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COMPACTNESS OF FAMILIES OF
CONVOLUTION OPERATORS WITH

RESPECT TO CONVERGENCE ALMOST
EVERYWHERE

Abstract

For a given sequence of measures µn on the circle T weakly con-
vergent to the Dirac measure, we ask, is it possible to extract a subse-
quence n(j) such that for any f in the space L1(L2, L∞) the convolutions
f ∗ µn(j) converge to f almost everywhere. We show that it is crucial
whether the measures are absolutely continuous, discrete or singular
(non-atomic).

1 Introduction.

Let µn (n = 1, 2, . . . ) be a sequence of probability measures on the circle
T = R/2πZ or in Rd. Consider the convolution operators

f → (f ∗ µn)(x) :=
∫

f(x− t) dµn(t).

One may ask whether they converge in a functional space F ⊂ L1, meaning
that there is a measure µ, such that for any f ∈ F ,

(f ∗ µn)(x) → (f ∗ µ)(x) (n →∞)

almost everywhere (a.e.) with respect to Lebesgue measure.
The same question can be asked for a family µt, depending on a continuous

parameter t . A number of well-known results can be viewed in this framework.
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In particular, if µt is probability measure uniformly distributed on the
interval (−t, t) (or in the ball in Rd of radius t centered at zero), then for
f ∈ L1,

(f ∗ µt)(x) → f(x) a.e. (t → 0). (1)

This is the classical Lebesgue differentiation theorem.
A more general situation appears when each µt is an absolutely continuous

measure, with density Kt obtained from a single function K by a “contrac-
tion”. Let K be supported on [−1, 1], non-negative and

∫
K = 1. Let

Kt(x) =
1
t
K(

x

t
), dµt = Kt(x) dx. (2)

If one requires convergence of convolutions (1) at every Lebesgue point x,
then a necessary and sufficient condition follows from the Fadeev-Romanovskii
theorem. K must have a “humpbacked” majorant (that is, increasing for x < 0
and decreasing for x > 0) belonging to L1 (see [N]).

But in general, to recognize whether a given family {µt} satisfies the con-
vergence property (1) is a difficult problem, even for families (2). A natural
restriction is that the measures µt are concentrated near the origin (as in (2));
that is, for any ball B centered at zero,

µt(B) → 1 as t → 0. (3)

In this case one says that µt is an approximate identity (µt ∈(AI)).
Clearly this implies (1) (uniformly) for any continuous function f . But

convergence for f ∈ L1(T) and even for f ∈ L∞ does not follow.
There are many generalizations and versions of the Lebesgue theorem, see

[Br] for a comprehensive survey. Notice especially an interesting result of
Nagel and Stein ([NS], see also [S] ch.2). If the measures µn are uniformly
distributed on intervals In = [a(n), b(n)], 0 < a(n) < b(n), a(n + 1) = o(|In|),
then f ∗ µn → f a.e. for f ∈ L1.

A surprising phenomenon was discovered for singular measures in Rd, d > 1
( see [S] ch. 11). If instead of averaging over balls one averages over spheres,
then the corresponding analog of the Lebesgue theorem holds for f ∈ Lp, p >
d/(d− 1).

The case of discrete measures is also of great interest. The Birkhoff ergodic
theorem gives a classic example. On the other hand, Bourgain proved in [B]
that, given a sequence of numbers a(n) = o(1), a(n) 6= 0, one can construct a
function f ∈ L∞ such that the averages

1
N

N∑
n=1

f(t + a(n))
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do not converge a.e.
Having a sequence of probability measures µn satisfying the (AI) condition

(3), we ask whether it is possible to select an increasing sequence of integers
{n(j)} such that, for any f

f ∗ µn(j) → f a.e. (4)

(with respect to the Lebesgue measure).
First we consider absolutely continuous measures. We prove that, in this

case, the answer is positive (Theorem 1). However the sequence in general
must be sparse (Theorem 2).

For discrete measures the answer is negative (Theorem 3). In this case
convergence (4) never happens, unless the measures are not sitting at the
origin.

For families of non-atomic singular measures both situations are possi-
ble; they may behave like absolutely continuous and like discrete ones. This
depends on the arithmetical nature of supports rather than on the metrical
sizes. One can see this from Theorems 4 and 5, where some Fourier Analysis
conditions are imposed.

Below the sign ̂ stands for the Fourier transform of functions and mea-
sures.

2 Absolutely Continuous Measures.

We will prove the following compactness theorem:

Theorem 1. Consider an (AI) kernel {Kn}:

Kn(t) ≥ 0,

∫
Kn dt = 1,∫

|t|>d

Kn → 0 for every d > 0 (n →∞).
(5)

Then there exists an increasing sequence of integers {n(j)} such that for any
f ∈ L1

(f ∗Kn(j))(x) → f(x) a.e. (j →∞). (6)

This result is inspired by the Nagel-Stein theorem above, which covers the
case when the Kn are indicators of segments (normalized in L1).

Proof. Denote by ω(f, δ) the integral modulus of continuity.

ω(f, δ) := sup
|t|≤δ

∫
|f(x− t)− f(x)| dx.
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Proceed by a simple induction. Suppose integers 0 < n(1) < . . . n(s − 1)
and numbers 1 = d(0) > d(1) · · · > d(s − 1) have already been defined with
conditions (for k < s):

ω(Kn(k), d(k)) < 2−k,∫
|t|>d(k−1)

Kn(k) < 2−(k+1).
(7)

Using (5) choose n(s) > n(s− 1) so that∫
|t|>d(s−1)

Kn(s) < 2−(s+1)

and then a number d(s) so that ω(Kn(s), d(s)) < 2−s. So we get monotone
sequences {n(k)}, {d(k)} satisfying the conditions (7) for each k. Now for any
h, |h| < 1, we have the estimate:∑ ∫

|t|>2|h|
|Kn(k)(t− h)−Kn(k)(t)| < 3. (8)

Indeed, fix h 6= 0 and find s such that d(s + 1) < |h| ≤ d(s). Then, for
k < s + 1,∫

|t|>2|h|
|Kn(k)(t− h)−Kn(k)(t)| ≤ ω(Kn(k); 2|h|) ≤ ω(Kn(k); d(s))

≤ ω(Kn(k); d(k)) < 2−k.

For k > s + 1,∫
|t|>2|h|

|Kn(k)(t− h)−Kn(k)(t)| ≤ 2
∫
|t|>|h|

Kn(k)(t)

≤ 2
∫
|t|>d(s+1)

Kn(k)(t) < 2−k.

Summing up over k and using (5), we get (8), which implies∫
|t|>2|h|

sup
k
|Kn(k)(t− h)−Kn(k)(t)| < 3.

Now, as in [S] p. 74, we can apply the Banach version of Calderon-Zygmund
theorem. The integral operator

f → {f ∗Kn(k)} k = 1, 2, . . . ,
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as an operator from L1 into L1(l∞), satisfies the condition of this theorem and,
therefore, it is of weak type (1, 1). This means that the maximal operator

Mf(x) = sup
k
|f ∗Kn(k)(x)|

satisfies the inequality

mes{Mf(x) > λ} ≤ C

λ
‖f‖L1 . (9)

In addition (6) holds for a dense set (of continuous functions f), and it is well
known that these two properties imply (6) for any f ∈ L1.

In general, the subsequence in Theorem 1 must be sparse. Let K be a non-
negative function on R,

∫
K = 1, supported on the segment [−1, 1]. Consider

“contracted” functions on T defined as

Kn(x) = nK(nx) for |x| ≤ π.

Clearly this is an (AI) kernel. If K decreases on [0, 1] and increases on [−1, 0],
then f ∗Kn → f a.e. (actually at all Lebesgue points) according to Fadeev-
Romanovskii theorem. On the other hand, the following result is true.

Theorem 2. If K is essentially unbounded near some point d 6= 0, then for
any subsequence {n(k)} satisfying

n(k + 1)/n(k) → 1 (k →∞), (10)

there is a function f ∈ L1(T) such that convolutions f ∗Kn(k) diverge almost
everywhere.

Proof. It is well known (see [S], p. 441) that it is enough to disprove the
weak type inequality (9). Suppose d > 0. Fix a large number C. Find a
segment J = [a, b], b > a > d/2, such that

mes{x ∈ J : K(x) > C} > |J |/2.

Due to (10), for sufficiently large N , one can select from the sequence {n(k)}
numbers

l(0) ≤ 2N < l(1) < l(2) < . . . l(m) < 2(N+1) ≤ l(m + 1),

so that for every j, 0 ≤ j ≤ m,

b

a
<

l(j + 1)
l(j)

< 1 +
2|J |
a

.
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The left inequality means that segments J/l(j) are pairwise disjoint. The right
one implies (1 + 2|J |/a)m > 2, so m > 2ca/|J | > cd/|J | (c > 0 is an absolute
constant).

Now, for each j = 1, 2, . . . ,m,

mes{x ∈ J/l(j) : Kl(j)(x) > Cl(j)} >
1
2
|J |/l(j);

so
mes{x : max

j
Kl(j)(x) > C2N} > m|J |2−N−2 > cd/2N+2.

Thus for λ = C2N , we have

mes{x : max
j

Kl(j)(x) > λ} > C
cd

4λ
.

Taking the approximation of the δ-function f = 1
h1[0,h] with sufficiently

small h, and remembering that all l(j) belong to the sequence {n(k)}, we
obtain

mes{Mf(x) > λ} >
Ccd

λ
‖f‖.

Since C is arbitrarily large, the maximal operator does not satisfy the weak
type inequality.

Remark 1. The condition (10) in the theorem is essentially sharp. Indeed,
take K of sufficiently slow growth at some point d 6= 0, such that ω(K; δ) =
O(δα) (for some α > 0). Then, due to [S], p. 75, f ∗K2n converges to f a.e.
for any f ∈ L1.

3 Discrete Measures.

In this section we prove the following assertion

Theorem 3. Let {µn} be an (AI) sequence of discrete probability measures
on the circle T, µn(0) = 0. Then there is a function f ∈ L∞(T) such that
convolutions f ∗ µn do not converge a.e.

This result generalizes Bourgain’s theorem stated in the introduction. Ac-
tually, our observation is that his approach still works if Cesaro averages of
translates are replaced by convolutions with arbitrary discrete measures.

The following proposition is a consequence of Bourgain’s “bounded entropy
principle.
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Proposition 1. If for any r one can choose numbers n(1) < n(2) < · · · < n(r)
such that, for any vector a = {a(1), a(2), . . . , a(r)}, a(j) = 0 or 1, there is
m = m(a) satisfying

|µ̂n(j)(m)− 1| < c/10 if a(j) = 0
|µ̂n(j)(m)− 1| > c if a(j) = 1,

(11)

(c > 0 is a constant), then the conclusion of Theorem 3 holds.

For the proof one needs basically to repeat the argument on p. 95 of [B].

Proof of Theorem 3. Denote by An the support of µn. One may suppose
that it is a finite set for every n (otherwise, replace µn by a sequence of
probability measures {µ′n} with finite supports such that V ar(µn−µ′n) < 1/2n,
which implies equiconvergence of the convolutions almost everywhere).

Notice that, in order to satisfy the condition (11), it is enough to have two
increasing sequences of integers {n(j)} and {m(j)} such that

|eim(s)x − 1| < 1
100

2−|j−s| x ∈ An(j), j 6= s, (12)

and
|µ̂n(j)(m(j))− 1| > 1/3. (13)

To check this implication fix r and a vector a. Let m =
∑r

s=1 a(s)m(s).
We will use the following elementary inequality for complex numbers {z(s)}
belonging to the unit disc.

|z(1) . . . z(r)− 1| ≤
r∑

s=1

|z(s)− 1|, (14)

which comes by induction.

|z(1) . . . z(r)−1| = |z(1) . . . z(r)−z(1)+z(1)−1| ≤ |z(2) . . . z(r)−1|+|z(1)−1|.

Now, take j such that a(j) = 0. (12) and (14) imply, for x ∈ An(j), that
|eimx − 1| < 1/10 which gives the first condition (11) with c = 1/10.

In the same way if a(j) = 1 we get |eimx − eim(j)x| < 1/10 on An(j), and
(13) implies the second condition (11).

Now, to finish the proof of Theorem 3, we will select inductively subse-
quences {n(j)} and {m(j)} satisfying (12) and (13). Suppose that the required
numbers are already defined for j < r. We have to choose n(r) and m(r) so
that the following estimates hold:
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(i) |eim(s)x − 1| < 1
1002−|r−s|, x ∈ An(r), s < r;

(ii) |eim(r)x − 1| < 1
1002−|r−j|, x ∈ An(j), j < r;

(iii) |µ̂n(r)(m(r))− 1| > 1
3 .

For (i) it is enough to choose n(r) sufficiently large.
Now, the set E := ∪j<rAn(j) is finite, so for any positive ε, one can find M

such that any segment of length M contains an integer frequency m satisfying
the inequality

|eimx − 1| < ε on E. (15)

Set ε = 2−r/100 and fix the corresponding M .
Now one can find d(M) > 0, such that for any probability measure µ

supported on (−d, d), the oscillation of the Fourier transform on any segment of
length M is smaller than 1/10. Fix n(r) so large that the last property holds for
measure µn(r). The support of this measure does not contain zero; so averages
of its Fourier coefficients 1/N

∑
0<m≤N µ̂n(r)(m) tend to zero. Therefore, one

can find m′ for which |µ̂n(r)(m′) − 1| > 1/2. Due to the property above we
have the same inequality (with 1/2 replaced by 1/3) for any m ∈ [m′,m′+M ].
Taking in this segment m satisfying (15), we put m(r) := m. This choice
settles (ii), (iii), and the theorem is proved.

4 Singular Non-Atomic Measures.

First we note that there is a sequence of continuous measures {µn} ∈(AI) with
no compactness property. We state this result in a more general form, using
the concept of Kroneker set .

A compact E is called a Kroneker set if any f ∈ C(T), |f(t)| = 1, admits
uniform approximation on E by characters {eimt}.

Theorem 4. Let E ⊂ T be a Kroneker set, and {µn} be a sequence of proba-
bility measures supported on disjoint portions of E. Then there is an f ∈ L∞

such that convolutions f ∗ µn do not converge a.e.

This is a direct consequence of Proposition 1. Indeed, let µn be supported
on portions En which are pairwise disjoint. Fix N and a vector a. Define an
unimodular function f ∈ C(E) , so that f |Ej = (−1)a(j) for all j ≤ N . Clearly∫

T f dµj = (−1)a(j). Now, approximate f by an exponential eimt with a small
error in C(E) and we get the result.

Remark 2. This shows that an (AI) sequence of “thick” continuous mea-
sures may not satisfy the compactness property. Indeed, using the well-known
construction of Kroneker sets (see [K], ch. 7) one can produce E such that:
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(i) E is a perfect set containing zero;

(ii) By removing from E an arbitrary small neighborhood of zero one gets a
Kroneker set;

(iii) Each non-empty portion of E has Hausdorff dimension 1.

Now, it is enough to take a sequence of disjoint portions of E tending to zero
and to distribute on each one a probability measure.

Finally we prove a positive result in which the compactness property for
one-dimensional singular measures does hold. This result involves the im-
portant concept of Fourier Analysis which goes back to D. E. Menshov who
first constructed a singular probability measure µ on the circle satisfying the
property

µ̂(n) = o(1) (|n| → ∞) (16)

Such measures are called Rajchman measures , see [KL].

Remark 3. Having a Rajchman measure µ it is easy to construct an (AI)
family of such measures. Indeed, suppose that the support of µ contains zero
(otherwise we translate). If a function g on T is smooth, then the measure
ν defined by equality dν = g dµ also satisfies the condition (16), due to ele-
mentary estimate of the corresponding convolution on Z . So it is enough to
multiply µ by smooth gn supported on (−1/n, 1/n), and then to normalize
the obtained measures.

Theorem 5. Let {µn} be an AI sequence of Rajchman probability measures
on T . Then one can choose n(1) < n(2) < . . . so that, for every f ∈ L2(T),

f ∗ µn(j) → f a.e. (j →∞).

Stronger, the maximal operator

(Mf)(x) := sup
j
|(f ∗ µn(j))(x)|

is bounded in L2 : ‖Mf‖ ≤ C‖f‖ .

Proof. Consider {µ̂(s)}, the Fourier coefficients of µn.
The (AI) condition implies that, for |s| < s(n), the coefficients are close to

1, and s(n) tends to ∞ together with n . On the other hand, due to (16), the
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coefficients are small for |s| > s′(n). So, by a simple induction, we can define
increasing sequences of integers n(j) and s(j) so that

|1− µ̂n(j)(s)| < 2−j for |s| ≤ s(j)

|µ̂n(j)(s)| < 2−j for |s| > s(j + 1) (17)
s(j + 1)/s(j) > 2. (18)

Now take f ∈ L2, ‖f‖ < 1, and denote by Sk its partial Fourier sums. Consider
the convolution f ∗ µn(j). We have

(f ∗ µn(j))(x) =
∑

f̂(s)µ̂n(j)(s)eisx =
∑

|s|≤s(j)

+
∑

s(j)<|s|≤s(j+1)

+
∑

|s|>s(j+1)

.

Then (17) implies that the first sum equals to Ss(j) up to an error with the
norm < 2−j , and the norm of the last one < 2−j . So,

f ∗ µn(j) =Ss(j) + Tj + Rj ,

(Tj)(x) :=
∑

s(j)<|s|≤s(j+1)

µ̂n(j)(s)f̂(s)eisx, ‖Rj‖ < 2−j . (19)

Since

‖Tj‖2 =
∑

s(j)<|s|≤s(j+1)

|µ̂n(j)(s)|2|f̂(s)|2 ≤
∑

s(j)<|s|≤s(j+1)

|f̂(s)|2,

the series
∑

Tj converges in L2. Denote its sum by F . Clearly ‖F‖ ≤ 1.
Condition (18) allows one to apply the Kolmogorov theorem on lacunary

subsequences (see [Z], ch.13 ), which gives

‖ sup
j
|Ss(j)(x)‖ ≤ C‖f‖ and ‖ sup

j
|Tj |‖ ≤ C‖F‖.

Finally, the last inequality in(19) gives

‖ sup
j
|Rj |‖ ≤ ‖

∑
|Rj |‖ ≤ 2.

So ‖M(f)‖ ≤ C, which ends the proof.

Note that measures {µj} in Theorem 5 could be very “thin”, since it is
known from [I] that for any Hausdorff scaling function h, there is a Rajchman
measure supported by a compact of h-measure zero.

Remark 4. The following questions seem to be open:
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(i) (D. Preiss; private communication, 1993): to find (if possible) a singular
measure µ on R (different from the Dirac measure) such that contracted
measures µt defined by the equality µt(A) = µ(A/t), satisfy (1) for
f ∈ L2 .

(ii) To find (if possible) a nontrivial sequence of singular measures µn ∈(AI)
such that f ∗ µn → f a.e. for any f ∈ L1.

Note that some further results on the subject above are obtained in [Ko].
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