . . .

and put f = (εn : n < ∞). Consider y = σ(f). If y 6= x, then TWO has lost
this σ-play and we are done. Else, if x = σ(f), then choose an a ∈ A with
a 6= o (A has more than one element). Put X = a+x. Then consider the play

X,σ(∅), δ1, σ(δ1), δ2, σ(δ1, δ2), δ3, . . .

and put g = (δn : n <∞). We claim that g = f .
This is done by induction. First, that f(1) = g(1): Suppose f(1) = 0:

Thus x + σ(∅) 6∈ A, and as A is a subgroup of G also a + x + σ(∅) 6∈ A; that
is, X + σ(∅) 6∈ A. This means also g(1) = 0. A similar argument shows that
if f(1) = 1, then also g(1) = 1. Now suppose that j > 1 is given and we have
verified that fdj= gdj1. For suppose f(j) = εj = 0. Thus, x + σ(fdj) 6∈ A,
and since A is a subgroup of G, also X+σ(gdj) 6∈ A, so that δj = 0. Similarly,
if εj = 1, then also δj = 1.

But then we find that TWO lost at least one of the σ-plays

X,σ(∅), δ1, σ(δ1), δ2, σ(δ1, δ2), δ3, . . .

or
x, σ(∅), ε1, σ(ε1), ε2, σ(ε1, ε2), ε3, . . .

This completes the proof.

Next we examine some cases where TWO has a winning strategy.

Theorem 4. If A is a one-element subset of the countable group G, then
TWO has a winning strategy in the game G(G,A).

Proof. Write A = {a} and let (gn : n <∞) be an enumeration of G. TWO’s
strategy σ calls on TWO to play σ(∅) = g1. If ONE’s response is “1”, then
TWO knows that x + g1 = a and so x = a − g1. Suppose ONE’s response
is “0”. TWO’s strategy σ is to play, for any sequence τ of length n, say, of
zeroes, the point σ(τ) = gn+1. If ONE answers with a “1” in inning n + 1,
then TWO knows that x+ gn+1 = a; that is,

x+ σ(

n zeroes︷ ︸︸ ︷
0, . . . , 0 ) = a

1For a sequence (εn : n < ∞) and j < ∞, the notation (εn : n < ∞)dj denotes
(εn : n ≤ j).
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and so TWO knows x already in this inning. It is evident that TWO discovers
the value of ONE’s x in some finite-numbered inning.

Observe that Theorem 4 shows that it is necessary in the hypotheses of
Theorem 3 to assume that the subgroup A has at least two elements. For if A
is the subgroup {o}, and G is countable, then TWO has a winning strategy
in G(G,A).

Theorem 5. Let (G,+, eG) be an infinite group with subsets H and B such
that:

1. H is a countable subgroup of G;

2. TWO has a winning strategy in the game G(G,B);

3. B ∩H = ∅;

4. (∃b ∈ B)((H + b) ∩B = {b});

5. (∃h ∈ H)((h+B) ∩B = ∅).

Then TWO has a winning strategy in G(G,B ∪H).

Proof. Once and for all choose elements h ∈ H and b ∈ B as in hypotheses 4
and 5. Also, fix a strategy τ for TWO in the game G(G,B) as in hypothesis 2,
and fix a bijective enumeration (hn : n <∞) of H as in hypothesis 1. Define
A := B ∪H. We will now define a strategy σ for TWO in the game G(G,A).

To begin, TWO plays σ(∅) = τ(∅), and for every finite sequence (0, . . . , 0) of
zeroes, define σ(0, . . . , 0) = τ(0, . . . , 0). Consider a binary sequence which has
exactly one “1” in it, of the form (0, . . . , 0, 1). Intuitively, this sequence occurs
when TWO has played σ(0, . . . , 0) and ONE answered with a “1” because
y = x + σ(0, . . . , 0) ∈ A, and TWO must now respond to this information.
How TWO proceeds from here depends on whether y ∈ H or y ∈ B. TWO’s
next move is to first determine which of these two situations is the case. We
will call the following analysis the “identification step”. Define

σ(0, . . . , 0, 1) = σ(0, . . . , 0) + h.

Case 1: ONE responds with a “1”: Then, as we now have y+h ∈ A and y ∈ A,
we find by the choice of h that indeed y ∈ H.
Now TWO’s strategy will be to identify which element of H is y. Define

σ(0, . . . , 0, 1, 1) = σ(0, . . . , 0)− h1 + b.
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If now ONE responds with a “1”, then x+σ(0, . . . , 0, 1, 1) = x+σ(0, . . . , 0)−
h1 + b is in A. By the choice of b this is {b}, and so TWO discovers that
y = h1, and the game is over. Else, ONE responds with a “0”, and so TWO
responds with

σ(0, . . . , 0, 1, 1, 0) = σ(0, . . . , 0)− h2 + b.

and the same considerations apply. If ONE replies with a “1”, then TWO
concludes that x+ σ(0, . . . , 0) = h2. Else, TWO plays

σ(0, . . . , 0, 1, 1, 0, 0) = σ(0, . . . , 0)− h3 + b.

and so on. After a finite number of such innings TWO discovers the value of x.

Case 2: ONE responds with a “0”: Then we know that y ∈ B since y ∈ A but
y 6∈ H, and H is closed under addition.
Now TWO’s strategy will be to simulate G(G,B). In particular, TWO plays

σ(0, . . . , 0, 1, 0) = τ(0, . . . , 0, 1).

While ONE responds with “0”’s, TWO continues following the strategy τ -
thus, for a finite sequence (0, 0, . . . , 0) of zeroes, TWO will respond with

σ(0, . . . , 0, 1, 0, 0, . . . , 0) = τ(0, . . . , 0, 1, 0, . . . , 0).

Should at some point ONE respond again with a “1”, then TWO knows that
y = x + σ(0, . . . , 0, 1, 0, 0, . . . , 0) ∈ A, and then TWO again follows the plan
to identify if y ∈ H or if y ∈ B. If y ∈ H, then proceed as in Case 1. Else, if
y ∈ B, then continue using the strategy of Case 2.

To see that σ is a winning strategy for TWO, consider a σ-play. If ever Case
1 occurred, then within finitely many moves from this occurrence TWO iden-
tifies x by identifying the appropriate element of H. If Case 1 never occurred,
then σ was, except for the identification steps which might occur, essentially
the strategy τ for the game G(G,B), and the entire play is a legitimate play
of this game. Thus, TWO used τ in this case to identify x.

3 Playing on R

Consider the game on the group of real numbers under addition. In the proof
below we will use the following notation: cov(M) denotes the minimal cardi-
nality of a collection of first category subsets of the real line whose union is
equal to R. cov(N ) denotes the minimal cardinality of a family of Lebesgue
measure zero subsets of the real line whose union is R. This notation is com-
mon in set theory. It is well known that both the cardinals cov(M) and cov(N )
are uncountable.



An Infinite Game on Groups 745

Corollary 6. If A is a first category subset or a Lebesgue measure zero subset
of R, then TWO has no winning strategy in the game G((R,+, 0), A).

Proof. It is evident that ifA is a first category set, then cov(M) ≤ translR(A),
and if A has Lebesgue measure zero, then cov(N ) ≤ translR(A). Thus the set
A satisfies the conditions of Theorem 2, so TWO has no winning strategy.

Thus, if TWO has a winning strategy in G(R, A), then A is “large”. We
now identify some examples of such subsets A. First we consider intervals.

Specialized attacks by TWO

Let A be an interval in R and a proper subset of R. The following two types
of attack by TWO, depending on which of two situations exists in the inning
of the play of the game in progress, seem to be fundamental in this example.
Assume that at some stage TWO has played an a and ONE responded with
1: Thus x + a is in A. TWO chooses a nonzero δ with |δ| < 1

2 and proposes
a1 = a+ δ:

Entry attacks with δ.

If ONE responds with 0 to a1: In this case TWO launches an “entry attack
with δ”: We know that:

1. x+ a1 6∈ A since ONE responded with 0;

2. x+ a1 is within |δ| from a known endpoint c of A.

TWO puts δ1 = 1
2 · δ, and proposes a2 = a1 − δ1. If still ONE responds

with 0, TWO puts δ2 = 1
2 · δ1, and proposes a3 = a2 − δ2. This attack from

above continues as long as ONE responds with 0: At stage n+ 1, after ONE
responded with 0, TWO puts δn = 1

2 · δn−1, and proposes an+1 = an − δn.
Observe that x+ an converges to c.

Exit attacks with δ.

If ONE responds with 1 to a1: In this case TWO launches an “exit attack with
δ”: Let c be an endpoint of A. If x + a1 < c, put δ1 = |δ|, and else put
δ1 = −|δ|. Next TWO proposes a2 = a1 + δ1. If ONE still responds with 1,
TWO proposes a3 = a2 +δ1. This exit attack with δ continues as long as ONE
responds with 1: At stage n + 1, after ONE responded with 1, the attacker
proposes an+1 = an+δ1. Observe that since the real line has the Archimedean
property, after a finite number m of steps in an exit attack, ONE will answer
with 0, and then we know that x+ am is within δ1 from c.
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It is important to keep in mind that in results given below that even if
TWO uses only rational numbers δ during entry or exit attacks, TWO still
has the corresponding winning strategy. Though using rational values of δ
is not required for some of our results, it is actually important to use only
rational values in the proof of Theorem 11 below.

Theorem 7. For a < b, if A is any of (a,b), [a,b), (a,b] or [a,b], then TWO
has a winning strategy in G(R, A).

Proof. We describe the strategy for A = [a, b]. The same strategy works
also for the other cases. Enumerate the set of rational numbers Q bijectively
as (qn : n ∈ N). Here is, intuitively, TWO’s strategy: After ONE has selected
x, TWO successively chooses a1 = q1, . . . , an = qn, until an n occurs where
x + qn ∈ A. This happens because A has nonempty interior, and x + Q is
dense in R.

TWO continues as follows: Pick a positive δ1 < b−a
2 and launch an exit

attack with δ1: That is, play an+1 = an + δ1, . . . , am = am−1 + δ1 and so on,
until an m is reached in this attack where ONE answers with a 0. Then we
know x + am > b and x + am is within δ1 from b. Then TWO launches an
entry attack with δ1. There are two possibilities:
Case 1: ONE never answers with 1: Then for all k we have x + am+k > b,
and indeed,

|b− (x+ am+k)| < δ1 − (
k∑

j=2

δj) = δ1 · (1−
k∑

j=2

(
1
2
)(j−1)).

Thus we have limk→∞(x+ ak) = b, and so TWO wins by giving as final move
y = limk→∞(b− ak).
Case 2: ONE answers with a 1: Then we know that x + am < b and also
|b− (x+ am)| < δm. Put δm+1 = 1

2 · δm, and launch an exit attack with δm+1.
At a step p, a finite number of steps later, ONE answers with a 0, and then
we know that |b − (x + ap)| < δm+1, and also that b < x + ap. Then launch
an entry attack with δm+1.

This strategy is winning for TWO. We only need to discuss the case when
TWO follows the strategy and infinitely often launches an entry attack dur-
ing the course of the game. Let the innings in which entry attacks start be
numbered as k1 < k2 < · · · < kn < . . . . Every time an entry attack starts
we have a value of δ with which the attack is launched. Let the δ used during
the entry attack starting in inning kn be denoted δn. For each n note that
δn+1 <

1
2 · δn, and |b− (x+ akn

)| < δn. Thus we have

b = lim
n→∞

(x+ akn
)
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and TWO’s last move is y = limn→∞(b− akn).

Next consider the infinite intervals.

Theorem 8. Suppose A is one of [a,∞), (a,∞) (−∞, a) or (−∞, a]. Then
TWO has a winning strategy in the game G(R, A).

Proof. We give a description when A = [a,∞). The other cases are sim-
ilar. TWO’s strategy is in the beginning to play positive integers n (in in-
ning n) until ONE responds with εn = 1, meaning a ≤ x + n. Then TWO
launches an exit attack with (− 1

2 ) as follows: For the next innings TWO plays
n−1 · 1

2 , . . . , n−j ·
1
2 , . . . until a j1 is reached where ONE responds with a “0”.

Then TWO knows that a − 1
2 ≤ x + n − j1 · 1

2 < a. Then TWO launches an
entry attack with 1

2 and plays n−j1 · 1
2 + 1

22 , n−j1 · 1
2 + 1

22 + 1
23 , . . . until a j2 is

reached where ONE answers again with a “1” to x+n−j1 · 12 + 1
22 + 1

23 +· · ·+ 1
2j2 .

Then TWO knows that a ≤ x+n− j · 1
2 + 1

22 + 1
23 + · · ·+ 1

2j2 < a+ 1
2j2 . Then

TWO launches an exit attack with 1
2j2 , and so on. In this way TWO builds a

convergent sequence of form x+ aj which converges to a, and so TWO learns
that x = limj→∞(a− aj).

And next we consider unions of intervals. For this one considers another
game defined as follows for a group G: Finitely many disjoint subsets I1, . . . , Ik
are given. ONE chooses a secret element x in one of these. TWO must discover
in a finite number of moves in which set Ij the secret element x is. TWO may
propose elements a from G and ONE must answer truthfully whether x+ a is
in ∪i≤kIi. Let this game be denoted by G2(G, {Ii : i ≤ k}).
Lemma 9. Let k be a positive integer and let I1, . . . , Ik+1 be disjoint bounded
intervals in R. Then TWO has a winning strategy in G2(R, {Ii : i ≤ k + 1})
which wins in ≤ k innings.

Proof. We prove by induction on k.
Case 1: k = 1 Let intervals I1 and I2 be given and suppose I1 < I2. Also
suppose i1 = length(I1), i2 = length(I2) and d is the distance between I1 and
I2. If i1 ≤ i2 TWO asks if x + i2 + d ∈ I1 ∪ I2. If ONE answers “yes” then
TWO knows that x ∈ I1, and if ONE answers “no” then TWO knows that
x ∈ I2. If instead i2 < i1 then ask if x− i1 − d ∈ I1 ∪ I2. Again, “yes” means
x ∈ I2 and “no” means x ∈ I1. Thus TWO wins in the first inning.
Case 2: k > 1 and the theorem holds below k: Thus k = j + 1 and j ≥ 1, and
we know that for any j + 1 disjoint bounded intervals I1, . . . , Ij+1 TWO has
a winning strategy in this game which wins in ≤ j innings.

Consider k + 1 = j + 2 pairwise disjoint bounded intervals enumerated
bijectively as I1, . . . , Ij+2 such that Im < In if, and only if, m < n. Let im be
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the length of Im, and let dm be the distance between Im and Im+1, m < j+2.
If i1 < ij+2 then TWO asks ONE if x+ (d1 + · · ·+ dj+1) + (i2 + · · ·+ ij+2) ∈
I1∪· · ·∪ Ij+2. If the answer is “yes”, then TWO knows x ∈ I1, and else TWO
knows x ∈ (I2 ∪ · · · ∪ Ij+2), and we are in the case of j + 1 intervals. Now
TWO applies the strategy for determining in at most j innings in which of
j + 1 intervals x is. Thus, TWO finds the interval containing x in at most
j + 1 innings.

Theorem 10. Let k be a positive integer and let I1, . . . , Ik be disjoint bounded
intervals in R. Then TWO has a winning strategy in G(R,∪i≤kIi).

Proof. Put A = ∪i≤kIi, and assume that the Ii’s have been enumerated so
that i < j implies that Ii < Ij . For each i let di be the distance between Ii
and Ii+1.

Let ONE choose a secret x ∈ R. Now TWO starts as follows: First, choose
a rational number a such that y = x+a ∈ A. Such a rational number is found
in a finite number of steps, as before. TWO uses a winning strategy for the
game G2(R, {Ij : j ≤ k}) to determine in a finite number of steps (indeed,
at most k − 1 steps) to which Ii the point y belongs. Put δ1 = min{di−1,di}

2 .
Now TWO launches an exit attack in the game G(R, Ii) with δ1. When ONE
responds with a “1”, TWO knows a j1 such that x+a+j1 ·δ1 is within δ1 from
an endpoint of Ii. Then TWO launches an entry attack with δ2 = δ1

2 and this
proceeds until either all innings have elapsed, or else until ONE answers with
a “1”, and so on. One can show that in this way TWO constructs a sequence
x + an, n < ∞ which converges to an endpoint of Ii, and thus TWO in the
end discovers the value of x.

Combining Theorems 5 and 7 or 10 we find for each finite set {I1, . . . , In}
of bounded intervals of positive length and with 0 6∈ ∪j≤nIj , there is a large
enough positive integer k such that TWO has a winning strategy in the game
G(R, (∪j≤nIj)∪k ·Z), where k ·Z is the subgroup {k ·n : n ∈ Z} of the additive
group of integers.

But we can do a little better than this. Finally, we consider the union of
an interval with a small set of real numbers. For a set C of real numbers let
vectQ(C) denote the rational vector space generated by C. It contains the
subgroup 〈C〉 of R generated by C. For convenience let us say that a subset
C of the real line is algebraically small if for each interval J of positive length,
and for any countable set F of real numbers, J \ vectQ(C ∪ F ) 6= ∅. Observe
that the property of being algebraically small is hereditary; each subset of
an algebraically small set of reals is algebraically small. But a union of two
algebraically small sets need not be algebraically small. For let B be a basis
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for R as a vector space over Q. Partition B into two disjoint sets B1 and
B2 with |B1| = |B2|. Then B1 and B2 are algebraically small, but B is not
algebraically small.

Theorem 11. Let C be an algebraically small set of real numbers. Then for
any interval J of positive length, TWO has a winning strategy in the game
G(R, J ∪ C).

Proof. Put A = J ∪ C where J is an interval of nonzero finite length. Let
(In : n < ∞) be a bijective enumeration of the open intervals with rational
endpoints. Choose real numbers r1, . . . , rn, . . . , n < ∞ so that r1 ∈ I1 \
vectQ(C ∪ {1}) and for each n also rn+1 ∈ In+1 \ (vectQ(C ∪ {1, r1, . . . , rn}).
Then the set {rn : n < ∞} is dense in R. Consequently for each x ∈ R and
for each n the set {x + rj : j > n} is dense in R and thus has nonempty
intersection with J , a subset of A. By the construction we have:

1. For any x ∈ R and for any u 6= v in {x + rn : n < ∞}, u − v 6∈
vectQ(C ∪ {1}): For suppose that (x + ri) − (x + rj) = ri − rj is a
member of vectQ(C ∪ {1}). Without loss of generality i < j. Then it is
a member of vectQ(C ∪ {1, r1, . . . , ri}), and so rj = ri − (ri − rj) is a
member of vectQ(C ∪ {1, r1, . . . , ri}), contradicting the choice of rj .

2. Thus, for each x ∈ R, |{x+ rn : n <∞} ∩ vectQ(C ∪ {1})| ≤ 1.

TWO’s strategy has two stages, as follows:
Stage 1: Select r1, . . . , rk until n0 < n1 < n2 < n3 < n4 < n5 have been found
such that ONE answered “1” to each of the moves rn0 , rn1 , rn2 , rn3 , rn4 and
rn5 by TWO. This happens because for each n the set {x+rj : j > n} is dense
in R. So, each of x+rn0 , x+rn1 , x+rn2 , x+rn3 , x+rn4 and x+rn5 is in A. We
may assume without loss of generality that rn0 < rn1 < rn2 < rn3 < rn4 < rn5 .
Observe that among these x+ rn0 might be in C \ J , and x+ rn1 and x+ rn5

might be endpoints of J . Thus by 2 above each of x+ rn2 , x+ rn3 and x+ rn4

is in the interior of the interval J . One, but not two, of these points might be
in C. Indeed, by item 2 above again, all rational translates of at least two of
them are not in vectQ(C ∪ {1}).

Thus, by the end of Stage 1 TWO is in possession of three points, u < v <
w, such that

• Each of x+ u, x+ v and x+ w is in the interior of J ;

• At most one of these points is in C;

• For at least two of these points, all rational translates of these points are
outside vectQ(C ∪ {1}), and thus outside C.
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Note that TWO does not know which two points have the property in the
third remark.

Stage 2: For the two points whose rational translates are all outside C,
TWO’s entry and exit attacks in the game G(R, A) using only rational values
of δ are exactly entry and exit attacks in the game G(R, J). Note that an exit
attack in G(R, J) using some δ < length(J) will result answering with a “0”
within at most mδ = length(J)

δ + 1 innings.
TWO now plays as follows: TWO pretends to be playing G(R, J) instead

of G(R, A) on three different “boards” against three different player ONE’s.
The boards are the “u”-board, the “v”-board and the “w”-board. We are
assuming that the three player ONE’s have started the game by choosing
the same secret x in each of the games, and that the player ONE of each
of the three boards answers correctly for the game G(R, A) on that board.
Moreover, in all entry- and exit- attacks player TWO uses only rational values
of the number δ used during the attack. On two of the boards, even though
ONE thinks he is answering for G(R, A), he is really answering for moves of
G(R, J), since the rational translates of the points from {u, v, w} for these two
boards are disjoint from C.

If on some board, say board u, an exit attack lasts longer than mδ =
length(J)

δ + 1 steps before ONE answers with a “0”, then TWO knows that u
is in C, and abandons the game on that board and continues on only one of
the remaining boards. The game on the continuation board is G(R, J), and
TWO follows a winning strategy on it as in Theorem 7, and so discovers x.

Thus we may assume that on all three boards exit attacks are shorter than
mδ, and thus that TWO continues play on all three boards. Since on two of
the boards the game G(R, A) has been reduced to G(R, J), and since TWO is
following a winning strategy for G(R, J) on all three boards, TWO will win
on two of the three boards by discovering the correct value of x on these two
boards. Thus, TWO will win the original game G(R, A) by simply announc-
ing the majority value (namely x) revealed by the strategies for these three
games.

There are several ways of implementing these ideas as a single strategy
for TWO in G(R, A): TWO could for example pace moves so that when the
inning number is n and j = n mod 3, and k = n−j

3 , then TWO makes the
k-th move of the game on the u-board if j = 0, the v-board if j = 1 and the
w-board if j = 2.

Corollary 12. Let C be a set of real numbers of cardinality less than 2ℵ0 .
Then for any interval J of positive length TWO has a winning strategy in the
game G(R, J ∪ C).
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Proof. A set of real numbers of cardinality less than 2ℵ0 is algebraically
small.

Algebraically small sets of real numbers may be of large cardinality. For
example a Hamel basis B for the set of real numbers considered as a vector
space over the field Q has cardinality 2ℵ0 , and if we consider any subset C of
B such that B \ C is uncountable, then C is algebraically small. But such
such C’s can have cardinality 2ℵ0 .

As another example, recall that a cover U for a topological space X is said
to be

1. an ω-cover if it is an open cover such that X 6∈ U , and for each finite
subset F ⊂ X there is a U ∈ U with F ⊆ U ;

2. a γ-cover if it is an open cover, is infinite, and each element of X is in
all but finitely many elements of U ;

3. a γ-groupable cover if there is a partition U = ∪n<∞Fn where for each
n Fn is finite, and for each x ∈ X, for all but finitely many n we have
x ∈ ∪Fn.

The symbol Ω denotes the collection of ω-covers of a space, and Γ denotes
the collection of γ-covers of the space. The symbol O denotes the collection
of open covers, and Oγ−gp denotes the collection of γ-groupable open covers
of the space.

For families A and B of sets of subsets of the set S the symbol S1(A,B)
denotes the statement that there is for each sequence (An : n <∞) of elements
of A a sequence (Bn : n < ∞) such that for each n we have Bn ∈ An and
{Bn : n <∞} ∈ B. S1(A,B) is an example of a selection principle.

The selection principle S1(O,O) was introduced by Rothberger in [7], and
is sometimes called Rothberger’s property. The selection principle S1(Ω,Γ)
was introduced in [4]; according to Gerlits and Nagy a set C of real numbers
with the property S1(Ω,Γ) is said to be a γ-set.

Corollary 13. If C is a set of real numbers with property S1(Ω,Oγ−gp),
then for each interval J of positive length TWO has a winning strategy in
G(R, J ∪ C).

Proof. Suppose that G has properties S1(Ω,Oγ−gp). Then Q ·G, a countable
union of sets with this property, also has this property. But then by [9] all finite
products of such sets have Rothberger’s property S1(O,O). Since addition
is a uniformly continuous function it follows that the rational vector space
generated by a set of reals with property S1(O,O) is algebraically small.
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4 Remarks

In [3] Galvin and Miller showed that Martin’s Axiom (indeed, p = c) implies
that there is a γ-set C of real numbers such that |C| = |R| = 2ℵ0 . The
selection principle S1(Γ,Γ) was introduced in [8], and S1(Ω,Γ) implies both
S1(Γ,Γ) and S1(O,O).

In [6] it was shown that a property denoted (*) in [4] is equivalent to the
property S1(Ω,Oγ−gp). Results of [6] imply that if a space is member of both
S1(Γ,Γ) and of S1(O,O), then it has property S1(Ω,Oγ−gp).

If we let C be a γ-set of cardinality 2ℵ0 , then for each interval J of positive
length TWO has a winning strategy in G(R, J ∪ C), and yet TWO has no
winning strategy in the game G(R, C) since C has Lebesgue measure zero.
Thus even if TWO has a winning strategy in G(G,A), there may yet be a
subset B of A such that TWO has no winning strategy in G(G,B). Let A be
the union of an interval of positive length and the group Z, and let B be the
group of the integers, and apply Theorem 3 or Theorem 2. It also illustrates
that a set on which TWO does not have a winning strategy may be extendible
to one on which TWO does have a winning strategy.

By generalizing some of the arguments one can generalize Theorem 7 to:
If A is comeager in an interval [a,b] and if there is a countable dense set C
such that R = A+ C, then TWO has a winning strategy in G(R, A).

Also Theorem 11 can be generalized to the statement that if I1, . . . , In are
intervals of real numbers, each of positive length, and if C is algebraically
small, then TWO has a winning strategy in the game G(R, (∪j≤nIj) ∪ C).

Theorem 7 can also be generalized in a different direction. For an n > 1
consider this game on Rn, with A = Πn

j=1Ij where for each j we have a
bounded interval Ij of positive length. Then TWO has a winning strategy in
G(Rn, A).

The most general open problem for the additive group of reals seems to
be:

Problem 1. Characterize the members of the set

{A ⊂ R : TWO has a winning strategy in G(R, A)}.

A more specific problem that we have not solved is:

Problem 2. Characterize the members of the set of A ⊂ R such that: For each
proper interval J of positive length TWO has a winning strategy in G(R, J∪A).

This set includes all sets having property (∗), and no intervals of infinite
length (since the real line is a union of two such intervals).
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