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Abstract

A concept of a general derivative and a notion of bounded variation
have been produced leading to the presentation of the Fundamental
Theorem of Calculus for the GHj, integral with a characterization of the
integral.

1 Introduction.

Throughout the paper we shall consider a, b to be fixed real numbers such
that a < b, and k to be a fixed positive integer greater than 1.

Bhattacharaya and Das [1] gave the definition of a Lebesgue type integral,
the LSy integral, on [a,b] with respect to a gk-measure introduced by them
induced by a k-convex function. In the development of the theory of the
integral, they introduced the definitions of gk-derivative and of gk-absolute
continuity so as to obtain a characterization of the LS integral as follows.
Let g : [a,b] — R be a k-convex function such that giﬁ_l(a) and g"=1(b) euist.
For a function f : [a,b] — R, (f,g) € LSkla,b] if and only if there exists a
function F : [a,b] — R such that F is ACgy on [a,b] and F(;k(x) = f(z) for
all z € [a,b] except possibly for a set of gk-measure zero.

Following the definition of a Riemann type integral, the RS}, integral, in
Ray and Das [11], Das, Nath and Sahu [6] obtained the definition of a Hen-
stock type integral, the H S integral, simply changing Riemann partitions to
Henstock partitions. The integral is additive over the division of the defining
interval, linear, satisfies the Saks-Henstock lemma and the Cauchy extension
formula.
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Subsequently Das and Sahu [8], using the Vitali covering theorem analog
and the notion of gk-derivative from [1], proved ([7], Theorem 4.1) this theo-
rem.

Let g be k-convex on [a,b] with one sided (k — 1)th derivatives existing at end
points, and let f : [a,b] — R be such that (f,g) € HSk|a,b]. If F is the HS}
primitive, then Fg/k(w) = f(x) gk-almost everywhere on [a,b).

The authors there continued to give the definitions of [BV,1,G*], [AC,G*]
functions and proved a Denjoy equivalent version that could be stated com-
bining Theorem 3.3, Theorem 4.1, Theorem 4.6 of [8] as follows.

Let g be k-convex on [a,b] with one sided (k — 1)th derivatives existing at end
points, and let f : [a,b] — R. Then (f,g) € HSk[a,b] if and only if there exists
a function F : [a,b] — R such that

(1) F is [ACy,G*] on [a,b], and

(i) Fg/k(x) = f(x) gk-almost everywhere on [a,b).

Following the development of the Henstock type integral investigated by
Schwabik [14], Das and Sahu [7] obtained a definition of an integral which they
called the generalized Schwabik-Henstock integral, which is similar to the H.Sj
integral in [6], keeping in mind the existence of one sided (k — 1)th derivatives
of a k-convex function or a function of bounded kth variation.

The present authors ([5]) introduced the definition of a generalized Hen-
stock integral, the G Hy-integral, along with its standard properties including
the Saks-Henstock lemma and the Cauchy extension formula.

In the present paper the authors deal with the Stieltjes form of the GHy,
integral with integrand f : [a,b] — R and integrator g : [a,b]* — R, not
necessarily a k-convex or a BV}, function. The concept of the (gk)derivative has
been introduced, that leads to the presentation of the Fundamental Theorem of
Calculus and a characterization of the integral in terms of a certain concept of
k-variationally bounded function introduced herein. Owing to non-availability
of measure and Vitali covering, the authors follow a line of developments
analogous to the ones in Cabral and Lee [3, 4].

2 Preliminaries.

The developments of the series of integrals mentioned above in the introduction
require the definitions and the properties of k-conver functions and functions
of bounded kth wvariation, the BV} functions, for which we refer to Russell
[12]. A deep study for k-convex functions is also available in Bullen [2], and a
partial presentation of these two notions, as are necessary for the development
quoted above, may be found in Das and Kundu [5].
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We give the definition of the GH} integral and the Saks-Henstock lemma
analogously as in [5] for ready references.
Let

1,0 <T11 < - < Tk SX20<T21 << T2k S S Tpo < Tpa < < Tpgk

be any system of points in [a,b]. We say that the intervals [z;0, %], 7 =
1,2,...,n form an elementary system

{(@in, @i, .. @ip—1) : [Tio, Tik], 1=1,2,...,n}

in [a,b]. If each interval [z; 0, z; ] with a set of (k — 1) interior points z; 1 <
Tio < -0 < @y —1 is tagged with & € [0, 1] we call the system a tagged
elementary k-system and denote it by

{(&szin,Tio, . Tig—1) : [0, @igl, 1 =1,2,...,n}.

A tagged elementary k-system {(&;;@i 1,252, Tik—1) © [Ti0,Tik), ¢ =
1,2,...,n} is a tagged k-partition of [a,b] if J;_, [%i0,2ixk] = [a,b].

Given a positive function ¢ : [a,b] — (0,00), a tagged elementary k-system
and in particular a tagged k-partition

{&; @i, Tioy - 5 Tik—1) [0, Tik), 0 =1,2,...,n}

of [a,b] is said to be d-fine if & € [zi0,%ik] C (& — 0(&),& + 6(&;)) for all
i=1,2,...,n. We shall often call such a positive function § a gauge on [a, b].
We note that a é-fine tagged k-partition

{&;xi1, Ty s Tik—1) * [TiosTig], 1=1,2,...,n}

of [a, b] exists because it is simply a usual §-fine tagged partition

{&; @0, zik), 1=1,2,...,n}

of [a,b] along with a set of (k — 1) points 2,1 < ;2 < -+ < ;-1 In
(xi0,%ik),t = 1,2,...,n. Clearly for k = 1, a d-fine tagged k-partition is a
6-fine tagged partition.

Definition 2.1 ([5], Definition 2.1 ). A function U : [a,b]**! — R is called
GH), integrable on [a,b] if there is an element I € R such that, given € > 0
there is a gauge 0 on [a, b] such that

’ Z[U(fi;xiyl, v mig) = U wi0, o zik—1)] — 1] <e
i=1
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for every d-fine tagged k-partition
P = {(gi;xi,lawiQa cee 7',1"7;,](771) : [mi,07xi,k];i = 17 2) ey TL}

of [a,b]. The real number I is called the GH}, integral of U on [a,b] and we
write (GHy) f; U=1.

If (GHy) fab U exists, we often write U € GHy[a,b]. We use the notation
S(U, P) for the Riemann type sum

n

Uz, k) = UG wio, -, ig—1)]

i=1

corresponding to the function U and the k-partition
P = {(617 Li1yLq,2y - 7xi,k71) : [xi,Oaxi,k}vi = ]-7 27 e 7n}'

For k = 1, the GH}, integral is the generalized Perron integral of Schwabik
[14]. This GH}, integral includes the Henstock, the generalized Perron and the
Stieltjes type integrals on [a, b].

For k > 1, we set

U(T;t17t27...,tk) = f(T)Oé(tl,tQ,...,tk)
where f : [a,b] — R, a : [a,b]* — R so as to obtain a kth Riemann Stieltjes
type sum

n

Z flé)la(zin, ..., zik) —a(zio, ..., Tik—1)]

i=1
If the integral exists, we often write (f, @) € GHg[a,b] and the integral will be
denoted by (GHy) fj fda. In particular, for f: [a,b] — R, and h: [a,b] — R,
if we put

U(rity,ta, ... tg) = f(7)Qr—1(h;t1, ta, ..., tx)

where Qr_1(h;t1,ta, ..., tx) is the (k — 1)th divided difference of h (see [5], p.
59), we get the kth Riemann-Stieltjes sum

s(f s P) =" f(E)Qu-1(hszin, .. wik) — Quor(hi@io, ., Tik-1)]
=1

corresponding to the k-partition
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P={(&;zi1, 22, Tig—1): [Tio,Tik)t=1,2,...,n}

of [a,b] (cf. Russell [13]). We note further that the approximating sums for
the resulting integrals do not involve repeated points interior to any partition
subinterval [z; o, %; %] as in [13], [9] and in some other authors.

Definition 2.2 ([5], Definition 2.3). A function U : [a,b]T! — R is
called GHj, integrable on [a,b] if there exists an element I € R™ such that,
given e > 0, there exists a gauge ¢ on [a, b] such that

n

|| S(U, P) —IH = H Z[U(fi;l‘i71,...,$i)k) — U(fi;xi)o,...,xi,k_l)] —IH < €

i=1

for any J-fine tagged k-partition
P={(&; i1, %2, Tig—1): [Tio, Tik), i =1,2,...,n}

of [a,b]. The number I € R™ is called the GH}, integral of U on [a,b] and we
write (GHy) [LU = 1.

If the integral exists, we often write U € GHyla,b]. Here the norm ||.|| is
any norm in R™, for example, the Euclidean one.

Note 2.3. Following Schwabik [14] it is not difficult to show that an R™-valued
function U : [a,b]**! — R", U = (Uy,Us,...,U,), is GH}, integrable if and
only if every component Up,,m = 1,2,...,n, is GHy, integrable in the sense of
Definition 2.1.

Theorem 2.4 ([5], Corollary 3.2). LetU : [a,b]**! — R™ be G H}, integrable
on [a,b]. Then to each € > 0 there exists a gauge 6 on [a,b] such that for every
d-fine tagged k-partition

P = {(é-i;xi,lu cee 7‘7’.7;,]671) : [xi,07xi,k]7 1= 17 27 e 7TL}

of [a, 0]
Z |HU(£“ 1‘1;71, e 7xi,k) — U(fi;xi,o, e axi,k—l) — (GHk)/ ’ U]” < €.
=1 Ti,0

Pal, Ganguly and Lee [9] gave the following definition of the GRy, integral
that requires repeated overlapping division points.



644 A. G. DAS AND SARMILA KUNDU

Definition 2.5 ([9], p- 854 ). Let f : [a,b] — R and g : [a,b]*"! — R.
The function f is said to be GRy, integrable with respect to g if there exists a
real number I on [a, b] such that for every € > 0 there is a positive function ¢
on [a,b] such that for any §*-fine division P = {([zi, Ti1 1], &) )= of [a, b] we

have
n—k

1Y FEg(@i i, ir) — 1] <e.
i=0
For k = 1, if we put g(x;, zit1) = a(x;41) — a(z;), we get the classical
Henstock-Stieltjes integral.
In a subsequent paper Pal, Ganguly and Lee [10] introduced the definition
of the GR;}, integral.

Definition 2.6 ([10], Definition 3.1). Let f : [a,b] — R and g : [a, b}*T! —
R such that J(g;c) exists for all ¢ € (a,b). We say that f is GR} integrable
with respect to g on [a,b] if there exists a real number A such that for all
€ > 0 there exists d : [a,b] — R such that for any regulated §*-fine division
{zi, D;, ai, b;])}_, of [a,b] we have

P ni—k p—1
| Z Z F&i)g(Tgi, Tja1sis e oy Tjka) + Z(k —1)f(bi)J(g:b;) — A| <e.

i=1 j=0 i=1

It was defined in [9] (also repeated in [10]) that

J(g,.T) = zo—}zir?k—mt g(xoaxla ce ,l‘k),

where x € [zg,71] and zg < z1 < -+ < 7. By a regulated 6*-fine division
of [a,b] the authors [10] mean a ¢*-fine division of [a;, b;], where {([a;, b;], 7;),
i=1,2,...,p} is a d-fine division of [a,b] with tags x; coinciding with a; or
b;.

Standard properties of the G Rjy- and G Rj-integrals were studied in [9] and
[10].

Note 2.7. The claim in Pal et al. [10] that the GR} integral includes the
GRy, integral is not true. In fact, using the Saks-Henstock lemma for the
GRjintegral, it is not difficult to prove that a GR}, integrable function f is
necessarily GRy, integrable. On the other hand, it may happen that (f,g) €
GRy[a,b] without the existence of J(g,x) everywhere in [a,b]. For example,
the rational indicator function f is GRy integrable on [a,b] with respect to g
defined by

(l'k—xo)Qk(h;l'o,:L‘17...,$k) ifa§x0<-~-<xk§b
g(xo, 71, ,Tk) = .
0 otherwise
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where h : [a,b] — R is BV}, on [a,b]. Since h*~V(z) exists n.e. on [a,b], it
follows that J(g,x) may not exist for all x € (a,b) and so (f,g) & GR;la,b].
Hence the class of GR} integrable functions is a proper subclass of the class
of GRy, integrable functions.

It can easily be verified that (f,h) € GHyla,b]. On the other hand, given
g:la, 0"t - R and a : [a,b]* — R satisfying

g(t(),tl, . ,tk) = a(tl, . ,tk) — a(t(], . ,tkfl)

for all choices of a <ty <ty <--- <ty <b, it is clear that (f,«a) € GHyla, ]
whenever (f,g) € GR;[a,b]. So, (GR}) is a proper subclass of (GHy). In view
of Theorem 3.6 of Das and Kundu [5], we have (f,g) € GRyla,b] whenever
(f,a) € GHyla, b], provided that both

JY(f,a;a) = lim  lim --- lim f(a)a(ty,to,. .., tx)

tr—aty_1—a t1—a
where a < t; <ty <--- <t <b and

J- ;0) = lim lim --- i b)a(ti,ta, ...t
(f) Q; ) thb tglglb tklgb ( )Oé( 1,02, ) k)
where a < t1 < tg < --- < t, < b (see [5], Definition 2.9) exist. Thus it

appears that for such representation of the integrator g in terms of a, we have
the inclusion chain (GR}) C (GHy) C (GRy).

In order to obtain results analogous to those in Cabral and Lee [3], Pal et
al. [10] obtained the following definition of g-regularity. The definition needs
the terminology “ g-nearly additivity”: A function F : [a,b] — R is said to be
g-nearly additive with respect to f on [a, b] if for every ¢ € (a,b), we have

F(b) = F(a) = F(c) = F(a) + (k = 1) f(c)J(g;¢) + F(b) = F(c).

Definition 2.8 ([10], Definition 4.1). Let J(g,z) exist for all x € [a, ]
and let F' be a function g-nearly additive with respect to f on [a,b]. F will
be said to be g-regular with respect to f at x € [a,b] if for all € > 0 there
exists a function & > 0, defined on [a,b] such that for all §*-fine divisions
P = {[zi, Tisr), &8 of [u,v] C [a,b] locally tagged at x we have

n—k n—k
|F(v) — F(u) — (P) Z F&)g(@i, . wigr)| <€ Z l9(@i, - wigw)|-
i=0 1=0

It can clearly be noted that given g € LBV*[a,b] (for the definition of
LBV* see [10]), F is g-regular at z if and only if F' is GRy, integrable on every
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0-fine interval [z,v] C [z,2 + d(z)) or [u,z] C (z — é(x),z]. This idea is a
departure from the idea of defining a derivative at a point. In classical cases
we say that a function is regular at a point x if its derivative exists at each
point in some neighborhood of x.

In the next section we define a derivative suitable for the development of
our integral, the GH} integral, according to our proposal in its introduction
in [5].

3 The GH;, Primitive and Its Characterization.

At the beginning of this section we give the definition of k-variationally bounded
function that is essential to provide an existence criterion for the G Hy, integral
in terms of our proposed derivative (Theorem 3.6 below) and also is useful for
subsequent development of the section.

Definition 3.1. Let g : [a,b]* — R and let 6 : [a,b] — (0,00) be any positive
function on [a, b]. For X C [a,b] let

Vi(g; X,0,P) = Z l9(@i1, - @) — 9(@i0, .- Tig—1)]
&ieX

for every d-fine elementary tagged k-system
P={(&; i1, zik—1) [Tio,vix], i =1,2,...,n}

in [a,b]. If
Vie(g; X) = infsup Vi (g; X, 6, P) < +o0,
P

we say that g is k-variationally bounded, (V3 B), on X, and in symbols g €
Vi B(X).

If g € Vi, B(X), then there exist ¢ : [a,b] — (0,00) and a positive constant
M such that for all §-fine elementary tagged k-system

P= {(§Z7 Tidye-- 73;7;,/6—1) : [xi,07$i,k]7 1= 17 2a e an}

in [a, b], we have

Z |g(l‘i71, ey a’,‘qu) — g(xm, e ,mi,k—l)l < M.
&ieX
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Definition 3.2. A function F : [a,b] — R is said to have a (gk)-derivative f
at x € [a,b] if for each € > 0 there exists § : [a,b] — (0, 00) such that for every
o-fine singleton elementary k-system P = {(x;t1,...,tk—1) : [to,tx]} in [a,b]
tagged at =, we have

|F(tx) — F(to) — f(2)[g(t1, ..., tk) — g(to,. ., tr—1)]]
< €|g(t1, R ,tk) —g(to7 R ,tk_l)‘.

If the function F' possesses a (gk) derivative f at o we write DFy(z) =
f(x). One sided derivatives Dt Fyi(x) and D~ Fyy(z) are defined in the usual

way.

We observe that, if k = 1, then the (gk) derivative is the classical g deriva-
tive. Again if further £ = 1 and g(x) = z for all = € [a,b], we obtain the
definition of classical ordinary derivative.

Definition 3.3. Let F : [a,b] — R and g : [a,b]¥ — R. Given € > 0 arbitrarily
and a positive function ¢ : [a, b] — (0, 00), we define

Fes ={(z,P): P={(z;t1,...,tk—1) : [to, tx]} is a d-fine singleton
elementary k-system in [a, b], tagged at x, such that
| F(tr) — F(to) — f(@)[g(t1,- -, te) — g(to, - te—1)] |
> € | g(tl,...7tk) —g(to,...,tkfl) |}
and
X(e,0)={x€lab]:(z,P)elcs}.
Definition 3.4. If (f,g) € GHyla,b], then by Theorem 3.8 of [5] (f,g) €
GHyla,z] for a < x < b. Define F on [a, b] by

x

F(I‘):F(a)+(GHk)/ fdg ifa<ax<b

a

and call F' the primitive of the GH-integrable function f.

Theorem 3.5 (Fundamental Theorem of Calculus). If g € Vi Bla,b] and
DFyi(x) = f(z) for all x in [a,b], then (f,g) € GHla,b] and F(b) — F(a) =

(GHy) [ fdg.

PROOF. Since g € V},Bla,b], we can find 4 : [a,b] — (0,00) and M > 0 such
that for all §;-fine elementary tagged k-systems

P={(&%;xi1,- Tik—1): [Tio,Tik), 1 =1,2,...,n}
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in [a,b] we have
Vi(g; [a, 0], 61, P) < M.

Since DFyi(x) = f(z) for all € [a,b], there exists § : [a,b] — (0,00),
0(z) < 01(z) for all = € [a,b] such that for every choice of d-fine singleton
elementary k-systems P = {(z;t1,...,tx—1) : [to, tk]} tagged at x, we have

|F(tr) — F(to) — f(x)[g(t1, ..., tk) — g(to, .-, tp—1)]|
< im(tl, o) — gto, - ti)-

Now let P = {((i; 2i15- -5 Zik—1) © [2i,0, % k), ¢ = 1,2...,n} be any d-fine
tagged k-partition of [a, b]. Then

n

|[F'(b) — F(a) — Zf(Ci)[g(zi,la s Zik) = 9(2i05 -+ Zik—1)]|

=1
= Z |F'(zik) — F(2i0) = f(G)9(zins s 2ik) — 9(2i05 -+ 2ik—1)]|
=1
< izn:k](zd o Zik) — 9(2i0, - z»k,1)|iM:€,
M P 2,19 y ~1, 2,05 ) <1, M
Hence (f,g) € GHyla,b] and F(b) — F(a) = (GHy,) f:fdg. 0

Theorem 3.6. Let f : [a,b] — R and g € Vi Bla,b]. Then (f,g) € GH[a,b]
with primitive F : [a,b] — R if and only if for all € > 0 there exists § : [a,b] —
(0,00) such that for all 6-fine elementary tagged k-system

P = {(gi;xi,la e 7xi,k71) . [xi,Oaxi,kL 1= 17 27 e 7p}

in [a,b] with each & € X (e, 9)

we have
p
SO, min) — 9(@i0, - ikl < (1)
i=1
p
Z |F(@ik) — Fzi0)] <e. (2)
=1

PROOF. Let the given conditions hold. By the definition of X(e,d) and for
every choice of d-fine singleton elementary k-system P = {(x;t1,...,t5—1) :
[to, tx]} in [a, b] tagged at
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€ [a,b]\X (e,d), we have
|F(tx) — F(to) — f(@)[g(tr, ... tr) — g(to, -, tr1)]]
< €|g(t1, ce ,tk) — g(to7 . ,tk_1)|.

Since g € Vi Bla,b], there exist a positive function d;(< ¢) on [a,b] and
M > 0 such that for each §;-fine elementary tagged k-system

P= {(§Z7 Tidye-- 73;7;,/6—1) : [xi,07$i,k]7 1= 17 2a v an}

n [a,b], we have Vi(g;[a,b],01,P) < M. Let P = {(¢;2i1,---,%ik—1) ©
[2i,0, 2ik), 2 =1,2,...,n} be any d;-fine tagged k-partition of [a,b]. Then

|F'(b) — F(a) — Z fClg(zin,-- s zik) — 9(zi0,- - 2zik—1)]|
=1
< > |F(zik) = Flzi)|
GEX(€,5)
+ Z lf(Clg(zias-- s 2ik) — 9(Zi0, - - -5 Zik—1)]]
i €X(€,6)
+ Z F(zik) — F(zio) — f(C)l9(zi1s- -5 2ik) — 9(Zi0, - - -5 Zig—1)]]
<1¢X(€ 6)

<2+ € Vi(g;[a,b],61,P) <2e+e M =¢€(2+ M).

Hence, (f,9) € GHyla,b] and F is the GHj-primitive.
Conversely, let (f,g) € GHgla,b] with primitive F. Let

Vi={z:a<z<b I-1<|f(x)] <}

Then

b=JYiand ViNY, =¢ for I #1.

=1
Without any loss of generality we take 0 < € < 1. By Theorem 3.1 of [5] ( Saks-
Henstock lemma ), there exists d;(x) > 0 on [a, b] such that for every d;-fine
tagged elementary k-system {(&;%i1,---,%ik—1): [®i0,Tik), ¢ = 1,2,...,p}
in [a,b] with & € Y; we have

p 62

Z |F(zik) — Fi0) = f(&)[9(@in, s @ik) = 9(@i05- s Tig—1)]] < CESWA

i=1
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Let §(z) = §i(z)forz € Y,1=1,2,...and let {(i; i1, -, Yik—1): [¥i.0s Yik)s
i=1,...,q} be a d-fine tagged elementary k-system in [a, b] with n; € X (¢, ).
Then

q
Z | fm)lg(Wits -5 Yik) = 9(Yi05- - Yik—1)] |
i—1
o0
:Z | fi)lg(ity - vik) — 9Wi0s -5 Yik—1)] |
=1 n;€Y;
oo
SZ ! Z | g(Wits - Yik) = 9(Wi0s -+ -5 Yik—1) |
I=1 meYy;

< Z ! Z | F(yi,k) — F(yio) — fma)lg(win, - - vik) — 9(Wi0, - Yik—1)] |

€
=1 m€ey;

=1 €2 = €
ORI

=1 =1
Furthermore,

| F(yi,k) - F(yi,O) |

M= i

v

<> NFWik) = Fyio)l = fm)lg(yis - Yik) — 9Wi0s - -5 Yik—1)] |

K2

+ D 1 fmlgWi, - vik) — 90, - - Yik—1)] |
=1
€ > 62 € > 62 € 62 € €
<z <z S =ty <= O
2+;2l+1.z —2+l_121+1 PRI R R

Theorem 3.7. Let f : [a,b] — R and g € Vi Bla,b]. Then (f,g) € GHgla, b
with primitive F : [a,b] — R if and only if for all € > 0 there exists 0 : [a,b] —
(0,00) such that for all 6-fine tagged elementary k-systems

P={(& i1, - Tig—1) t [Tio,Tin], 1=1,2,...,p}
in [a,b] with each &; € X(¢,0) we have

p p
Z |g($¢71, . ,xiyk) — g(aciyo, . 71'i,k71)| < € and Z ‘F(ifz’k) — F(xi,())| < €.
i=1 i=1
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Proor. If (f,g) € GHyla,b], then, in view of the Saks-Henstock lemma (The-
orem 2.4 above) with U(&;to, t1,...,tk—1) = f(§)g(to, t1,...,tk—1) and n = 1,
there exists d : [a,b] — (0,00) such that for every J-fine tagged elementary
k-system

P={(&;xi1,- . xix—1): [Tio, zix), i =1,2,...,p}
in [a, b] we have

P

S O |F(@ik) = Fio) = £E)[9(in, - wik) = 9(@io, -, Tik-1)]| < €
i=1

If now the system P is such that each & € X (¢,0), then

|g(33i,1, s l‘i,k) - g(l‘i,m e 7$i,k—1)|

-

s
Il
-

<Y |F(@ik) — F(xio) — f(E)9(@in, - win) — 9(xio, - - - wik—1)]| /€

-

Il
—

7

<€.

That Y7 | |F(xik) — F(zi0)| < € follows from the proof of the only if part of
Theorem 3.6.
Conversely let the above conditions hold. Let

Vi={z:a<z<b [-1<]|f(x)] <}

so that [a,b] = JY; and ¥, NYy = ¢ for I # 1. Let € > 0 be arbitrary.
=1
Then for € = iy, there exists 6;(x) > 0 such that for every d;-fine tagged

elementary k-system
P = {(gz; zi,la e 7$i,k—1) : [‘Tl',o,ll'i’k], 7= 1, 2, e ,p}
in [a,b] with & € X (e, d;), we have
P

Z |g(55'i,1> cos k) = 9(Ti0, - 733i,k71)| <€

and
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Let ¢ : [a,b] — (0,00) such that 6(z) < §;(z), x € ¥;. Then for every
6;-fine tagged elementary k-system
P={(&;zi1, - vig—1): [Tio,mix], i =1,2,...,p}

in [a,b] with & € X(e,6) C [ X (e, 01), we have
=1

Z | fElg(zins- - win) — 9(@ios - Tigp—1)] |
i=1

o %)
€ €
< E E l}g(l’i71,...,xi7k)7g(l'i,0,...,$i,k_1)‘ < E 721-"-1 = 5 < €.
=1 €;€Y) =1

In view of the sufficient part of Theorem 3.6, it follows that (f,g) € GHgla,b],
and this completes the proof. O

For a positive integer n, let X1 = (N X(1,4), and for F : [a,b] — R, let
S

P
V(F,X,) = inf S?in; |F(wi k) = F(xi0)|

where the supremum is taken over all §-fine tagged elementary k-systems
P={(;ri1, -, @ik-1): [Tio, Tik), i1=1,2,...,p}
in [a,b] with & € X(1,6).

Theorem 3.8. Let F : [a,b] — R and g : [a,b)* — R. Then for every e > 0
there exists a gauge 6 on [a,b] such that for every d-fine tagged elementary
k-system

P={(;vi1, . Tik—1) [Tio, ikl i=1,2,...,p}
in [a,b] with & € X(£,6), we have
P

(P) Z l9(@i1, - @) — 9(@i0, .-, Tik1)| <€

and
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if and only if for every positive integer n

Vi(g,X1)=0and V(F, X1) = 0.

PRrROOF. To prove the if part, we note that for every positive integer m there
exists a positive function d,, on [a,b] such that

P
1
(P) ; |9(~Ti,17 s Tik) — 9(Ti0s - ,wi,k—l)} < ooy
and
- 1
(P)Z |F(2ik) — F(zio)| < =
=1
whenever

P={(&%;xi1,. - Tigp—1): [Tio,Tik), 1 =1,2,...,p}

is a &,,-fine tagged elementary k-system in [a,b] with & € X(1,4,,). For
1

every € > 0, there exists a positive integer m(e) such that e <€ Choose
)

6 : [a,b] — (0,00) such that d(z) = 6,,,(¢)(x) for @ € X (%, 6,,(¢)) and arbitrary
otherwise. Then for every J-fine tagged elementary k-system

P={(&;zi1,- . wik—1): [Tio, zixl, i =1,2,...,p}
in [a,b] with & € X(2,6), we have

P

1
(P) ; | 9(@in, - i) — 9(Tios - Tip—1) | < e

<e€

with

(P)Z|F($i’k>_F(xi’0)’<ﬁe)<6'

Conversely, fix n € N. Then there exists a positive function § on [a, b] such
that for every d-fine tagged elementary k-system

P={(&;xi1, - Tik-1): [0, Tik], 1 =1,2,...,p}
in [a,b] with & € X(1,6), we have
P 1

(P) Z |g($i,17 s i) — 9(Tio, - ,fi,k71)| < o
i=1
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and .
1
(P) Y [Fik) = Flwio)| < —
i=1
Since X(iMS) C X(#H,é) for all m € N, for m > n we obtain

1 1
51;pvk(gaX(ﬁ76)a6aP) S&IJDPVk(gvX(EJS)a&P)

1 1
< Vilg; X(———,0),0,P) < ——.
75111313 k(ga (m+1a )7 ) )7m—|—1
Hence taking the limit as m — oo, it follows that
Vi(9,X1)=0and V(F,X1)=0. O

We immediately obtain the following.

Corollary 3.9. Let g € ViBla,b]. A function F : [a,b] — R is a GHy
primitive of the function f : [a,b] — R with respect to g if and only if for
everyn € N,

Vi(g,X1) =0 and V(F,X.) =0.

1
n
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