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KURZWEIL-HENSTOCK TYPE
INTEGRATION ON BANACH SPACES

Abstract

In this paper properties of Kurzweil-Henstock and Kurzweil-Henstock-
Pettis integrals for vector valued functions are studied. In particular,
the absolute integrability for Kurzweil-Henstock integrable functions is
characterized and a Kurzweil-Henstock version of the Vitali Theorem
for Pettis integrable functions is given.

1 Introduction

In this paper we continue the investigation of properties concerning Kurzweil-
Henstock type integrals for vector valued functions, started in [4] and [6].
In particular we consider the Kurzweil-Henstock integral and the Kurzweil-
Henstock-Pettis integral. The last one is a generalization of the Pettis inte-
gral obtained by replacing the Lebesgue integrability of the functions by the
Kurzweil-Henstock integrability. In general it integrates a family of functions
larger than the Kurzweil-Henstock integrable one (see Remark 1). Moreover
concerning its relations with the Kurzweil-Henstock integral, the Kurzweil-
Henstock-Pettis integral sometimes does not share with the Pettis integral
properties analogous to ones relating to the relations between Pettis and Mc-
Shane integrals. Indeed for strongly measurable functions or when the Banach
space is separable, the Pettis and the McShane integrals coincide (see [13]
and [9]). Analogous properties fail for the Kurzweil-Henstock-Pettis and the
Kurzweil-Henstock integrals (see example in Remark 1).

In Section 3 we characterize the Kurzweil-Henstock integrable functions by
the notion of equiintegrability. In Section 4 we study the absolute integrability
of the Kurzweil-Henstock integrable functions and, if the unit ball of the dual
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of the range space is weak∗ separable, we find a characterization in terms of
the bounded variation of the indefinite Pettis integral (see Theorem 3). In
the last Section 5 we give some convergence theorems for both, the Kurzweil-
Henstock and the Kurzweil-Henstock-Pettis integrals, based on the notion of
equiintegrability.

Although all our results have n-dimensional analogues, here we work for
simplicity in the case of functions defined on [0, 1] only.

2 Notations and Preliminaries

Let [0, 1] be the unit interval of the real line equipped with the usual topology
and the Lebesgue measure. M denotes the family of all Lebesgue measurable
subset of [0, 1]. If E ∈ M, then |E| denotes the Lebesgue measure of E. A
tagged partition in [0, 1], or simply a partition in [0, 1] is a finite collection of
pairs P = {(I1, t1), . . . , (Ip, tp)}, where I1, . . . , Ip are nonoverlapping subinter-
vals of [0, 1] and ti is a point of [0, 1], i = 1, . . . , p. If ti ∈ Ii, i = 1, . . . , p we
call P a Perron partition. Given a subset E of [0, 1], we say that the partition
P is anchored on E if ti ∈ E for each i = 1, ..., p. If ∪p

i=1Ii = [0, 1] we say
that P is a partition of [0, 1]. A gauge on E ⊂ [0, 1] is a positive function on
E. For a given gauge δ, we say that a partition {(I1, t1), . . . , (Ip, tp)} is δ-fine
if Ii ⊂ (ti − δ(xi), ti + δ(xi)), i = 1, . . . , p.

Throughout this paper X is a Banach space with dual X∗. The closed unit
ball of X∗ is denoted by B(X∗).

A function g : [0, 1] → X is said to be: weakly measurable if for each
x∗ ∈ X∗ the real function x∗g is measurable; absolutely measurable if the real
function ‖g‖ is measurable; strongly measurable, or simply measurable if, there
is a sequence of simple functions gn with limn ‖gn(t) − g(t)‖ = 0, for almost
all t ∈ [0, 1].

Let g : [0, 1] → X be a function. We set σ(g,P) =
∑p

i=1 g(ti)|Ii| for each
partition P = {(I1, t1), . . . , (Ip, tp)} of [0, 1].

3 Kurzweil-Henstock Integrals

Definition 1. A function g : [0, 1] → X is said to be Kurzweil-Henstock
integrable, or simply KH-integrable, on [0, 1] if there exists w ∈ X with the
following property: for every ε > 0 there exists a gauge δ on [0, 1] such that
||σ(g,P)− w|| < ε for each δ-fine Perron partition P of [0, 1]. We set w =:
(KH)

∫ 1

0
g.

We denote the set of all KH-integrable functions g : [0, 1]→ X byKH([0, 1], X).
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We start by recalling some well known facts concerning the KH-integral
(see [2], [8], [15]).

Theorem 1. Let g : [0, 1] → X be KH-integrable on [0, 1] and let G(t) =
(KH)

∫ t

0
g, for each t ∈ [0, 1].

(a) For each x∗ ∈ X∗ the function x∗g is KH-integrable on each interval
J ⊂ [0, 1] and (KH)

∫
J

x∗g = x∗(KH)
∫

J
g.

(b) The function g is scalarly measurable.

(c) If g = 0 almost everywhere on [0, 1], then g is KH-integrable with integral
equal to zero.

The generalization of the Pettis integral obtained by replacing the Lebesgue
integrability of the functions by the Kurzweil-Henstock integrability produces
the Kurzweil-Henstock-Pettis integral (for the definition of Pettis integral see
[3]).

Definition 2. A function g : [0, 1] → X is said to be scalarly Kurzweil-
Henstock integrable, or simply scalarly KH-integrable, if for each x∗ ∈ X∗, the
function x∗g is Kurzweil-Henstock integrable on [0, 1]. If for each subinterval
[a, b] of [0, 1] there exists a vector w[a,b] ∈ X such that x∗w[a,b] = (HK)

∫ b

a
x∗g,

then g is said to be Kurzweil-Henstock-Pettis integrable, or simply KHP -
integrable, on [0, 1] and we set w[a,b] =: (KHP )

∫ b

a
g.

We denote the set of all KHP -integrable functions g : [0, 1] → X by
KHP([0, 1], X).

Remark 1. By (a) of Theorem 1 it follows that each KH-integrable function
is also KHP -integrable. The reverse implication is not true. In fact let us
consider the following example. Let An = [an, bn] ⊆ [0, 1] be a sequence of
intervals such that a1 = 0, bn < an+1 for all n ∈ N and limn→∞ bn = 1 and
define g : [0, 1]→ c0 by

g(t) =
(

1
2|A2n−1|

χ
A2n−1(t)−

1
2|A2n|

χ
A2n

(t)
)∞

n=1

.

In [10] it is proved that g is a measurable KHP -integrable function which is not
Pettis integrable. In [5] it is showed that the same function is not Kurzweil-
Henstock integrable. Then the family of all Kurzweil-Henstock-Pettis inte-
grable functions is larger than the family of all Kurzweil-Henstock integrable
ones.



546 Luisa Di Piazza

Definition 3. Let Y be a Banach space. A family A ⊂ KH([0, 1], Y ) is said
to be Kurzweil-Henstock equiiintegrable, or simply KH-equiintegrable, on [0, 1]
if for every ε > 0 there exists a gauge δ on [0, 1] such that

sup
g∈A

∣∣∣∣∣∣∣∣σ(g,P)− (KH)
∫ 1

0

g

∣∣∣∣∣∣∣∣ < ε .

for each δ-fine Perron partition P of [0, 1].

Using the notion of KH-equiintegrability, we may characterize the vector
valued KH-integrable functions.

Theorem 2. A function g : [0, 1]→ X is KH-integrable on [0, 1] if and only
if the family {x∗g : x∗ ∈ B(X∗)} is KH-equiintegrable on [0, 1].

Proof. Since

||σ(g,P)− w|| = sup
x∗∈B(X∗)

|σ(x∗g,P)− x∗w|

the “only if” part follows.
To get the “if” part it suffices to show that there exists w ∈ X such that

(KH)
∫ 1

0
x∗g = x∗w for all x∗ ∈ X∗. We define the linear functional Tg :

X∗ → R, by setting Tg(x∗) = (KH)
∫ 1

0
x∗g. We start by proving that Tg is

w∗-continuous; i.e., that for each real α both the sets Q(α) := {x∗ ∈ X∗ :
Tg(x∗) ≤ α} and P (α) := {x∗ ∈ X∗ : Tg(x∗) ≥ α} are w∗-closed. We
consider first Q(α). Since Q(α) is convex, according to the Banach-Dieudonné
Theorem it suffices to show that Q(α) ∩ B(X∗) is w∗-closed. Let x∗0 be a
w∗-cluster point of Q(α) ∩ B(X∗) and let (x∗γ)γ∈I ⊂ Q(α) ∩ B(X∗) be a
net converging to x∗0 in the w∗-topology. Now by the assumption of KH-
equiintegrability, for each given ε > 0 we find a gauge δ and a δ-fine Perron
partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] such that

sup
‖x∗‖≤1

∣∣∣∣∣ (KH)
∫ 1

0

x∗g dt−
p∑

i=1

x∗g(ti)|Ii|

∣∣∣∣∣ < ε . (1)

Moreover, using the convergence of (x∗γ)γ∈I we choose an index γ0 ∈ I such
that

p∑
i=1

∣∣ x∗γ0
g(ti)− x∗0g(ti)

∣∣ < ε . (2)
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Since x∗0 ∈ B(X∗), by (1) and (2) we have

Tg(x∗0) ≤|Tg(x∗0)−
p∑

i=1

x∗0g(ti)|Ii||+
p∑

i=1

|x∗0g(ti)− x∗γ0
g(ti)||Ii|

+ |
p∑

i=1

x∗γ0
g(ti)|Ii| − (KH)

∫ 1

0

x∗γ0
g|+ Tg(x∗γ0

) < α + 3ε.

Since ε is arbitrary, we deduce that x∗0 ∈ Q(α)∩B(X∗). Changing x∗ into −x∗,
we have that also P (α)∩B(X∗) is w∗-closed. Consequently, the functional Tg

is w∗-continuous. Then according to fact that X is the w∗-dual of X∗, there
exists w ∈ X such that Tg(x∗) = x∗w, and this ends the proof.

Remark 2. In the Definitions 1 and 3 if we replace the term “Perron par-
tition” by “partition” we obtain the definitions of McShane integrability and
of McShane equiintegrability, respectively. For the McShane integral, a result
analogous to that in Theorem 2 holds, using of course the notion of McShane
equiintegrability. This result has been proved in [23] Lemma 18, under the
additional hypothesis that the function g is Pettis integrable.

4 Absolute Integrability.

We recall that a function g is called KH-absolutely integrable if both g and
‖g‖ are KH-integrable.

Proposition 1. Let g : [0, 1] → X be an absolutely KH-integrable function
on [0, 1]. Then g is Pettis integrable and for any E ∈M we have∥∥∥∥(KH)

∫
E

g

∥∥∥∥ ≤ ∫
E

‖g‖ . (3)

Proof. The Pettis integrability of g is proved in [4] Proposition 3. Moreover
for any E ∈M we have∥∥∥∥(KH)

∫
E

g

∥∥∥∥ = sup
x∗∈B(X∗)

∣∣∣∣∫
E

x∗g

∣∣∣∣ ≤ sup
x∗∈B(X∗)

∫
E

|x∗g| ≤
∫

E

‖g‖

and this ends the proof.

Remark 3. As it has been observed in [4] the Pettis (and then the McShane
integrability) of a KH-integrable function may not suffice to guarantee the ab-
solute KH-integrability of the function. Indeed there are strongly measurable
Pettis integrable functions that are not Bochner.
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For real valued functions, the absolute integrability of a KH-integrable
function g is characterized by the notion of bounded variation of its primitive
G(t) = (KH)

∫ t

0
g (see [24], Theorem 3.4.1).

For functions taking values in an infinite dimensional Banach space, the
previous condition is only necessary (taking into account inequality (3), the
necessity can be proved as in [24] after trivial changes), but in general it is
not sufficient, as the following example, given in [14] Example 14, shows. Let
E ⊂ [0, 1] be nonmeasurable and define g : [0, 1] → L∞([0, 1]) by g(t) = χ{t}
if t ∈ E, g(t) = φ if t /∈ E, where φ is the null function in [0, 1]. Then g is
Riemann integrable (the reader should see [14] for the definition of Riemann
integral) and consequently KH-integrable. Moreover G(t) = (KH)

∫ t

0
g is

absolutely continuous on [0, 1] (see [14], Theorem 8). But ‖g‖ = χ
E is not

measurable.

We need the following proposition (see also Theorem 4.1 and Remark 4.1
of [20]).

Proposition 2. Let g : [0, 1] → X be an absolutely measurable, Pettis in-
tegrable function. Then for each E ∈ M we have |νg|(E) ≤

∫
E
‖g‖, where

νg is the indefinite Pettis integral of g and |νg| is its variation. Moreover, if
the Banach space X is such that the unit ball of X∗ is weak∗ separable, then
|νg|(E) =

∫
E
‖g‖ for each E ∈M.

Proof. If E ∈M, then for each x∗ ∈ B(X∗),

|x∗νg(E)| ≤
∫

E

|x∗g| ≤
∫

E

‖g‖.

Hence |νg|(E) ≤
∫

E
‖g‖.

Let assume now the weak∗ separability of B(X∗) and let D = {x∗j} be a
dense countable subset of B(X∗) in the weak∗ topology. The Pettis integra-
bility of g implies that the measure |νg| is absolutely continuous with respect
to the Lebesgue measure. Then by the Radon-Nikodym Theorem there exists
a non-negative measurable function h on [0, 1] such that

|νg|(E) =
∫

E

h , (4)

for every E ∈M. Then we obtain

h ≤ ‖g‖ (5)

almost everywhere on [0, 1]. Moreover, since for each x∗ ∈ B(X∗) the function
x∗g is Lebesgue integrable, we have |x∗νg|(E) =

∫
E
|x∗g| ≤ |νg|(E) =

∫
E

h ,
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for each E ∈ M and for each x∗ ∈ B(X∗). Therefore there exists a set
N ⊂ [0, 1] of zero measure such that |x∗jg(t)| ≤ h(t), for each index j and for
all t ∈ [0, 1] \ N . As D is weak∗ dense in B(X∗), we get |x∗g(t)| ≤ h(t) , for
each x∗ ∈ B(X∗) and for all t ∈ [0, 1] \N . Hence

‖g‖ ≤ h (6)

almost everywhere on [0, 1]. By (4), (5) and (6) we infer |νg|(E) =
∫

E
‖g‖ ,

for each E ∈M and this ends the proof.

Theorem 3. Let X be a Banach space such that the unit ball of X∗ is weak∗

separable and let g : [0, 1] → X be KH-integrable on [0, 1]. Then g is abso-
lutely KH-integrable on [0, 1] if and only if g is absolutely measurable, Pettis
integrable and its indefinite Pettis integral is of bounded variation.

Proof. The “only if” part follows from Propositions 1 and 2, by observing
that if a function g is absolutely integrable, then it is absolutely measurable.
The “if” part follows at once from Proposition 2.

Remark 4. We observe that the previous theorem is not true for arbitrary
Banach spaces. Indeed it is enough to consider the function g : [0, 1] →
l2([0, 1]) defined by g(t) = 1

t
χ{t} if t 6= 0, g(t) = φ if t = 0, where φ is the

null function in [0, 1]. Such a function is “scalarly negligible” and therefore
Pettis integrable with Pettis integral equal to zero over any measurable set.
(By the term “scalarly negligible” we mean that for each x∗ ∈ X∗, x∗g(t) = 0
almost everywhere). Since l2([0, 1]) is a super-reflexive Banach space, g is also
McShane integrable (see Theorem 1 of [6]), and then KH-integrable (see [8]).
Moreover ‖g(t)‖ = 1

t for all t ∈ (0, 1]. Then g is absolutely measurable, but
not absolutely integrable.

5 Convergence Theorems

The notion of KH-equiintegrability was first introduced in [17] for real valued
functions and permitting the proof of convergence theorem for pointwise con-
vergent sequence of KH-integrable functions (see also [18], [19], [15], [12] and
[1]).

Recently (see [22] Theorem 1) it has been showed that a pointwise con-
vergent sequence of KH-equiintegrable real valued functions converges in the
Alexiewicz norm to the pointwise limit, and the result may be easily extended
to Banach valued functions.

Our aim in this section is to get for the Kurzweil-Henstock-Pettis integral
a convergence result analogous to the one we have for the Pettis integral (see
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[11] and [20]), using the notion of KH-equiintegrability instead of the notion of
uniform integrability (for the Lebesgue integral). To this purpose we cannot
directly apply the Banach valued version of Theorem 1 in [22], but the as-
sumption of “pointwise convergence” needs to be weakened to the assumption
of “convergence almost everywhere”.

As Gordon observed (see [15] p. 209 and [12]), the concept of KH-equi-
integrability, unlike the concept of uniform integrability, does not allow one
to ignore sets of measure zero. The following Theorem 4 is a variant of Theo-
rem 1 in [22] in which the assumption of “pointwise convergence” is relaxed
considering sequences of pointwise bounded functions.

We recall that if g ∈ KH([0, 1], X), the Alexiewicz norm of g is defined by
‖g‖KH = sup{‖(KH)

∫ t

0
g‖ : 0 ≤ t ≤ 1}.

The following lemma may be proved in a standard way (when X = R and
the family A contains only a function see [15] p. 323).

Lemma 1. Let Y be a Banach space, let A be a pointwise bounded family
of functions g : [0, 1] → Y and let M ⊂ [0, 1]. If |M | = 0, then for each
ε > 0, there exists a gauge δ on M such that supg∈>A σ(‖g‖,P) < ε, for each
partition P anchored in M .

Theorem 4. Let (gn ∈ KH([0, 1], X))n be a sequence of functions and let
M ⊂ [0, 1] be a set with |M | = 0 such that

(i) gn(t)→ g(t) for t ∈ E where E = [0, 1] \M ,

(ii) (gn)n is pointwise bounded in M ,

(iii) (gn) is KH-equiintegrable on [0, 1].

Then g ∈ KH([0, 1], X) and ‖g − gn‖KH → 0. Moreover, if δ is the gauge
corresponding to ε in the definition of KH-equiintegrability and δ′ is the gauge
corresponding to ε in Lemma 1 applied to the sequence (gn)n in M , then∣∣∣∣∣∣∣∣σ(gχ

E ,P)− (KH)
∫ 1

0

g

∣∣∣∣∣∣∣∣ < 3ε , (7)

for each δ0-fine Perron partition P of [0, 1], where δ0(t) = δ(t) if t ∈ E and
δ0(t) = min(δ(t), δ′(t)) if t ∈M .

Proof. By conditions (i) and (ii) it follows that (gn)n is pointwise bounded
in [0, 1]. Then the sequence (gn

χ
E)n is pointwise convergent to gχ

E on [0, 1]
and by condition (iii), KH-equiintegrable on [0, 1]. (See [14] p. 361 for the
case X = R. The general case is straightforward.) By [22] Theorem 1 gχ

E is
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KH-integrable on [0, 1] and ‖gχ
E − gn

χ
E‖KH → 0. Thus by (c) of Theorem

1 also g is KH-integrable on [0, 1]. Since ‖g − gn‖KH = ‖gχ
E − gn

χ
E‖KH ,

also ‖g − gn‖KH → 0. At last it is easy to check that, if δ is the gauge cor-
responding to ε in the definition of KH-equiintegrability and δ′ is the gauge
corresponding to ε in Lemma 1 applied to the sequence (gn)n in M , then ine-
quality (7) holds. (For the case X = R see [14] Theorem 13.16 and p. 361.
The general case is straightforward.)

Next theorem is a Kurzweil-Henstock version of the Vitali Theorem for
Pettis integral (see [11] and [20]) and its proof is based on the same idea.

Theorem 5. Let g : [0, 1] → X be a function and assume that there exists a
sequence (gn ∈ KHP([0, 1], X))n such that:

(i) the family {x∗gn(t) : x∗ ∈ B(X∗), n ∈ N} is KH-equiintegrable on
[0, 1],

(ii) the sequence (gn)n is pointwise bounded in [0, 1],

(iii) for each x∗ ∈ X∗, limn→∞ x∗gn = x∗g almost everywhere in [0, 1].

Then g ∈ KHP([0, 1], X) and for each x∗ ∈ X∗ we have ‖x∗g−x∗gn‖KH → 0.
Moreover, if the Banach space X is separable, then g ∈ KH([0, 1], X).

Proof. We fix x∗ ∈ X∗ and apply Theorem 4 to the sequence (x∗gn(t))n.
Then x∗g is KH-integrable, ‖x∗g − x∗gn‖KH → 0 and for each t ∈ [0, 1]

lim
n→∞

(KH)
∫ t

0

x∗gn = (KH)
∫ t

0

x∗g . (8)

Now fix t0 ∈ [0, 1] and denote by C the weak closure of the set ((KHP )
∫ t0
0

gn)n.
Since ((KHP )

∫ t0
0

gn)n is a weakly Cauchy sequence, it is bounded. Moreover
C \{(KHP )

∫ t0
0

gn}n consists at most of one point. We want to prove that C is
weakly compact. We assume by contradiction that C is not weakly compact.
Then applying Theorem 1 of [16] ((1)←→ (9)) with T = X and E = C, there
are θ > 0, (xm)m ⊂ C and a sequence (y∗k)k ⊂ B(X∗) such that 〈y∗k, xm〉 = 0
if k > m and 〈y∗k, xm〉 > θ if k ≤ m. Thus we can find a subsequence (hm)m

of (gn)n such that:

(j) (KH)
∫ t0
0

y∗khm = 0 if k > m,

(jj) (KH)
∫ t0
0

y∗khm > θ if k ≤ m,

(jjj) limm→∞(KH)
∫ t0
0

x∗hm = (KH)
∫ t0
0

x∗g, for each x∗ ∈ X∗.
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By condition (iii) the function g is weakly measurable. Then we may apply
Theorem 2F of [7] to the sequence (y∗k)k to find a subsequence (y∗kj

)j of (y∗k)k

such that (y∗kj
g)j is almost everywhere convergent in [0, t0]. Now if y∗0 is a

weak∗ cluster point of (y∗kj
)j (The Banach-Alaoglu-Bourbaki Theorem guar-

antees the existence of such a point.), then (y∗kj
g)j converges to y∗0g almost

everywhere in [0, t0].
By condition (i) it follows that the family {x∗hm(t) : x∗ ∈ B(X∗), m ∈ N}

is KH-equiintegrable on [0, 1]. Now for each j let Nj ⊂ [0, 1] be a set such that
|Nj | = 0 and y∗kj

hm → y∗kj
g, everywhere on [0, 1] \ Nj and set M =

⋃
j Nj .

Then we apply in M Lemma 1 to the family {y∗kj
hm : j, m ∈ N}, and Theorem

4 to the sequences (y∗kj
hm)m, j = 1, 2, . . . . So taking into account inequality

(7), we infer that the sequence (y∗kj
gχ

[0,1]\M )j is KH-equiintegrable in [0, 1].
Therefore, applying once again Theorem 4 and (c) of Theorem 1 we obtain

lim
j→∞

(KH)
∫ t0

0

y∗kj
g = (KH)

∫ t0

0

y∗0g .

Moreover by (jj) and (8), for each index j we find

lim
m→∞

(KH)
∫ t0

0

y∗kj
hm = (KH)

∫ t0

0

y∗kj
g ≥ θ .

Then

(KH)
∫ t0

0

y∗0g ≥ θ . (9)

On the other hand, since for each m, hm is KHP -integrable, the functional
x∗ → (KH)

∫ t0
0

x∗hm is weak∗-continuous. Therefore if (y∗α)α is a subnet of
(y∗kj

)j weak∗ converging to y∗0 , by (j) for each m we infer

lim
α

(KH)
∫ t0

0

y∗αhm = lim
α

y∗α(KHP )
∫ t0

0

hm

= y∗0(KHP )
∫ t0

0

hm = (KH)
∫ t0

0

y∗0hm = 0.

Hence by (8)

lim
m

(KH)
∫ t0

0

y∗0hm = (KH)
∫ t0

0

y∗0g = 0,

in contradiction with (9). Thus the set C is weakly compact. By (8) it follows
that the sequence ((KHP )

∫ t0
0

gn)n is weak-Cauchy. Then limn(KHP )
∫ t0
0

gn ∈
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X. Since t0 is arbitrary, the function g is KHP -integrable and limn(KHP )
∫ t0
0

gn

= (KHP )
∫ t0
0

g.
If X is separable, then B(X∗) is metrizable in the weak∗ topology. Since

B(X∗) is also weak∗-compact, it is weak∗ separable. Let D = {x∗j} be a
countable dense subset of B(X∗) and, for each j let Ej ⊂ [0, 1] be a set
such that |Ej | = 0 and x∗jgn → x∗jg, everywhere on [0, 1] \ Ej . Put S =
[0, 1] \ (

⋃
j Ej). Let now ε > 0 be given. Fix x∗0 ∈ B(X∗) and denote by (x∗js

)s

a subsequence of D weak∗-convergent to x∗0. By conditions (i) and (ii), taking
into account Lemma 1, it follows that also the family {x∗jgn

χ
S : n ∈ N, j ∈ N}

is KH-equiintegrable in [0, 1]. Let δ be a gauge corresponding to ε in the
definition of KH-equiintegrability. Then if P is a δ-fine Perron partition of
[0, 1], by (8) we have∣∣∣σ(x∗0gχ

S ,P)− x∗0(KHP )
∫ 1

0
g
∣∣∣ = lims

∣∣∣σ(x∗js
gχ

S ,P)− x∗js
(KHP )

∫ 1

0
g
∣∣∣

= lims limn

∣∣∣σ(x∗js
gn

χ
S ,P)− x∗js

(KHP )
∫ 1

0
gn

∣∣∣ ≤ ε .

Therefore the family {x∗gχ
S : x∗ ∈ B(X∗)} is KH-equiintegrable in [0, 1]

and applying Theorem 2 we get the KH-integrability of gχ
S . Then by (c) of

Theorem 1 also g is KH-integrable and this ends the proof. �

Remark 5. We notice that also a McShane version of Theorem 4 and Theo-
rem 5 holds. In such a case the McShane integral, the Pettis integral and the
L1-norm need to be considered instead of the Kurzweil-Henstock integral, the
Kurzweil-Henstock-Pettis integral and the Alexiewicz norm, respectively, and
to use Theorem 4 of [21] instead of Theorem 1 of [22]. But in the McShane ver-
sion of Theorem 5, the second part follows at once, since in a separable Banach
space each Pettis integrable function is also McShane integrable (see [13] and
[9]). An analogous result is not true for the Kurzweil-Henstock integral. In-
deed the example in Remark 1 is a c0-valued function that is KHP -integrable,
but not KH-integrable.

Remark 6. We observe that in the proof of the second part of Theorem 5
we only use the fact that in a separable Banach space X, the unit ball B(X∗)
is weak∗ separable. Therefore in the claim we can replace the hypothesis of
separability of X by that of weak∗ separability of B(X∗).

We note yet that really in the hypotheses of Theorem 5, according to
Theorem 2, we require also the KH-integrability of each function gn. But, in
general, without the hypothesis of separability of the space X (or of weak∗

separability of the unit ball B(X∗)), we may not get the KH-integrability of
the function g. Indeed, at least under the Continuum Hypothesis, there is an
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example (see [6] Example (CH)) of a scalarly negligible function g which is
not McShane integrable. Therefore such a function g is Pettis integrable, and
then KHP -integrable, but is not KH-integrable (see [8]). If we set gn ≡ 0 for
each n, the sequence (gn)n and the function g satisfy all the hypotheses of
Theorem 5.

Acknowledgment. The author is grateful to the referee for useful comments
to the original version of Proposition 2 and Theorem 3.
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