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ON THE RIGHT PREPONDERANT LIMIT

Abstract

In article [4] D. N. Sarkhel investigates the right preponderant limit
of a function and he proves that a such finite limit is of Baire 1 class.
In this article I generalize this Sarkhel’s result.

Let R be the set of all reals. Denote by p the Lebesgue measure in R and
by pe the outer Lebesgue measure in R. For a set A C R and a point x we
define the upper (lower) outer right density D, (A, z) (D; (A, x)) of the set A
at the point x as
(AN [o,2 + B)

limsu
h~>0+p h
€ A ) h .
(I%m(i)rif pe(AN [z z+h]) respectively).

In [4] D. N. Sarkhel investigates the following notion:

A function F': R — R is said to have finite right preponderant limit p at
a point ¢ € R, if there is a number r € [0, %) so that for each n > 0 the upper
right density

Dy ({z € (c,00);|[F(x) —pl = n},c) <7

Moreover in [4] Sarkhel proves that if F' : [a,b] — R has finite right pre-
ponderant limit f(z) at each point = € [a,b) then f is Baire one on [a, b).

In this article I consider a more general property of f which imply that f
is Baire 1.

Remark 1. Firstly we observe that each function F : [a,b] — R having finite
right preponderant limit at each point x € [a, b) is measurable (in the Lebesgue
sense).
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PROOF. Assume, to a contrary that F' is not measurable. Then there are reals
¢, d and a measurable set A C [a,b) such that ¢ < d, u(A) > 0 and

1(A) = pe(Ar ={z € A F(z) < c}) = pe(Az = {z € A4, F(z) > d}).

There is a point y € Ay with D} (A1,y) = D;" (A2,y) = 1. So for n = dgc and
for each real p € R we have

1
Dy ({w;|F() —pl = n}y) = 1> 3,
and F' does not have any finite right preponderant limit at y. This finishes
the proof. O

Let F: R — R be a measurable function and let ¢ € R be a point. We
will say that a real p € L,(F,c) if for each real n > 0 there is a positive real
r. such that for each real h € (0,r.] the inequalities

plle,e+ A NF((p—m,0)) _ 1
h 2
and
plle, e+ NF 2 ((zo0,p+m)) 1
h 2’
are true.

Evidently if a real p € R is a right preponderant limit of a function F :
R — R at a point ¢ then p € L,.(F,c). The following example shows that the
inverse implication is not true.

Example. For n > 1 there are closed intervals

I = [nil, 1 = [, ba] and Ky = [en,d]
such that
K, Cint(J,) C J, Cint(1,)
and ) ) )
Df (=@l 0) = DF (b 71.0) = 3,

n n

and for each real A > 0 the inequalities

p([0, A NU, ([ anl U ER)) 1
h 2
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and
N([O’h] n Un([bm %] UKny)) > 1
h 2

are true.
Let
F(z) =0 for z € (—0,0] UUKn,
n

F(z)=-1 for x €] ap), n>1,

’I’L+17 et
1

Fl) =1 f 1 by, =],
(x) or xe[,oo)ULnJ[ n]

and F is linear on the intervals [a,, ¢,] and [d,,,b,], where n > 1. Then the
values F'(z) € L,.(F,x) for each point z € R, but F' does not have any right
preponderant limit at 0.

Theorem 1. Let F : R — R be a measurable function. If a function f : R — R
is such that f(x) € L.(F,x) for all x € R then f is Baire one class.

PROOF. Assume, to a contradiction that f is not Baire one class. Then there
is a nonempty perfect set A such that osc(f/A)(x) > 0 at each point x € A.
So for each point x € A there is a pair (u(z),v(z)) of rationals such that

u(z) <wv(z) and z € cd({t € A; f(t) <u(x)}) Ne({t € A; f(t) > v(x)}),

(cl(X) denotes the closure of X). Let ((uy,v,)) be an enumeration of all pairs
of rationals with u, < v, for n > 1 and let A, = {z € A;(u(z),v(z)) =
(un,vn)}. Observe that each set A,, is closed and

A=A,

Since A is a complete metric space, it is of the second category in itself and
consequently there is a positive integer k such that Ay is of the second category
in A. There is an open interval I such that § # I N A C Ag. Let ¢, z be reals
such that up <t < z < vg. Since

INA={zelInA flz)>ttu{zelInA;f(z) <z}
at least one of the sets

Ei={xeclInA;f(z)>t} and Ex ={z €INA; f(x) <z}
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is of the second category in A. Without loss of the generality we may assume
that the set E; is of the second category in A.

For each point 2z € F; there is a rational r(x) > 0 such that for each real
h € (0,r(z)] the inequality

p(lz,x +h N {y; Fly) > t})
h

is true. Enumerate all positive rationals in a sequence (r,) and put

>1
2

H,={te€ Ey;r(z)=r,} for n>1.

Since
El = U an

there is a positive integer 7 such that the set H; is of the second category in
INA. There is an open interval J C I such that ) # JNA C cl(JNH;). Since
the intersection JN Ay = JN A, there is a point b € ANJ with f(b) < uy < t.
But f(b) € L,(F,b), so there is an interval K C J of the form [b,b + hq] such
that hqy < r; and

w0 {y; Fly) <t}) 1
> —.
ha 2
Consider two cases:
(1) b is not isolated on the right hand in AN J;
(2) b is isolated on the right hand in AN J.

(1) Since the function

p(hy b+ ha] N {y; Fy) <t})
b+hi—h

is continuous at b, there is a real ¢ € (b,b+ hy) N H; such that

plle, b+ ha] N {y; Fy) <t})
b+hy—c

0#h—

>1
2
and b+ hy —c < r;. Since c € H; and b+ hy; — ¢ < r;, we have

plle, b+ ] N {y; Fy) > t}) S
b+h170 2

| —

On the other hand

p(le, b+ ha] N {y; Fy) < t}) S
b+h1—c 2

| —
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Consequently, there is a point y; with F'(y1) < t and F(y1) > t, a contradic-
tion.
(2) Since the function

p([h, b+ ha] 0 {y; Fy) <t})
b+hi—h

0#£h—

is continuous at b, there is a real ¢ € (c0,b) N H; such that

plle.b+mn{y Fly) <tp) 1
b+h1*0 2

and b+ hy — ¢ < r;. Since ¢ € H; and b+ hy — ¢ < r;, we have

plle, b+ ha] N {y; F(y) > t}) S
b+h1—C 2

| —

On the other hand

ple.b+m]n{y Fly) <t}) 1
b+h —c 2"

Consequently, there is a point y; with F(y1) < t and F(y1) > t, a contradic-
tion.
In the remaining cases we reason similarly. So the proof is finished. O

Professor B. S. Thomson observed the following remark.

Remark 2. Since the main argument in the proof of Theorem 1 uses an
intersection condition, Theorem 1 may be deduced from a general Thomson’s
Theorem 33.1 in [5], p. 74.
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