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Abstract

This paper corrects some errors found in [2], which discusses an
extension of Lorentz transformations over a non-Archimedean valued
field; namely, the p-adic field Q. The paper [2] is based on the results
given by Hyers [7] which showed that for a continuous function f defined
on R, the Cauchy functional equation f(z +y) = f(x) + f(y) is stable.
By stable we mean that if there exists € > 0 such that ||f(z+y) — f(z) —
FfW)| < e, Vx,y, then there exists a unique and continuous £ such that
|1£(z) — f(x)]| <€ Vo and L(z +y) = L(z) + L(y). In this paper, we
show this result is true on the p-adic field Q,.

1 Introduction.

In 1908, K. Hensel [6] introduced the concept of p-adic numbers as a tool for
solving problems in algebra and number theory. Specifically, his idea was to
extend the analogies between the ring of integers Z and the field of rational
numbers Q to the field of rational functions and Laurent series. The way this
was accomplished was by expressing any rational number x € QQ as the sum
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T = E anp

n>ngo
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where ng € Z, p is a prime number, and a,, € Z where a,, < p— 1. For a fixed
value of p, we denote the complete field of p-adic numbers as Q,, [5] .

In 1941, Hyers [7] showed that if a continuous function was “nearly” linear;
that is, there exists an € > 0 such that ||f(z+y)— f(z) — f(y)|| <€, Vx,y € R,
then there exists a unique and continuous £ such that ||[L(z) — f(z)|| < e,
and L(x+y) = L(z) + L(y). Interest in this problem arose from the question
of the stability of the Cauchy functional equation f(z +y) = f(z) + f(y).
For a comprehensive survey of the origins and evolution of this problem see
[4, 8, 11, 12].

Later, Everett and Ulam [3] presented results on generalizing Lorentz
groups over p-adic fields. More recently, p-adic fields have become of con-
siderable interest to physicists. A key property of p-adic fields is that they do
not satisfy the Archimedean axiom; Va,b > 0, there exists an integer n, such
that a < nb. This property has been found to be useful in theoretical physics.
In quantum mechanics [10, 9] it has long been recognized that fundamental
limitations on measuring conjugate quantities such as position-momentum or
energy-time exist because of the Heisenberg uncertainty principle. For exam-
ple, any attempt at taking gravitational measurements at sub-Planck domains,
say of the order of I = 1073°m, would change the underlying geometry and
introduce distortions to [. Introducing a p-adic space-time could provide a
means of quantifying the non-localization affects.

In this paper, we correct the mistakes in the proof given in [2]; namely, we
prove the stability of the functional equation f(z + y) = f(z) + f(y), where
x,y are in the p-adic field Q,.

2 Basic Definitions.

In this section, we recall some definitions and results that will be needed later
when discussing e-linear transformations over p-adic fields.

Definition 1 (Non-Archimedean Valuation). Let K denote a scalar field, and
let | - | denote the usual absolute value (valuation) where | - | : K — R. A
non-Archimedean valuation is a function | - |, that satisfies the strong triangle
inequality; namely,

|z + ylp < max{|z|y, [ylp} < lzlp + [yl
Vz,y € K. The associated field K is referred to as a non-Archimedean field.
Lemma 1 (p-adic Valuation). Given any nonzero rational number x € Q,

there exists a unique integer n € Z, such that x = § p", where a and b are
integers not dwisible by p [5]. The p-adic valuation is defined as |z|, == p~ ™.
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Definition 2 (p-adic Field). For each prime p, define the p-adic field Q, to
be the set of all p-adic expansions

oo

Qo= {ote= 3" wrt,

k>ngo
where a; < p — 1 are integers.

Definition 3 (e-Linear Function). The function f : Q, — R is said to be
e-linear if there exists an € € R, such that

[f(x+y) = flz) = fWl <e Yo,y € Qp. (1)

3 eLinear Functions.

The results of this section will show that given a continuous, e-linear function
f:Qp — R, there exists a unique, additive and continuous function £ : Q, —
R such that

I£(2) - £(@)]| < €, Va € Q.

Lemma 2. FEvery e-linear function f satisfies the inequality
| f(mz) —mf(z)] < (m—1)e, Yo € Qp, Ym € Z. (2)
Furthermore,
[f(p~ ") —p " f(@)| < (1 —p~")e, Vo € Qp, Vn € Z, 3)

where p prime.

PROOF. Since the proof for m € Z~ is the same as for m € N, we only need
to show the latter case. Substituting y = x into inequality (1) gives the result
for m = 2.

1f(22) = f(z) = fo)l = [1f(22) = 2f(2)]| < (2 —1)e.

Using induction, assume (2) is true for some m. For the m + 1 case we have

[£((m + Dz) = (m+ D f(@)]| =[f((m + D) - f(mz)
+ f(mz) —mf(x) - f(z)|
<NF((m + D)) = f(ma) — f(2)]|
+ 1 f(ma) —mf(z)]|

<e+ (m —1)e = me.
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To show that f satisfies inequality (3), substitute m = p™ and replace = with
p~ "z in inequality (2) and divide by p™ to obtain the stated result. O

Lemma 3. The sequence {qx(2)}3,, where qi(x) := p~*f(p*x), 2 € Q, is a
Cauchy sequence.

PROOF. Let | > k, where [, k € N. Consider the difference
lax () = au(@)|| =llp~* f(*z) = p~ F (')
=p *If (" p'e) — " F ().
Using inequality (3), this difference can be made arbitrarily small because
g (x) — au(@)l| = p~ "I £ (" 'p'e) —p" ' f(p'a)|| < p~H(L - PP D).

Hence {gx(z)} is a Cauchy sequence. O

Lemma 4. Let

L(z) = lim gi(z). (4)

’ k—o0

Then there exists an € > 0, such that Vo € Qp, ||L(z) — f(z)| <e.

PROOF. In inequality (3) make the replacement x < p"z to get
[f(@) =p~"f(p"2)[| < (1 —p")e.
Taking the limit as n — oo gives the desired result. O

We now show that the function £ is unique, additive, and assuming f
continuous, £ is also continuous.

Lemma 5. Forn € Z, L(nz) = nL(x).

PROOF.

=" f(p"nx) — np™* f (") =p~"|| f(np"x) — nf(p"z)|
Spik(n - 1)67
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in which case
1£(na) = nL(@)| = lim p~"f(p"na) — lim np=* f(p*z)|
= lim p~*|[f(p*na) —np™"f (p"2)]
< klirr()lcp_k(n —1De=0,
and therefore L(nx) = nL(x). O

This result will be needed in order to show that the function £ is unique.
The next theorem will prove this fact by contradiction.

Theorem 1. The limiting function L is unique.

PROOF. Seeking a contradiction, suppose that the limiting function £ is not
unique; i.e., there exists an £, such that

I£(z) = f(2)]| < e Vz € Qp;

however, for some a € Q,, L(a) # L(a). Since ||£(a) — L(a)|| # 0 and €
specified, choose the smallest n € N such that

in which case ||£(na) — £(na)| > 3¢. Furthermore,
1£(na) = L(na)|| < [|£(na) = f(na)|| + [|£(na) = f(na)|| < 2,

in which case 3¢ < ||£(na) — L£(na)| < 2€, which is clearly a contradiction.
Therefore the limiting function £ is unique. O

Lemma 6. The limiting function L is additive; that is,

Lz +y) = L(z) + L(y), Yo,y € Qp.

PROOF. Since f is e-linear, Vz,y € Q, and k € N,

1f "z + pPy) — f(pFx) — FP )| <.
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k

Multiplying by p~" and taking the limit as k — oo gives

1£ +y) = L) = L{y)]| = lim_[[p~* f(p"z + p*y)

—p " f ) —p F f (M)
< lim p~Fe=0. O

T k—oo

Theorem 2. If f is continuous on Q,, then L is continuous on Q,.

PROOF. Seeking a contradiction, suppose that £ is not continuous at some
point a € Q,. Specifically, assume there exists a sequence {z,,}52, such that
Zn — a but im L(z,) # L(a). By the additivity property,

n—oo

L(xy —a) = L(z,) — L(a),

in which case
lim L(z, —a)= lim (L(z,)— L(a)).

n—00 n—0o0

Using the limit definition of £ given in (4) we obtain

lim £(z, —a) = lim lim p~*f (p*(z, — a))

n—oo n—oo k—oo
= lim p~* lim f (pk'(xn —a)).
k—o0 n— 00
Since f is everywhere continuous on Q, and z,, — a,

lim f (p*(zn — a)) = £(0),

n—oo

in which case

lim L£(z, —a) = lim (£(z,) — L(a)) = £(0).

n—oo n—o0

Using the additivity property £(0 + 0) = £(0) + £(0), which implies that
L£(0) = 0. This produces the contradiction

lim £L(zy)— L(a) =0,

n—oo

and therefore £ is continuous on Q,. O
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4 Summary and Future Directions.

We have shown that if f : Q, — R is e-linear, then there exists a unique,
continuous and additive function £, such that

1£(z) = f(@)]| <€ Vo € Qp,

where additivity means L(x +y) = L(x) + L(y). Future work will be to deter-
mine the stability of the logarithmic functional equation f(zy) = f(x)+ f(y),
and the exponential functional equation f(z +y) = f(z)f(y) over the p-adic
field.
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