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Abstract

This paper corrects some errors found in [2], which discusses an
extension of Lorentz transformations over a non-Archimedean valued
field; namely, the p-adic field Qp. The paper [2] is based on the results
given by Hyers [7] which showed that for a continuous function f defined
on R, the Cauchy functional equation f(x + y) = f(x) + f(y) is stable.
By stable we mean that if there exists ε > 0 such that ‖f(x+y)−f(x)−
f(y)‖ < ε, ∀x, y, then there exists a unique and continuous L such that
‖L(x) − f(x)‖ ≤ ε, ∀x and L(x + y) = L(x) + L(y). In this paper, we
show this result is true on the p-adic field Qp.

1 Introduction.

In 1908, K. Hensel [6] introduced the concept of p-adic numbers as a tool for
solving problems in algebra and number theory. Specifically, his idea was to
extend the analogies between the ring of integers Z and the field of rational
numbers Q to the field of rational functions and Laurent series. The way this
was accomplished was by expressing any rational number x ∈ Q as the sum

x =
∞∑

n≥n0

anpn,
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where n0 ∈ Z, p is a prime number, and an ∈ Z where an ≤ p− 1. For a fixed
value of p, we denote the complete field of p-adic numbers as Qp [5] .

In 1941, Hyers [7] showed that if a continuous function was “nearly” linear;
that is, there exists an ε > 0 such that ‖f(x+y)−f(x)−f(y)‖ < ε, ∀x, y ∈ R,
then there exists a unique and continuous L such that ‖L(x) − f(x)‖ ≤ ε,
and L(x + y) = L(x) +L(y). Interest in this problem arose from the question
of the stability of the Cauchy functional equation f(x + y) = f(x) + f(y).
For a comprehensive survey of the origins and evolution of this problem see
[4, 8, 11, 12].

Later, Everett and Ulam [3] presented results on generalizing Lorentz
groups over p-adic fields. More recently, p-adic fields have become of con-
siderable interest to physicists. A key property of p-adic fields is that they do
not satisfy the Archimedean axiom; ∀a, b > 0, there exists an integer n, such
that a < nb. This property has been found to be useful in theoretical physics.
In quantum mechanics [10, 9] it has long been recognized that fundamental
limitations on measuring conjugate quantities such as position-momentum or
energy-time exist because of the Heisenberg uncertainty principle. For exam-
ple, any attempt at taking gravitational measurements at sub-Planck domains,
say of the order of l = 10−35m, would change the underlying geometry and
introduce distortions to l. Introducing a p-adic space-time could provide a
means of quantifying the non-localization affects.

In this paper, we correct the mistakes in the proof given in [2]; namely, we
prove the stability of the functional equation f(x + y) = f(x) + f(y), where
x, y are in the p-adic field Qp.

2 Basic Definitions.

In this section, we recall some definitions and results that will be needed later
when discussing ε-linear transformations over p-adic fields.

Definition 1 (Non-Archimedean Valuation). Let K denote a scalar field, and
let | · | denote the usual absolute value (valuation) where | · | : K → R. A
non-Archimedean valuation is a function | · |p that satisfies the strong triangle
inequality; namely,

|x + y|p ≤ max{|x|p, |y|p} ≤ |x|p + |y|p,

∀x, y ∈ K. The associated field K is referred to as a non-Archimedean field.

Lemma 1 (p-adic Valuation). Given any nonzero rational number x ∈ Q,
there exists a unique integer n ∈ Z, such that x = a

b pn, where a and b are
integers not divisible by p [5]. The p-adic valuation is defined as |x|p := p−n.
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Definition 2 (p-adic Field). For each prime p, define the p-adic field Qp to
be the set of all p-adic expansions

Qp :=
{

x|x =
∞∑

k≥n0

akpk
}

,

where ak ≤ p− 1 are integers.

Definition 3 (ε-Linear Function). The function f : Qp → R is said to be
ε-linear if there exists an ε ∈ R+, such that

‖f(x + y)− f(x)− f(y)‖ < ε, ∀x, y ∈ Qp. (1)

3 ε-Linear Functions.

The results of this section will show that given a continuous, ε-linear function
f : Qp → R, there exists a unique, additive and continuous function L : Qp →
R such that

‖L(x)− f(x)‖ ≤ ε, ∀x ∈ Qp.

Lemma 2. Every ε-linear function f satisfies the inequality

‖f(mx)−mf(x)‖ ≤ (m− 1)ε, ∀x ∈ Qp, ∀m ∈ Z. (2)

Furthermore,

‖f(p−nx)− p−nf(x)‖ ≤ (1− p−n)ε, ∀x ∈ Qp, ∀n ∈ Z, (3)

where p prime.

Proof. Since the proof for m ∈ Z− is the same as for m ∈ N, we only need
to show the latter case. Substituting y = x into inequality (1) gives the result
for m = 2.

‖f(2x)− f(x)− f(x)‖ = ‖f(2x)− 2f(x)‖ < (2− 1)ε.

Using induction, assume (2) is true for some m. For the m + 1 case we have

‖f((m + 1)x)− (m + 1)f(x)‖ =‖f((m + 1)x)− f(mx)
+ f(mx)−mf(x)− f(x)‖

≤‖f((m + 1)x)− f(mx)− f(x)‖
+ ‖f(mx)−mf(x)‖

≤ε + (m− 1)ε = mε.
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To show that f satisfies inequality (3), substitute m = pn and replace x with
p−nx in inequality (2) and divide by pn to obtain the stated result.

Lemma 3. The sequence {qk(x)}∞k=1, where qk(x) := p−kf(pkx), x ∈ Qp is a
Cauchy sequence.

Proof. Let l ≥ k, where l, k ∈ N. Consider the difference

‖qk(x)− ql(x)‖ =‖p−kf(pkx)− p−lf(plx)‖
=p−k‖f(pk−lplx)− pk−lf(plx)‖.

Using inequality (3), this difference can be made arbitrarily small because

‖qk(x)− ql(x)‖ = p−k‖f(pk−lplx)− pk−lf(plx)‖ ≤ p−k(1− pk−l)ε.

Hence {qk(x)} is a Cauchy sequence.

Lemma 4. Let
L(x) := lim

k→∞
qk(x). (4)

Then there exists an ε > 0, such that ∀x ∈ Qp, ‖L(x)− f(x)‖ ≤ ε.

Proof. In inequality (3) make the replacement x ↔ pnx to get

‖f(x)− p−nf(pnx)‖ ≤ (1− p−n)ε.

Taking the limit as n →∞ gives the desired result.

We now show that the function L is unique, additive, and assuming f
continuous, L is also continuous.

Lemma 5. For n ∈ Z, L(nx) = nL(x).

Proof.

‖p−kf(pknx)− np−kf(pkx)‖ =p−k‖f(npkx)− nf(pkx)‖
≤p−k(n− 1)ε,
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in which case

‖L(nx)− nL(x)‖ =‖ lim
k→∞

p−kf(pknx)− lim
k→∞

np−kf(pkx)‖

= lim
k→∞

p−k‖f(pknx)− np−kf(pkx)‖

≤ lim
k→∞

p−k(n− 1)ε = 0,

and therefore L(nx) = nL(x).

This result will be needed in order to show that the function L is unique.
The next theorem will prove this fact by contradiction.

Theorem 1. The limiting function L is unique.

Proof. Seeking a contradiction, suppose that the limiting function L is not
unique; i.e., there exists an L̂, such that

‖L̂(x)− f(x)‖ ≤ ε ∀x ∈ Qp;

however, for some a ∈ Qp, L̂(a) 6= L(a). Since ‖L̂(a) − L(a)‖ 6= 0 and ε
specified, choose the smallest n ∈ N such that

n >
3ε

‖L̂(a)− L(a)‖
,

in which case ‖L̂(na)− L(na)‖ > 3ε. Furthermore,

‖L̂(na)− L(na)‖ ≤ ‖L̂(na)− f(na)‖+ ‖L(na)− f(na)‖ ≤ 2ε,

in which case 3ε < ‖L̂(na) − L(na)‖ ≤ 2ε, which is clearly a contradiction.
Therefore the limiting function L is unique.

Lemma 6. The limiting function L is additive; that is,

L(x + y) = L(x) + L(y), ∀x, y ∈ Qp.

Proof. Since f is ε-linear, ∀x, y ∈ Qp and k ∈ N,

‖f(pkx + pky)− f(pkx)− f(pky)‖ < ε.
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Multiplying by p−k and taking the limit as k →∞ gives

‖L(x + y)− L(x)− L(y)‖ = lim
k→∞

‖p−kf(pkx + pky)

− p−kf(pkx)− p−kf(pky)‖
≤ lim

k→∞
p−kε = 0.

Theorem 2. If f is continuous on Qp, then L is continuous on Qp.

Proof. Seeking a contradiction, suppose that L is not continuous at some
point a ∈ Qp. Specifically, assume there exists a sequence {xn}∞n=0, such that
xn → a but lim

n→∞
L(xn) 6= L(a). By the additivity property,

L(xn − a) = L(xn)− L(a),

in which case
lim

n→∞
L(xn − a) = lim

n→∞
(L(xn)− L(a)) .

Using the limit definition of L given in (4) we obtain

lim
n→∞

L(xn − a) = lim
n→∞

lim
k→∞

p−kf
(
pk(xn − a)

)
= lim

k→∞
p−k lim

n→∞
f

(
pk(xn − a)

)
.

Since f is everywhere continuous on Qp and xn → a,

lim
n→∞

f
(
pk(xn − a)

)
= f(0),

in which case

lim
n→∞

L(xn − a) = lim
n→∞

(L(xn)− L(a)) = L(0).

Using the additivity property L(0 + 0) = L(0) + L(0), which implies that
L(0) = 0. This produces the contradiction

lim
n→∞

L(xn)− L(a) = 0,

and therefore L is continuous on Qp.
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4 Summary and Future Directions.

We have shown that if f : Qp → R is ε-linear, then there exists a unique,
continuous and additive function L, such that

‖L(x)− f(x)‖ ≤ ε, ∀x ∈ Qp,

where additivity means L(x + y) = L(x) +L(y). Future work will be to deter-
mine the stability of the logarithmic functional equation f(xy) = f(x)+ f(y),
and the exponential functional equation f(x + y) = f(x)f(y) over the p-adic
field.
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