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ENTROPY AND FLATNESS IN LOCAL ALGEBRAIC

DYNAMICS

Mahdi Majidi-Zolbanin, Nikita Miasnikov, and Lucien Szpiro

Abstract: For a local endomorphism of a noetherian local ring we introduce a no-

tion of entropy, along with two other asymptotic invariants. We use this notion of

entropy to extend numerical conditions in Kunz’ regularity criterion to every con-
tracting endomorphism of a noetherian local ring, and to give a characteristic-free

interpretation of the definition of Hilbert-Kunz multiplicity. We also show that every
finite endomorphism of a complete noetherian local ring of equal characteristic can

be lifted to a finite endomorphism of a complete regular local ring. The local ring of

an algebraic or analytic variety at a point fixed by a finite self-morphism inherits a
local endomorphism whose entropy is well-defined. This situation arises at the vertex

of the affine cone over a projective variety with a polarized self-morphism, where we

compare entropy with degree.
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Index of notations

Unless otherwise stated, all rings in this paper are assumed to be noe-
therian, local, commutative and with identity element 1. The following
notation is used:

ϕn n-fold composition of ϕ with itself for a self-map ϕ : X Ñ X of a space.

lengthRpMq length of an R-module of finite length M .

lengthpfq lengthSpS{fpmqSq of the closed fiber of a local homomorphism f: pR,mqÑS.

hlocpϕq local entropy of an endomorphism of finite length ϕ : RÑ R.

qϕ expphlocpϕq{dq with d�dimR, ϕ : RÑR an endomorphism of finite length.

f�N R-module obtained from an S-module N via a homomorphism f : RÑ S.

f� S R-algebra obtained from a ring S via a homomorphism f : RÑ S (see [8]).

degpfq the rank of f�S where f:RÑS is a finite homomorphism andR is a domain.

µRpMq minimum number of generators of a finitely generated R-module M .

SpecminR set of all minimal prime ideals of a ring R.
af morphism SpecS Ñ SpecR corresponding to a homomorphism f : RÑ S.

0. Introduction

Let ϕ : X Ñ X be a self-morphism of an algebraic or analytic vari-
ety X and assume that P P X is fixed by ϕ. If ϕ is finite, or if P is totally

ramified, then the local ring OX,P inherits a local endomorphism ϕ7P
whose closed fiber is an artinian ring. This situation arises, for example,
at the vertex of the affine cone over a projective variety with a polar-
ized self-morphism, or at infinity for a polynomial map of the projective
line P1. There is a recent literature on constructing examples of finite

endomorphisms ϕ7P : OX,P Ñ OX,P that are not automorphisms, with
pX,P q a normal singularity. References include [6, 6.2–6.3] and [16,
2.3–2.5]. Other authors, see e.g. [11], have addressed the question of
whether the existence of a finite surjective self-morphism of degree ¡ 1
of a normal variety imposes restrictions on its local geometry or the
nature of its singularities.

In [17] Favre and Jonsson studied a number of local invariants of endo-
morphisms of local rings of germs of analytic functions over the complex
numbers (also see [20]). Their study of these local invariants explains
the obstructions encountered in establishing an equidistribution theorem
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for p1, 1q-currents, that extends results of Brolin [10], Lyubich [32], the
third author, Ullmo and Zhang [48]. The work of Favre and Jonsson has
also been a key to many subsequent works, including [49], [14], and [39].

This paper will primarily be concerned with dynamical systems gen-
erated by endomorphisms of finite length of noetherian local rings.

Definition 1. A local homomorphism f : pR,mq Ñ pS, nq of noetherian
local rings is of finite length, if one of the following equivalent conditions
holds:

a) fpmqS is n-primary.
b) If p is a prime ideal of S such that f�1ppq � m, then p � n.
c) If q is any m-primary ideal of R, then fpqqS is n-primary.

Note that for a homomorphism of noetherian local rings, finite ñ
integral ñ finite length and finite ñ quasi-finite ñ finite length. Also
the composition of two homomorphisms of finite length is again of finite
length.

Definition 2. A local endomorphism f : pR,mq Ñ pR,mq of a noe-
therian local ring R is called contracting if for every x P m the se-
quence tfnpxqun¥1 converges to 0 in the m-adic topology of R.

Remark 3. The terminology of contracting endomorphism is due to
Avramov, Hochster, Iyengar, Miller, and Yao, see [3, p. 80] or [2, p. 2].
This terminology is due to the fact that such endomorphisms are con-
tracting in the m-adic topology of the ring. However, if R is a local
ring admitting a contracting endomorphism in the sense of Definition 2,
then the closed point of SpecR corresponds to a super-attracting fixed
point in the sense of complex (or non-archimedean) dynamics. In [22]
for instance, an endomorphism satisfying the condition of Definition 2 is
called super-attracting.

Lemma 4. Let pR,mq be a noetherian local ring of embedding dimen-
sion δ. A local endomorphism ϕ : R Ñ R is contracting if and only if
ϕδpmq � m2.

Proof: See [3, Lemma 12.1.4].

Definition 5. A local algebraic dynamical system pR,ϕq is a noetherian
local ring R together with an endomorphism of finite length ϕ : RÑ R.
A morphism f : pR,ϕq Ñ pS, ψq between two local algebraic dynamical
systems is a local homomorphism f : RÑ S such that ψ � f � f � ϕ.

In the first part of this paper three asymptotic invariants are in-
troduced for an endomorphism ϕ of finite length of a noetherian local
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ring pR,mq:

hlocpϕq � lim
nÑ8

1

n
log plengthRpR{ϕ

npmqRqq

vhpϕq � lim
nÑ8

1

n
logpmaxtr | ϕnpmq � mruq

whpϕq � lim
nÑ8

1

n
logpmintr | mr � ϕnpmquq.

Our first theorem asserts:

Theorem 1. Let pR,m, ϕq be a local algebraic dynamical system. Sup-
pose R is of dimension d and embedding dimension δ. Then

a) The invariants hlocpϕq, vhpϕq and whpϕq are finite and non-nega-
tive.

b) 0 ¤ d � vhpϕq ¤ hlocpϕq ¤ d � whpϕq.
c) If ϕ is in addition contracting, then δ � hlocpϕq ¥ d � log 2.
d) If R is of prime characteristic p¡ 0, then hlocpFrobeniusRq � d �

log p.

We call the main invariant hlocpϕq local entropy. Roughly speaking,
in the theory of dynamical systems, entropy is a notion that measures
the rate of increase in dynamical complexity as the system evolves with
time [51, p. 313]. Various forms of entropy exist in the literature. For
instance, Adler, Konheim, and McAndrew introduced the notion of topo-
logical entropy in [1] for continuous maps of compact topological spaces.
Measure-theoretic entropy was introduced by Kolmogorov in [28] and
later improved by Sinăı in [47] for measure-preserving morphisms of
probability spaces, and in [4] Bellon and Viallet introduced a notion of
algebraic entropy for dominant rational self-maps of projective space.

We show that our notion of local entropy shares many standard prop-
erties of topological entropy. For instance, writing hpϕq for entropy of a
self-map ϕ of a space X, both local and topological entropies satisfy:

1) hpϕtq � t � hpϕq for all t P N, where ϕt � ϕ � ϕ � � � � � ϕ (t copies).
2) If Y � X is a closed ϕ-stable subspace, then hpϕæY q ¤ hpϕq.
3) If f : X Ñ X 1 is an isomorphism, then hpϕq � hpf � ϕ � f�1q.
4) If X �

�
Yi, i � 1, . . . ,m, where the Yi are closed ϕ-stable sub-

spaces, then hpϕq � max
 
hpϕæYi

q : 1 ¤ i ¤ m
(
.

The various invariants that measure the complexity of a given system are
often related (see, e.g., [33]). We compare hlocpϕq to degree of ϕ when
R is a domain and ϕ : R Ñ R is finite. Particular attention is given to
the local ring of the vertex of the affine cone of an integral projective
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variety equipped with a polarized self-morphism, for which we prove
(see Proposition 40) an analogue of a result of Gromov in [23], where
he showed topological entropy of a self-morphism of PnpCq is equal to
logarithm of its topological degree.

The invariant vhpϕq has been studied by Favre and Jonsson in [19]
and [17] in a different guise. In [19, Theorem A] they prove the remark-
able result that if k is an arbitrary field and ϕ is a k-endomorphism of
the ring kJX,Y K, then vhpϕq is the logarithm of a quadratic algebraic
integer. A priori it is assumed in [19, Theorem A] that the characteris-
tic of the field is equal to 0, but the method relies on the technique of
key polynomials of [18, Appendix E], which is valid in arbitrary char-
acteristic. Bellon and Viallet have conjectured in [4] that their notion
of algebraic entropy for dominant rational self-maps of projective space
is also always the logarithm of an algebraic integer (see also [46, Con-
jecture 8]). This conjecture is proved for monomial self-maps in [24,
Corollary 6.4]. It is, therefore natural to ask a similar question about
the invariants hlocpϕq, vhpϕq and whpϕq:

Question 6. Let pR,ϕq be a local algebraic dynamical system. Are
the invariants hlocpϕq, vhpϕq and whpϕq always logarithms of algebraic
integers?

An endomorphism ϕ : R Ñ R induces a self-morphism aϕ of SpecR.
When ϕ is integral and SpecR � V pkerϕq, we show that aϕ permutes the
irreducible components of SpecR. As a result, irreducible components of
SpecR are stable under an iteration of ϕ. Even when SpecR � V pkerϕq,
there exist irreducible components that are stable under an iteration of ϕ.

In the second part of this paper we study the case of regular local rings.
We use local entropy to extend numerical conditions of Kunz’ regularity
criterion to arbitrary contracting endomorphisms of finite length. This
result of Kunz was established as a converse to a result of Peskine and
the third author [40, Theorem 1.7], stating that the pullback of a free
resolution of a module of finite projective dimension by the Frobenius
endomorphism is a free resolution of the pullback of the module. This
statement is still mysterious for a general endomorphism of a local ring,
even for its iterates. One should note, however, that it is true for res-
olutions of modules of finite length. (Apply the acyclicity lemma [40,
Lemma 1.8].)

The second theorem of this paper asserts:

Theorem 2. Let pR,m, ϕq be a local algebraic dynamical system and let
d be the dimension of R. Let hlocpϕq be the local entropy of this system
and define qϕ :� expphlocpϕq{dq. Consider the following conditions:
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a) R is regular.

b) ϕ : RÑ R is flat.

c) lengthpR{ϕpmqRq � qdϕ.

d) lengthpR{ϕnpmqRq � qndϕ for some n P N.

Then a) ñ b) ñ c) ñ d). If in addition ϕ is contracting, all these
conditions are equivalent.

Avramov, Iyengar and Miller have proved the equivalence of condi-
tions a) and b) (and more results) in [3] using different methods. We use
Herzog’s proof from [25, Satz 3.1] that is based on a nontrivial argument
in local cohomology, to prove the implication b)ña). He originally wrote
it for the Frobenius endomorphism. This part of our proof has been pre-
viously used by Bruns and Gubeladze in [12, Lemma 3]. Our proof of
the implication d) ñ b) utilizes a flatness criterion that is due to Nagata.

We propose a characteristic-free interpretation of definition of the
Hilbert-Kunz multiplicity, see [37], in terms of local entropy. From The-
orem 2 it quickly follows that the Hilbert-Kunz multiplicity of a regular
local ring with respect to any endomorphism of finite length is 1. This
is a well-known fact in the case of the Frobenius endomorphism. The
existence of the Hilbert-Kunz multiplicity attached to an arbitrary en-
domorphism of finite length, however, remains an open question.

Our third theorem in this paper is inspired by results of Fakhrud-
din [15, Corollary 2.2], and Bhatnagar and the third author [5, Theo-
rem 2.1] on extending a polarized self-morphism of a projective variety
over an infinite field to an ambient projective space. Recently in [41]
Poonen gave a proof for the main result of [5] over finite fields. Here we
consider a similar lifting problem for an endomorphism of finite length of
an equicharacteristic complete noetherian local ring, and prove a Cohen-
Fakhruddin type structure theorem. Note that it is easy to see that if a
local ring has a nonzero contracting endomorphism, it must be of equal
characteristic. In our local version of Fakhruddin’s result we do not
assume our fields to be infinite.

Our third theorem asserts:

Theorem 3. Let pA,ϕq be a local algebraic dynamical system and as-
sume that A is a homomorphic image π : R� A of an equicharacteristic
complete regular local ring R. Then ϕ can be lifted (non uniquely) to an
endomorphism of finite length ψ of R such that π � ψ � ϕ � π. Thus,
π : pR,ψq Ñ pA,ϕq becomes a morphism of local algebraic dynamical
systems.
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The converse problem of characterizing homomorphic images of a reg-
ular local ring R to which a given endomorphism of finite length ψ of R
descends, is an open question. Equivalently, this question is asking for
characterization of ideals a � R for which ψpaq � a. If a is such an ideal
then ψ descends to give an endomorphism of finite length of R{a.

The results and questions that we discussed in this introduction, as
well as the equidistribution results for the measure of maximal entropy
obtained by Brolin [10], Lyubich [32], the third author, Ullmo and
Zhang [48], have motivated us to study local and global invariants of
schemes with self-morphisms.

1. Local entropy

1.1. Examples of rings with endomorphisms.

Example 7. If R is a noetherian local ring of positive prime character-
istic p, then the Frobenius endomorphism x ÞÑ xp is contracting and of
finite length.

Example 8. A power series ring R :� kJX1, . . . , XnK over a field k
has many endomorphisms of finite length. If elements f1, . . . , fn of R
generate an ideal of height n in R, then we obtain an endomorphism of
finite length by setting Xi ÞÑ fi for 1 ¤ i ¤ n. Conversely, in Theorem 3
we will show using Cohen’s structure theorem that every endomorphism
of finite length of a complete equicharacteristic local ring is induced by
an endomorphism of a power series ring.

Definition 9. Let ϕ : RÑ R be an endomorphism of a noetherian local
ring. An ideal a of R is called ϕ-stable, if ϕpaqR � a.

Example 10. Let R :� kJX1, . . . , XnK be a power series ring over a
field k, and let ϕ be an endomorphism of finite length of R, e.g., as
defined in Example 8. Let z � 0 be an arbitrary element of the maximal
ideal of R. Then the ideal a generated by z, ϕpzq, ϕ2pzq, . . . (orbit of z
under ϕ) is ϕ-stable. Thus ϕ induces an endomorphism of finite length
on R{a. Moreover, if ϕ is contracting, then so is the induced map.
Macaulay 2 can be used to generate examples of this type. We mention
three examples here. In these examples k is a field of characteristic
zero, R and a are as above and µp � q denotes the minimum number of
generators of a finitely generated R-module.

a) n � 4, z � X2
2 �X5

3 . Define ϕ as X1 ÞÑ X3
1 , Xi ÞÑ X2

i for i � 2, 3
and X4 ÞÑ X7

4 . Then µpaq � 2 and dimR{a � 2.



516 M. Majidi-Zolbanin, N. Miasnikov, L. Szpiro

b) n � 7, z � X1X2X3 �X3
4 �X2

5X6 �X3
7 . Define ϕ as Xi ÞÑ X2

i ,
for 2 ¤ i ¤ 6 and X1 ÞÑ X2

7 , X7 ÞÑ X2
1 . Then µpaq � 5 and

dimR{a � 3.

c) n � 8, z � X1X
5
4X

2
8 �X3X

4
5 �X2X

3
6 �X7. Define ϕ as Xi ÞÑ X2

i ,
for 3 ¤ i ¤ 8 and X1 ÞÑ X2

2 , X2 ÞÑ X2
1 . Then µpaq � 5 and

dimR{a � 4.

Example 11. Let R :� kJX1, . . . , XnK be a power series ring over a
field k, and let a be an ideal of R with generators that can be expressed
in the form monomial � monomial. Then the endomorphism of R given
by Xi ÞÑ Xr

i for an integer r ¡ 1, induces a contracting endomorphism
of finite length on R{a. In more geometric terms this example says any
singularity of a toric variety admits a contracting self-morphism.

1.2. Existence and estimates for local entropy. In this section we
prove Theorem 1. We will need a lemma that is often used in dynamical
systems. For a proof we refer to [50, Theorem 4.9].

Lemma (Fekete). Let tanun¥1 be a sub-additive (super-additive) se-
quence of real numbers, that is, an�m ¤ an � am (resp. an�m ¥ an �
am) for all n,m P N. Then limnÑ8 an{n exists and equals infntan{nu
(resp. supntan{nu). (The limit could be �8 (resp. 8) but if an ¥ c � n
(resp. an ¤ c � n) for a number c ¡ 0 and all n P N, then the limit will
be finite.)

We will also need the proposition that follows:

Proposition 12. Let f : pR,mq Ñ S be a homomorphism of finite length
of noetherian local rings. Let M be an R-module of finite length. Then

a) M bR S is of finite length as an S-module.
b) lengthSpM bR Sq ¤ lengthSpS{fpmqSq � lengthRpMq.
c) If f is flat, then lengthSpMbRSq� lengthSpS{fpmqSq�lengthRpMq.

Proof: By induction on lengthRpMq.

Definition 13. Let f : pR,mq Ñ pS, nq be a local homomorphism of
finite length of noetherian local rings. We define

lengthpfq � lengthpS{fpmqSq

vpfq � maxtr | fpmqS � nru

wpfq � mintr | nr � fpmqSu.

Remark 14. The definition of vpfq and wpfq was inspired by similar
definitions of Samuel in [43, p. 11]. Note that nwpfq � fpmqS � nvpfq.
Thus: vpfq ¤ wpfq.
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Lemma 15. Let f : pR,mq Ñ pS, nq and g : pS, nq Ñ pT, pq be two ho-
momorphisms of finite length of noetherian local rings. Write lengthpfq,
lengthpgq, lengthpg � fq for the lengths of the closed fibers of f , g and
g � f , respectively. Then

a) lengthpgq ¤ lengthpg � fq ¤ lengthpgq � lengthpfq.

b) If g is flat then lengthpg � fq � lengthpgq � lengthpfq.

c) vpg � fq ¥ vpgq � vpfq.

d) wpg � fq ¤ wpgq � wpfq.

Proof: For a) and b) apply Proposition 12, using the canonical isomor-
phism of T -modules pS{fpmqSq bS T � T {g pfpmqSqT (see, e.g., [7,
Chapter II, §3.6, Corollaries 2 and 3, pp. 253–254]). For c) and d) using
the fact that for an ideal a of S and n P N, gpanqT � pgpaqT qn, we can
write

ppg � fqpmqqT � gpfpmqSqT � gpnvpfqqT � pgpnqT q
vpfq

R � pvpgqvpfq,

and

pwpgqwpfq � pgpnqT q
wpfq

� gpnwpfqqT � gpfpmqSqT � ppg � fqpmqqT.

By definition of vpg�fq and wpg�fq then we obtain vpg�fq ¥ vpgq �vpfq
and wpg � fq ¤ wpgq � wpfq, respectively.

Theorem 1. Let pR,m, ϕq be a local algebraic dynamical system. Sup-
pose R is of dimension d and embedding dimension δ. Define

hlocpϕq :� lim
nÑ8

1

n
log lengthpϕnq � lim

nÑ8

1

n
log plengthRpR{ϕ

npmqRqq

vhpϕq :� lim
nÑ8

1

n
log vpϕnq � lim

nÑ8

1

n
logpmaxtr | ϕnpmq � mruq

whpϕq :� lim
nÑ8

1

n
logwpϕnq � lim

nÑ8

1

n
logpmintr | mr � ϕnpmquq.

a) The invariants hlocpϕq, vhpϕq and whpϕq are finite and non-neg-
ative. In addition, hlocpϕq � infntplog lengthpϕnqq{nu, vhpϕq �
supntplog vpϕnqq{nu and whpϕq � infntplogwpϕnqq{nu.

b) 0 ¤ d � vhpϕq ¤ hlocpϕq ¤ d � whpϕq.

c) If ϕ is in addition contracting, then δ � hlocpϕq ¥ d � log 2.

d) If R is of prime characteristic p¡ 0, then hlocpFrobeniusRq � d �
log p.

We call the invariant hlocpϕq local entropy of ϕ.
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Proof: a) Apply Fekete’s Lemma, taking anto be log lengthpϕnq, logwpϕnq
and log vpϕnq, respectively. The sub-additivity of tlog lengthpϕnqu and
tlogwpϕnqu and super-additivity of tlog vpϕnqu were established in Lem-
ma 15. By Lemma 15 and Remark 14, for every n P N

1 ¤ rvpϕqsn ¤ vpϕnq ¤ wpϕnq ¤ rwpϕqsn.

These inequalities give the finiteness and non-negativity of the limits.

b) From Definition 13 we get mwpϕ
nq � ϕnpmqR � mvpϕ

nq. Thus

lengthRpR{m
vpϕnqq ¤ lengthpR{ϕnpmqRq ¤ lengthRpR{m

wpϕnqq.

We consider two cases: vpϕnq Ñ 8 and vpϕnq Û 8. In the first case by
Remark 14 wpϕnq Ñ 8, as well. Then, for large n, lengthRpR{m

vpϕnqq
and lengthRpR{m

wpϕnqq are polynomials of precise degree d in vpϕnq
and wpϕnq, respectively, with highest degree terms epmqpvpϕnqqd{d! and
epmqpwpϕnqqd{d!. Thus, for large n

epmq

d!
pvpϕnqq

d
¤ lengthpR{ϕnpmqRq ¤

epmq

d!
pwpϕnqq

d
,

which gives the result after applying logarithm, dividing by n and taking
limits. In the second case, when vpϕnq Û 8, the sequence tvpϕnqu is
bounded. Hence, there is a number c such that 1 ¤ vpϕnq ¤ c. Applying
logarithm, dividing by n and taking limits, we get vhpϕq � 0. Now, if
wpϕnq Ñ 8, then starting with the inequality

1 ¤ lengthpR{ϕnpmqRq ¤ lengthRpR{m
wpϕnqq

and repeating the same argument as before, we arrive at the desired
inequality

vhpϕq � 0 ¤ hlocpϕq ¤ d � whpϕq.

Finally if wpϕnq Û 8, then the sequence twpϕnqu is also bounded and
there is a number c1 such that 1 ¤ wpϕnq ¤ c1. After applying logarithm,
dividing by n and taking limits, get whpϕq � 0. Since vhpϕq � 0 as well,
the proof will be completed by showing hlocpϕ,Rq � 0. This follows from
inequalities

1 ¤ lengthpR{ϕnpmqRq ¤ lengthRpR{m
wpϕnqq ¤ lengthRpR{m

c1q.

c) There is nothing to prove if δ � 0, so assume δ ¡ 0. By Lemma 4
to say that ϕ is contracting is equivalent to saying ϕδpmqR � m2, which
by definition gives vpϕδq ¥ 2. Hence, using parts a) and b) we obtain

plog 2q{δ ¤ plog vpϕδqq{δ ¤ sup
n
tplog vpϕnqq{nu � vhpϕq ¤ hlocpϕq{d.
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d) If R is of characteristic p and ϕ is its Frobenius endomorphism,
then by [29, Proposition 3.2]

pnd ¤ lengthpR{ϕnpmqRq ¤ min
ty1,...,ydu

rlengthR pR{py1, . . . , ydqRqs � p
nd,

where ty1, . . . , ydu runs over all systems of parameters of R. Apply
logarithm, divide by n and take limits to get hlocpϕq � d � log p.

Corollary 16. Let pR,m, ϕq be a local algebraic dynamical system. If
dimR is zero, then hlocpϕq � 0. Conversely, if ϕ is contracting and
hlocpϕq � 0, then dimR is zero.

Proof: If dimR � 0, then R is artinian and the result follows from
inequalities 1 ¤ lengthpR{ϕnpmRqq ¤ lengthpRq   8. The converse
statement follows from part c) of Theorem 1.

Local entropy can be computed using other methods. To show this
we need a definition.

Definition 17. Let R be a noetherian local ring, and let ϕ be an en-
domorphism of R. Let R-Mod be the category of R-modules. For ev-
ery n P N we define a functor Φn : R-Mod Ñ R-Mod as follows: if
M P R-Mod, then

ΦnpMq :�M bR ϕ
n
� R,

where the R-module structure of ΦnpMq is defined to be

r � x �
¸
mi b r � ri, if x �

¸
mi b ri P ΦnpMq and r P R.

For the Frobenius endomorphism the functors defined in Definition 17
are known as Frobenius functors. They were first introduced in [40,
Definition 1.2]. Properties of Frobenius functors were established in [40]
and [25]. The same proofs can be re-written for the functors Φn. Thus,
these functors share similar properties with Frobenius functors.

Proposition 18. Let pR,ϕq be a local algebraic dynamical system. If
M is a nonzero module of finite length, then

hlocpϕq � lim
nÑ8

1

n
� log lengthRpΦ

npMqq.

Proof: It is easy to show ΦnpR{mq � R{ϕnpmqR (see [40, p. 54] or [25,
no. 2.6]). Thus,

lengthRpΦ
npR{mqq � lengthRpR{ϕ

npmqRq.
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Since M is of finite length, there is a surjection M Ñ R{m Ñ 0. Apply
the functor Φn to obtain a surjection ΦnpMq Ñ ΦnpR{mq Ñ 0. Then
using Proposition 12b)

lengthRpΦ
npR{mqq¤ lengthRpΦ

npMqq¤ lengthpR{ϕnpmqRq� lengthRpMq.

The result follows after applying logarithm, dividing by n and letting
nÑ8.

1.3. Properties of local entropy. Many of the properties that we will
establish for local entropy in this section are also shared by topological
entropy.

Proposition 19. Let pR,m, ϕq be a local algebraic dynamical system
and let r P N. Then hlocpϕ

rq � r � hlocpϕq.

Proof: By definition of local entropy

hlocpϕ
rq � lim

nÑ8
p1{nq � log lengthpR{ϕrnpmqRq

� r � lim
nÑ8

p1{prnqq � log lengthpR{ϕrnpmqRq

� r � hlocpϕq.

Proposition 20. Let f : pR,m, ϕq Ñ pS, n, ψq be a morphism between
two local algebraic dynamical systems. Assume that f is of finite length.
Then

a) In general hlocpψq ¤ hlocpϕq.
b) If in addition f is flat, then hlocpψq � hlocpϕq.

Proof: a) Since f is a morphism between local algebraic dynamical sys-
tems, ψn � f � f � ϕn. We use Lemma 15a)

lengthpS{ψnpnqSq ¤ lengthpψn � fq � lengthpf � ϕnq

¤ lengthpR{fpmqRq � lengthpR{ϕnpmqRq.

Apply logarithm, divide by n and take limits as n approaches infinity.

b) If f is flat, using Lemma 15a) and b) we obtain

lengthpR{ϕnpmqRq � lengthpf � ϕnq{ lengthpR{fpmqRq

� lengthpψn � fq{ lengthpR{fpmqRq

¤ lengthpS{ψnpnqSq.

Apply logarithm, divide by n and take limits as n approaches infinity.
For the inequality in the other direction we use part a).
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With regard to Proposition 20, C. Huneke has asked us the following
question:

Question 21. Let f : pR,m, ϕq Ñ pS, n, ψq be a morphism, not neces-
sarily of finite length, between two local algebraic dynamical systems.
The ideal fpmqS is easily seen to be ψ-stable and ψ induces an endo-
morphism ψ : S{fpmqS Ñ S{fpmqS that is of finite length. If f is flat,
does the equality hlocpψq � hlocpϕq � hlocpψq hold?

One can see quickly that the inequality hlocpψq ¤ hlocpϕq � hlocpψq
always holds even if f is not flat.

Corollary 22. Let pR,m, ϕq be a local algebraic dynamical system. If pR
is the m-adic completion of R then hlocpϕq � hlocppϕq.
Proof: We have a flat morphism of finite length p� : pR,ϕq Ñ p pR, pϕq.
Apply Proposition 20.

Corollary 23. Consider homomorphisms of finite length f : pR,mq Ñ
pS, nq and g : pS, nq Ñ pR,mq of noetherian local rings. Then

hlocpg � fq � hlocpf � gq.

Proof: f : pR, g � fq Ñ pS, f � gq and g : pS, f � gq Ñ pR, g � fq are mor-
phisms between local algebraic dynamical systems. By Proposition 20

hlocpf � gq ¤ hlocpg � fq and hlocpg � fq ¤ hlocpf � gq.

Corollary 24 (Invariance). Let pR,mq and pS, nq be noetherian local
rings. Suppose f : RÑ S is an isomorphism, and let ϕ be an endomor-
phism of of finite length of R. Then hlocpf � ϕ � f

�1q � hlocpϕq.

Proof: Apply Corollary 23 to homomorphisms f�ϕ : RÑS and f�1: SÑ
R.

Corollary 25. Let pR,ϕq be a local algebraic dynamical system and let a
be a ϕ-stable ideal of R. Write ϕ and ϕ̃ for endomorphisms induced by ϕ
on R{a and R{ϕpaqR, respectively. Then hlocpϕq � hlocpϕ̃q.

Proof: Let f : R{a Ñ R{ϕpaqR and g : R{ϕpaqR Ñ R{a be homomor-
phisms induced by ϕ and the identity map of R. Apply Corollary 23.

The next two lemmas will be used in our proof of Proposition 28.

Lemma 26. Let tanu and tbnu be two sequences of real numbers not
less than 1 such that limnÑ8plog anq{n � α and limnÑ8plog bnq{n � β
exist. Then

lim
nÑ8

logpan � bnq{n � maxtα, βu.
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Proof: See [1, p. 312].

Lemma 27. Let pR,m, ϕq be a local algebraic dynamical system. Let
a1, . . . , as be a collection of not necessarily distinct ϕ-stable ideals of R.
Let ϕ and ϕi be the endomorphisms induced by ϕ on R{

±
iai and R{ai,

respectively. Then

hlocpϕq � maxthlocpϕiq | 1 ¤ i ¤ su.

Proof: We proceed by induction on s, the number of ideals, counting
possible repetitions. There is nothing to prove if s � 1, so suppose
s � 2. We may assume a1a2 � 0; if not, we can replace R with R{a1a2

without loss of generality. Then a2 is a finitely generated pR{a1q-module.
Hence for some integer r, we have an exact sequence

pR{a1q
r Ñ RÑ R{a2 Ñ 0.

Tensoring by R{ϕnpmqR and taking lengths we get:

lengthpϕnq ¤ r � lengthpϕn1 q � lengthpϕn2 q.

Now let nÑ8 and apply Lemma 26 to obtain

hlocpϕq ¤ maxthlocpϕ1q, hlocpϕ2qu.

On the other hand by Proposition 20a) we know that hlocpϕq ¥ hlocpϕiq,
for each i. This establishes the case s � 2. The general case follows
easily by induction.

Our next result shows that if all minimal prime ideals of a noetherian
local ring R are stable under an endomorphism of the ring, then the local
entropy is equal to the maximum local entropies of the endomorphisms
induced on irreducible components of SpecR.

Proposition 28. Let pR,m, ϕq be a local algebraic dynamical system.
Suppose all minimal prime ideal of R are ϕ-stable and for each pi P
SpecminR, let ψi be the endomorphism induced by ϕ on R{pi. Then

(1) hlocpϕq � maxthlocpψiq | pi P SpecminRu.

Proof: Let SpecminR � tp1, . . . , psu and let a �
±
i pi. Then a is

contained in the nilradical of R, hence aN � p0q for some N , that is,
R � R{aN . Apply Lemma 27 to obtain

hlocpϕq � maxthlocpψiq | pi P SpecminRu.

Remark 29. In Proposition 42 we will generalize equation (1).
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1.4. Reduction to equal characteristic. The main result in this sec-
tion shows that computing local entropy in mixed characteristic can be
reduced to the case of equal characteristic p ¡ 0.

For a given local algebraic dynamical system pR,m, ϕq, we define

(2) S :�
�8
n�1 ϕ

npRq and n :�
�8
n�1 ϕ

npmq.

Lemma 30. Let pR,m, ϕq be a local algebraic dynamical system. Let S
and n be as defined in equation (2), and let a be the ideal generated by n
in R. Then

a) S is a local subring of R with maximal ideal n.

b) a is a ϕ-stable ideal of R.

c) If ϕ is in addition injective, then ϕpaqR � a.

Proof: a) It is immediately clear that S is a subring of R and that n is an
ideal of S. To show that n is the (only) maximal ideal of S, consider an
element s P Szn. Since s R n, there is an n0 such that s R ϕn0pmq. In fact,
since for n ¥ n0, ϕnpmq � ϕn0pmq, we see that s R ϕnpmq for all n ¥ n0.
Hence, there are units yn P Rzm such that s � ϕnpynq for all n ¥ n0.
Since s is clearly a unit in R, it has a unique multiplicative inverse s�1

in R. From uniqueness of multiplicative inverse it immediately follows
that we must have s�1 � ϕnpy�1

n q, for all n ¥ n0. Hence, s�1 P S, that
is, s is also a unit in S.

b) Note that by its definition, a has a set of generators x1, . . . , xg P n.
So ϕpaqR can be generated by ϕpx1q, . . . , ϕpxgq and it suffices to show
that each ϕpxiq is in a. Since xi P n, there is a sequence of element yi,n P
m such that xi � ϕpyi,1q � � � � � ϕnpyi,nq � � � � . Thus, ϕpxiq �
ϕ2pyi,1q � � � � � ϕn�1pyi,nq � � � � , showing that ϕpxiq P n � a.

c) Now suppose ϕ is injective. To show ϕpaqR � a it suffices to show
that each xi is in ϕpaq. Since xi P n, there is a sequence of element yi,n P
m such that xi � ϕpyi,1q � � � � � ϕnpyi,nq � � � � . Since xi � ϕpyi,1q,
we will be done by showing that yi,1 P n. By injectivity of ϕ, yi,1 �
ϕpyi,2q � � � � � ϕn�1pyi,nq � � � � , which means yi,1 P n.

Remark 31. Let pR,m, ϕq be a local algebraic dynamical system and let
n be as defined in equation (2). If n � p0q, then by Lemma 30 the ring R
contains a field and is of equal characteristic. As noted in [2, Remark 5.9,
p. 10], this occurs, for example, if ϕ is a contracting endomorphism.

Proposition 32. Let pR,m, ϕq be a local algebraic dynamical system.
Let a be the ideal of R defined in Lemma 30, and let ϕ be the endomor-
phism induced by ϕ on R{a. Then
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a) hlocpϕq � hlocpϕq.

b) If R is of mixed characteristic, then R{a is of equal characteristic
p ¡ 0.

Proof: a) Note that ϕnpmqR � a for all n ¥ 1. Hence ϕnpmqR � a �
ϕnpmqR, showing that lengthpR{pϕnpmqR � aqq � lengthpR{ϕnpmqRq,
giving the result.

b) With reference to Lemma 30, the image of the subring S of R
in R{a is a field, because it’s maximal ideal n is contained in a and is
mapped to 0. Hence R{a contains a field and must be a local ring of equal
characteristic p ¡ 0, as its residue field is of characteristic p ¡ 0.

1.5. Local entropy and degree. The analogy between local and topo-
logical entropies also extends to their relation to degree. Misiurewicz and
Przytycki showed in [36], that if f is a C1 self-map of a smooth compact
orientable manifold M , then

htoppfq ¥ log |degpfq|.

For a holomorphic self-morphism f of PnpCq, Gromov showed in [23]

htoppfq � log |degpfq|.

Here degpfq is the topological degree of f .
In this section we obtain similar formulas for finite endomorphisms of

local domains, relating their local entropy to degree. For local Cohen-
Macaulay domains we prove an analog of Gromov’s formula.

Definition 33. Let f : RÑ S be a finite homomorphism of noetherian
local rings. Assume that R is a domain. Then by degree of f , degpfq,
we mean the rank of the R-module f� S.

Lemma 34. Let f : pR,mq Ñ pS, nq be a finite homomorphism of noe-
therian local rings with residue fields kR and kS, respectively. Assume
that R is a domain. Let q be an m-primary ideal of R. Then

(3) eSpfpqqSq �
eRpqq � degpfq

rf� kS : kRs
.
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Proof: Let d � dimR � dimS. By definition of multiplicity and prop-
erties of length we quickly obtain

eRpq, f� Sq � lim
mÑ8

d!

md
� lengthR

�
f�

�
S

pfpqqSqm





� rf� kS : kRs � lim
mÑ8

d!

md
� lengthS

�
S

pfpqqSqm




� rf� kS : kRs
n � eSpfpqqSq.

On the other hand eRpq, f� Sq � eRpqq � degpfq (see [35, Theorem 14.8]),
and equation (3) follows.

Corollary 35. Let pR,m, ϕq be a local algebraic dynamical system, where
R is a domain and ϕ is finite, and let k be the residue field of R. Set d :�
dimR and define qϕ :� expphlocpϕ,Rq{dq. For elements x1, . . . , xd P m
let χpx1, . . . , xd;Rq be the Euler-Poincaré characteristic of the Koszul
complex on these elements. The following conditions are equivalent:

a) log degpϕq � logrϕ� k : ks � hlocpϕq.
b) For any system of parameters tx1, . . . , xdu of R and for any n P N

(4) χpϕnpx1q, . . . , ϕ
npxdq;Rq � qndϕ � χpx1, . . . , xd;Rq.

c) Equation (4) holds for some system of parameters of R and some
n P N.

Proof: Let tx1, . . . , xdu be a system of parameters of R and let q be the
m-primary ideal that they generate. By [45, Chapter IV, Theorem 1]

epqq � χpx1, . . . , xd;Rq.

Since tϕnpx1q, . . . , ϕ
npxdqu is also a system of parameters of R, the result

quickly follows from equation (3) in Lemma 34.

Example 36. Let pR,mq be a noetherian local domain of prime charac-
teristic p, and let ϕ be the Frobenius endomorphism of R. Then by [30,
Proposition 2.3] condition a) of Corollary 35 holds.

Remark 37. When f : pR,m, kRq Ñ pS, n, kSq is a finite homomorphism
of local rings, then rf� kS : kRs � lengthSpS{mSq is the minimal number
of generators of f� S over R, by Nakayama lemma.

Proposition 38. Let pR,m, ϕq be a local algebraic dynamical system,
where ϕ is finite, R is a domain and dimR � d. Let k be the residue
field of R. Then

a) d � vhpϕq ¤ log pdegpϕq{rϕ� k : ksq ¤ hlocpϕq.
b) If in addition R is Cohen-Macaulay, log pdegpϕq{rϕ�k :ksq�hlocpϕq.
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Proof: a) By Theorem 1 we know vhpϕq � supntplog vpϕnqq{nu. Hence,
to show the first inequality it suffices to show

vpϕnqd{n ¤ degpϕq{rϕ� k : ks.

Since ϕnpmqR � mvpϕ
nq, with the aid of Lemma 34 we obtain

epmqvpϕnqd � epmvpϕ
nqq ¤ epϕnpmqRq �

epmq � degpϕnq

rϕn
� k : ks

.

For the second inequality, let µpϕn
� Rq, or simply µ, be the minimum

number of generators of the R-module ϕn
� R. Localizing the surjec-

tion Rµ � ϕn
� R at p0q we see rankϕn

� R ¤ µpϕn
� Rq. On the other

hand, as mentioned in Remark 37, we have µpϕn
� Rq � rϕ� k : ksn �

lengthpR{ϕnpmqRq. Since by definition of degree, rankϕn
� R�degpϕnq�

pdegpϕqqn, we conclude

pdegpϕqqn{rϕ� k : ksn ¤ lengthpR{ϕnpmqRq.

Apply logarithm, divide by n and take limits as nÑ8.

b) Let q be an arbitrary parameter ideal of R. Then

length pR{ϕnpmqRq ¤ length pR{ϕnpqqRq .

If R is Cohen-Macaulay, then length pR{ϕnpqqRq � epϕnpqqRq (see,
e.g., [35, Theorem 17.11]). Thus, using Lemma 34

length pR{ϕnpmqRq ¤ epϕnpqqRq �
epqqpdegpϕqqn

rϕ� k : ksn
.

Applying logarithm, dividing by n, and taking limits as nÑ8 we obtain

hlocpϕq ¤ log pdegpϕq{rϕ� k : ksq .

This inequality together with the inequality in a) give the desired equal-
ity.

1.6. Entropy at the vertex of the cone over a projective variety.
The following result, which will be used in this section was proved in [5,
Theorem 2.1] by Bhatnagar and the third author over infinite fields and
in [41, Theorem 1.4] by Poonen over finite fields.

Theorem. Let X be a projective variety defined over a field k, ı : X ãÑ
PNk a given embedding and L :� ı�OPN

k
p1q. Let ϕ : X Ñ X be a self-

morphism that is polarized by L, that is, ϕ�pLq � Lb q for an integer
q ¥ 2. Then there exists a positive integer r and a finite morphism
PNk Ñ PNk extending ϕr, where N � 1 � dimk H0pX,Lq.
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Keeping the notation as above, let a be the largest homogeneous ideal
in krX0, . . . , XN s defining ıpXq and let R :� krX0, . . . , XN s{a. Also let
Rpqq :�

À
n¥0Rnq be the qth Veronese subring of R. Using the above

theorem, we can fix an r P N such that ϕr extends to a finite self-
morphism PNk Ñ PNk . The proof of this theorem in [5], [41] shows that
this self-morphism is given by N � 1 forms F0, . . . , FN of degree qr that
have no non-trivial common zeros in the algebraic closure of k. The
assignment Xi ÞÑ Fi defines a finite endomorphism ψ : R Ñ R that can
be factored as

RÑ Rpqrq
ãÑ R,

where Rpqrq
ãÑ R is inclusion and RÑ Rpqrq is a graded homomorphism

that induces ϕr on X � ProjR. We want to calculate the local entropy
of the local endomorphism induced by ψ at the vertex of the affine cone
SpecR over X.

Remark 39. While the self-morphism PNk Ñ PNk obtained from the theo-
rem is not unique, the endomorphism ψ : RÑ R is unique up to a scalar
multiple.

Proposition 40. Let X be an integral projective variety of dimension d
over a field k with a given embedding ı : X ãÑ PNk and set L :� ı�OPN

k
p1q.

Let ϕ : X Ñ X be a self-morphism and assume that ϕ�pLq � Lb q for an
integer q ¥ 2. Let r, R and ψ be as defined in the previous paragraph
and let hlocpψq be the local entropy of ψ at the vertex of the affine cone
SpecR over X. Then

(5) hlocpψq � log degpψq � pd� 1q log qr.

Proof: By Theorem 1b) and Proposition 38a) it suffices to show vhpψq ¥
log qr and whpψq ¤ log qr. For the first inequality, note that as discussed
prior to this proposition, ψ is induced by assignments Xi ÞÑ Fi for N�1
homogeneous forms F0, . . . , FN of degree qr in the variablesXi. Thus, ψn

is given by forms of degree qnr. This shows, with notations of Theorem 1,
that vpψnq ¥ qnr. Hence

vhpψq � lim
nÑ8

1

n
log vpψnq ¥ log qr.

To prove the second inequality we use elimination theory: by [31, Corol-
lary to Theorem 1, p. 169] we get xX0, . . . , XN y

s
� xF0, . . . , FN y, where

s � qrpN � 1q �N . Thus, wpψnq ¤ qnrpN � 1q �N and we obtain

whpψq � lim
nÑ8

1

n
logwpψnq ¤ log qr.

This concludes the proof.
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1.7. Integral endomorphisms. In this section we study local alge-
braic dynamical systems pR,ϕq generated by integral endomorphisms.
We begin with a simple observation. Let pR,ϕq be a local algebraic
dynamical system. Then for every n P N,

ϕ pkerϕnq � kerϕn�1 � kerϕn.

Hence ϕ induces a local endomorphism of R{ kerϕn.

Proposition 41. Let pR,m, ϕq be a local algebraic dynamical system.
Let ϕn be the local endomorphism induced by ϕ on R{ kerϕn, n P N.
Then

a) hlocpϕq � hlocpϕnq.
b) If ϕ is integral, then so is ϕn.
c) If n is large enough, then ϕn : R{ kerϕn Ñ R{ kerϕn is injective.

Proof: a) Apply Corollary 25 to the endomorphism ϕn of R, taking
kerϕn as the ideal a in that corollary. Since ϕnpkerϕnqR � p0q, by that
corollary hlocpϕ

n
nq � hlocpϕ

nq. Now use Proposition 19.

b) This is clear (see [8, Chapter V, Proposition 2, p. 305]).

c) R is noetherian, so the ascending chain kerϕ�kerϕ2�kerϕ3�� � �
is stationary. Let n0 be such that kerϕn � kerϕn�1 for n ¥ n0. We will
show that if n ¥ n0, then ϕn : R{ kerϕn Ñ R{ kerϕn is injective. Let
x P R{ kerϕn. Saying ϕnpxq � 0 is equivalent to saying ϕpxq P kerϕn,
which is equivalent to saying x P kerϕn�1. Since kerϕn�1 � kerϕn, we
see that x P kerϕn, or x � 0 in R{ kerϕn. Thus, ϕn is injective.

Proposition 42. Let pR,m, ϕq be a local algebraic dynamical system,
where ϕ is integral. Let a be the ideal obtained as the stable limit of the
ascending chain of ideals kerϕ � kerϕ2 � kerϕ3 � � � � . Write aϕ for
the self-morphism of SpecR induced by ϕ. Then

a) aϕ permutes the minimal prime ideals of a.

b) Every minimal prime ideal of a is in SpecminR.

c) Let ϕ : R{a Ñ R{a be the endomorphism induced by ϕ. Assume
that the permutation in part a) is of order p. For a minimal prime
ideal pi of a let ψi be the endomorphism induced by ϕp on R{pi.
Then

hlocpϕq �
1

p
�max thlocpψiq | pi is a minimal prime of au .
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Proof: We recall that if a ring S is integral over a subring R, then over
every prime ideal p of R there lies a prime ideal q of S. Moreover, if p is
a minimal prime ideal, then so is q (see [35, Theorem 9.3]).

a) By Proposition 41, the endomorphism ϕ : R{a Ñ R{a is integral
and injective. Apply the fact that we recalled above and note that a has
only a finite number of minimal prime ideals. (Any surjective map from
a finite set to itself is also injective.)

b) Let n be large enough so that kerϕn � a. Then ϕn induces an
integral injection ϕ̃n : R{a ãÑ R and we have a commuting diagram

R R

R{a

ϕn

ϕ̃n

If q is a minimal prime ideal of a, then by part a) (applied to ϕn) the
ideal p :� pϕnq�1pqq is a minimal prime of a. Thus, pϕ̃nq

�1pqq � p{a.
We apply the fact that we recalled at the beginning of the proof to the
ring injection ϕ̃n : R{a ãÑ R and conclude q P SpecminR.

c) Let n be large enough so that kerϕnp � a. By Proposition 41a) we
know that hlocpϕ

npq � hlocpϕ
npq. Since all minimal prime ideals of R{a

are ϕnp-stable, by Proposition 28 we obtain

hlocpϕ
npq � max thlocpψ

n
i q | pi is a minimal prime of au .

Now an application of Proposition 19 quickly concludes the proof.

Corollary 43. Let pR,ϕq be a local algebraic dynamical system. Assume
that ϕ is integral and SpecR � V pkerϕq. Then

a) aϕ permutes the minimal prime ideals of R.
b) If p R SpecminR is a prime ideal of R, then ϕ�1ppq R SpecminR.
c) An element x P R belongs to a minimal prime ideal of R, if and

only if ϕpxq belongs to a minimal prime ideal of R.
d) Assume that the permutation in part a) is of order p. For pi P

SpecminR let ψi be the endomorphism induced by ϕp on R{pi.
Then

hlocpϕq �
1

p
�maxthlocpψiq | pi P SpecminRu.

Proof: a) Since ϕ is integral, imagepaϕq � V pkerϕq. Thus, from the
hypothesis V pkerϕq � SpecR we see that aϕ is surjective. Hence, aϕn is
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also surjective for every n P N, i.e., V pkerϕnq � imagepaϕnq � SpecR.
So for every n P N, the set of minimal prime ideals of kerϕn is equal to
SpecminR. Take n large enough and apply Proposition 42a).

b) Suppose q :� ϕ�1ppq P SpecminR. If p is not minimal, it con-
tains a minimal prime ideal p1. Moreover, kerϕ � p1. By part a),
ϕ�1pp1q P SpecminR. Since q � ϕ�1pp1q and q is minimal, we must have
q � ϕ�1pp1q. This is a contradiction, because there can be no inclu-
sion between prime ideals that lie over q in the integral ring inclusion
ϕ : pR{ kerϕq ãÑ R.

c) Let x be an element of R. If ϕpxq P p for some p P SpecminR, then
x P ϕ�1ppq. By part a), ϕ�1ppq P SpecminR. Conversely, suppose x P q
for some q P SpecminR. Then by part a) there is a p P SpecminR such
that q � ϕ�1ppq. Hence ϕpxq P p.

d) Since all minimal prime ideals ofR are ϕp-stable, by Proposition 28,
hlocpϕ

pq � maxthlocpψiq | pi P SpecminRu. The result quickly follows
from Proposition 19.

2. Regularity, flatness and entropy

In the second part of this paper we will present proofs of Theorems 2
and 3. Let pR,mq be a noetherian local ring of positive prime character-
istic p and dimension d, and let ϕ be the Frobenius endomorphism of R.
In [29] Kunz showed that the following conditions are equivalent:

a) R is regular.
b) ϕ : RÑ R is flat.
c) lengthpR{ϕpmqRq � pd.
d) lengthpR{ϕnpmqRq � pnd for some n P N.

Later Rodicio showed in [42], that these conditions are also equivalent
to

e) flat dimR ϕ�R   8.

At first glance, Kunz’ conditions c) and d) may appear to be stated in
terms of the characteristic p of the ring and one may not expect to be able
to extend, or even state them in arbitrary characteristic. Nevertheless,
local entropy can be used to make sense of Kunz’ numerical conditions c)
and d) for all endomorphisms of finite length in any characteristic. The-
orem 2 states that with this new interpretation, all conditions in Kunz’
result are equivalent.

We should note that in [3, Theorem 13.3] Avramov, Iyengar and Miller
have extended the equivalence of conditions a) and b) of Kunz and e)
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of Rodicio to arbitrary contracting local endomorphisms of noetherian
local rings.

We list two results here that we will need in our proof of Theorem 2.

Lemma 44 ([25, Lemma 3.2]). Let pR,mq be a noetherian local ring,
and let M be a finitely generated R-module. Consider an ideal b � m
of R. Then there exists an integer µ0 ¥ 0 such that depthpm, bµMq ¡ 0
for all µ ¥ µ0.

Remark 45. In using Lemma 44 we must pay particular attention to
the standard convention that the depth of the zero module is 8 (see,
e.g., [26, p. 291]). Otherwise, if M is an R-module of finite length, then
for µ " 0 we have mµM � p0q, and this would have been a counter-
example to Lemma 44.

The next proposition is taken from [9, Chapter 10, §1, Proposition 1].

Proposition 46. Let R be a noetherian ring and let a be an ideal of R.
Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be an exact sequence of R-modules. If
we define d1 � depthpa,M 1q, d � depthpa,Mq, and d2 � depthpa,M2q,
then one of the following mutually exclusive possibilities holds:

d1 � d ¤ d2 or d � d2   d1 or d2 � d1 � 1   d.

2.1. Kunz’ regularity criterion via local entropy. Before we give
the proof of Theorem 2 we need to establish two lemmas. We begin with
a flatness criterion that is due to Nagata. A proof can be found in [38,
Chapter II, Theorem 19.1]. See also [35, Exercise 22.1, p. 178].

Theorem (Nagata). Let g : pR,mq Ñ pS, nq be an injective homomor-
phism of finite length of noetherian local rings. Then S is flat over R, if
and only if for every m-primary ideal q of R,

(6) lengthRpR{qq � lengthSpS{gpmqSq � lengthSpS{gpqqSq.

We need a stronger version of Nagata’s criterion that we state and
prove here.

Lemma 47. Let g : pR,mq Ñ pS, nq be a homomorphism of finite length
of noetherian local rings. If equation (6) holds for a family of m-primary
ideals tqαuαPA that define the m-adic topology, then it holds for all m-pri-
mary ideals.

Proof: Let q be an m-primary ideal. We will show equation (6) holds
for q. First, using Proposition 12

lengthSpS{gpqqSq� lengthSpSbRR{qq¤ lengthSpS{gpmqSq�lengthRpR{qq.
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To show the reverse inequality, note that by assumption there is a qα � q.
The exact sequence 0 Ñ q{qα Ñ R{qα Ñ R{qÑ 0 yields

(7) lengthRpR{qαq � lengthRpR{qq � lengthRpq{qαq.

If we tensor the previous exact sequence with S, we obtain an exact
sequence of S-modules pq{qαq bR S Ñ S{gpqαqS Ñ S{gpqqS Ñ 0. Thus

lengthSpS{gpqαqSq ¤ lengthSpS{gpqqSq � lengthSppq{qαq bR Sq.

Since equation (6) holds for qα, and using Proposition 12 we quickly see

lengthRpR{qαq�lengthSpS{gpmqSq¤ lengthSpS{gpqqSq

�lengthRpq{qαq�lengthSpS{gpmqSq.

Now using equation (7) we obtain

lengthSpS{gpmqSq � lengthRpR{qq ¤ lengthSpS{gpqqSq.

Lemma 48. Let pR,m, ϕq be a local algebraic dynamical system, and let
a be a ϕ-stable ideal of R. Let ϕ be the endomorphism of R{a induced
by ϕ. Set d :� dimR and ρ :� dimR{a and let qϕ :� expphlocpϕq{dq.
Assume that lengthpR{ϕnpmqRq � qndϕ for an integer n P N. Then

i) lengthpR{ϕntpmqRq � qntdϕ for all t P N.

ii) If in addition hlocpϕq � hlocpϕq and ϕ is contracting, then a � p0q.

Proof: i) Fix t P N. As the sequence tplog lengthpϕntqq{pntqu by Theo-
rem 1 converges to its infimum, we have

hlocpϕq ¤
1

nt
� log lengthpR{ϕntpmqRq, @ n P N.

From this inequality we obtain qntdϕ ¤ lengthpR{ϕntpmqRq. By Lem-
ma 15a)

lengthpR{ϕntpmqRq ¤ plengthpR{ϕnpmqRqqt.

Using our hypothesis and previous inequalities we obtain

qntdϕ ¤ lengthpR{ϕntpmqRq ¤ plengthpR{ϕnpmqRqqt � qntdϕ .

Hence, lengthpR{ϕntpmqRq � qntdϕ for all t P N.

ii) Similar to the previous part, we can write

qntρϕ ¤ lengthpϕntq � lengthpR{pϕntpmqR� aqq

¤ lengthpR{ϕntpmqRq � qntdϕ .
(8)
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From our hypothesis in ii) we know qρϕ � qdϕ. Thus, from equation (8)
we can conclude

(9) lengthpR{pϕntpmqR� aqq � lengthpR{ϕntpmqRq, @ t P N.
The surjection R{ϕntpmqR Ñ R{pϕntpmqR � aqq Ñ 0 and equation (9)
then show

R{pϕntpmqR� aq � R{ϕntpmqR, @ t P N.
Hence,

a �
�
tPN ϕ

ntpmqR � p0q,

where the last equality follows from Lemma 4 because ϕ is by assump-
tion, contracting.

Theorem 2. Let pR,m, ϕq be a local algebraic dynamical system and let
d be the dimension of R. Let hlocpϕq be the local entropy of this system
and define qϕ :� expphlocpϕq{dq. Consider the following conditions:

a) R is regular.
b) ϕ : RÑ R is flat.
c) lengthpR{ϕpmqRq � qdϕ.

d) lengthpR{ϕnpmqRq � qndϕ for an integer n P N.
Then a) ñ b) ñ c) ñ d). If in addition ϕ is contracting, all these
conditions are equivalent.

Proof: a) ñ b) To say that ϕ is of finite length means dimR{ϕpmqR � 0.
Hence, the following equation holds:

dimR � dimR� dimR{ϕpmqR.

Since R is regular, the result follows from [35, Theorem 23.1].

b) ñ c) Since ϕ is flat, by Lemma 15b)

lengthpR{ϕnpmqRq � plengthpR{ϕpmqRqqn, @ n P N.
Thus, by definition of local entropy

hlocpϕq � lim
nÑ8

p1{nq � log lengthpR{ϕnpmqRq

� lim
nÑ8

p1{nq � logplengthpR{ϕpmqRqqn

� log lengthpϕq.

This means lengthpR{ϕpmqRq � qdϕ.

c) ñ d) This is clear.

b) ñ a) We rewrite Herzog’s proof for the Frobenius endomorphism
from [25, Satz 3.1], for an arbitrary endomorphism here. Bruns and
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Gubeladze have also used this proof in [12, Lemma 3]. We include it
here for completeness. To show that R is regular, it suffices to show all
finitely generated R-modules have finite projective dimension. So let M
be a finitely generated R-module. Suppose M were of infinite projective
dimension. Consider a minimal (infinite) free resolution of M

L
 ÑM Ñ 0.

Let s :�depthpm, Rq, and take an R-regular sequence of elements tx1, . . . ,
xsu in m. Write a for the ideal generated by this regular sequence. (If
s � 0, take a � p0q.) Let Φn be the functor defined in Definition 17. For
every n P N we set

Cn
 :� ΦnpL
q bR R{a and Bni :� imagepCni�1 Ñ Cni q.

Using properties of Φn, see [40] or [25], it is easy to see that Cni � Li{aLi
and Bni � ϕnpmqCni . Thus, for every i the module Cni is independent
of n and is nonzero, finitely generated and of depth zero. Applying
Lemma 44, let µi0 be such that depthpm,mµi0Cni q ¡ 0. Since ϕ is
contracting, using Lemma 4 if n is large enough then ϕnpmqR � mµi0 ,
hence Bni � ϕnpmqCni � mµi0Cni . This shows that depthpm, Bni q ¡ 0 for
large n. On the other hand, since ϕ is flat, ΦnpL
q is exact. Thus, using
properties of Φn again, we see that

ΦnpL
q Ñ ΦnpMq Ñ 0

is a minimal (infinite) free resolution of ΦnpMq. Hence

HipC
n

 q � TorRi pΦ

npMq, R{aq � 0, for i ¡ s.

This shows that if i ¡ s, then the sequences

(10) 0 Ñ Bni�1 Ñ Cni�1 Ñ Bni Ñ 0

are exact for all n P N. Take i � s � 1 in sequence (10), for in-
stance. By the above argument, if we take n large enough, we will obtain
depthpm, Bns�1q ¡ 0 and depthpm, Bns�2q ¡ 0, while depthpm, Cns�2q � 0.
By Proposition 46 this is not possible. Hence, the projective dimension
of M must be finite.

d) ñ b) We will use Nagata’s Flatness Theorem to show that ϕn is
flat. We first need to show that ϕ is injective. Clearly kerϕ is ϕ-stable.
Let ϕ be the local endomorphism induced by ϕ on R{ kerϕ. Then by
Proposition 41, hlocpϕq � hlocpϕq. By assumption, lengthpR{ϕnpmqRq �
qndϕ for an integer n P N. From Lemma 48 it follows that kerϕ � p0q.

Now since ϕ is contracting, using Lemma 4 we quickly see that the
family tϕntpmqRutPN defines the m-adic topology of R. By Lemma 47
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it suffices to verify equation (6) for this family of m-primary ideals. We
need to show

lengthR
�
R{ϕnpϕntpmqqR

�
� lengthR

�
R{ϕntpmqR

�
�lengthR

�
R{ϕnpmqR

�
.

Using Lemma 48, this equality holds, if and only if

qnpt�1qd
ϕ � qntdϕ � qndϕ .

Since this equality holds trivially, by Nagata’s Flatness Theorem ϕn is
flat. The implication b) ñ a) applied to ϕn then tells us that R is
regular, and the implication a) ñ b) shows that ϕ is flat, as well.

Remark 49. There exist normal singularities pX,P q such that OX,P ad-
mits a finite contracting endomorphism, see [6, Sections 6.2–6.3] or [16,
Sections 2.3–2.5]. In this case by Theorem 2 the endomorphism is not
flat. This gives examples of finite maps between normal varieties which
are not flat.

2.2. Generalized Hilbert-Kunz multiplicity. Following ideas of
Kunz, Monsky in [37] defined the Hilbert-Kunz multiplicity for the
Frobenius endomorphism of noetherian local rings of positive prime char-
acteristic. He then showed that in this case, Hilbert-Kunz multiplicity
always exists. Since then, it has become evident through works of var-
ious authors, that the Hilbert-Kunz multiplicity provides a reasonable
measure of the singularity of the local ring. Here, inspired by Theo-
rem 1d), we propose a characteristic-free interpretation of the definition
of Hilbert-Kunz multiplicity associated with an endomorphism of finite
length.

Definition 50 (Hilbert-Kunz multiplicity). Let pR,ϕq be a local alge-
braic dynamical system and set d :� dimR. Let qϕ :� expphlocpϕ,Rq{dq.
The Hilbert-Kunz multiplicity of R with respect to ϕ is defined as

(11) eϕHKpRq :� lim
nÑ8

lengthpR{ϕnpmqRq

qndϕ
,

provided that the limit exists.

Remark 51. We do not know whether the limit in equation (11) always
exists or not. Nevertheless, the next corollary shows that in the case of
a regular local ring the Hilbert-Kunz multiplicity is 1, as expected.

Corollary 52. Let ϕ be an endomorphism of finite length of a regular
local ring R. Then eϕHKpRq � 1.

Proof: This quickly follows from Theorem 2 and Lemma 15b).



536 M. Majidi-Zolbanin, N. Miasnikov, L. Szpiro

We end this section with a note. Not every homological property of
the Frobenius endomorphism can be immediately extended to arbitrary
endomorphisms. For example, in [40, Theorem 1.7, p. 58] Peskine and
the third author showed that in positive prime characteristic, a finite
free resolution of a module remains exact after applying the Frobenius
functor (see Definition 17). This property may fail in general, for an
arbitrary endomorphism, even in the simple case of a Koszul complex
with one element. The image of a non-zerodivisor under an integral
endomorphism could be a zerodivisor, as the next example shows.

Example 53. Consider the polynomial ring krx, y, z, ws over a field k.
Let a be the ideal px2, xy, xz, zwq and let A � krx, y, z, ws{a. Then

AsspAq � tpx, zq, px,wq, px, y, zqu.

Define an endomorphism ϕ of krx, y, z, ws as x
ϕ
ÞÑ x2; y

ϕ
ÞÑ y; z

ϕ
ÞÑ w;

w
ϕ
ÞÑ z. Then a is ϕ-stable. Let ϕ be the endomorphism of A induced

by ϕ. The A-module ϕ�A is finitely generated. In fact, it is generated
by 1 and x as an A-module. Now, y�w is not a zerodivisor in A because
it does not belong to any prime ideal in AsspAq. But ϕpy � wq � y � z
is a zerodivisor in A; it is killed by x, for example. On the other hand,
y � z is a zerodivisor but is mapped to y � w, a non-zerodivisor.

Nonetheless, in the previous example ϕ2 sends any A-regular sequence
to an A-regular sequence. This motivates the following

Question 54. Let pR,ϕq be a local algebraic dynamical system. Does
there exist a positive integer n such that ϕn will send any R-regular
sequence to an R-regular sequence?

2.3. Endomorphisms of complete equicharacteristic local rings.
In this section we prove Theorem 3, which is inspired by results of
Fakhruddin [15, Corollary 2.2], and Bhatnagar and the third author [5,
Theorem 2.1] on extending a polarized self-morphism of a projective
variety over an infinite field to an ambient projective space. Recently
in [41] Poonen gave a proof for the main result of [5] over finite fields.

Consider a self-morphism ϕ of a projective variety X over an infinite
field k and let L be an ample line bundle on X with ϕ�pLq � Lb q
for an integer q ¥ 1. In [15] Fakhruddin showed that there exists an
embedding ı of X in PNk given by an appropriate tensor power of L and
a self-morphism ψ of PNk such that ψ� ı � ı�ϕ. In [5] Bhatnagar and the
third author relaxed some of Fakhruddin’s hypotheses and showed that
(assuming L is very ample) one can keep the same embedding of X given
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by L and instead extend an appropriate iteration of ϕ to the ambient
projective space.

Our Theorem 3 is an analogous result about lifting of endomorphisms
of finite length of complete noetherian local rings of equal characteristic.
In this local version of Fakhruddin’s result we do not assume our fields
to be infinite. We will begin with a few preparatory results that we will
need in the proof of Theorem 3.

Definition 55 ([44, p. 159]). In a noetherian local ring R of dimension d
and of embedding dimension δ, a system of parameters tx1, . . . , xdu is
called a strong system of parameters if it is part of a minimal set of
generators tx1, . . . , xd, . . . , xδu of the maximal ideal.

Lemma 56. A noetherian local ring pR,mq has strong systems of pa-
rameters.

Proof: The proof is by induction on dimR. If dimR � 0 then the
statement is vacuous, since every system of parameters is empty. So
assume dimR ¡ 0 and using the Prime Avoidance Lemma [34, p. 2],
pick an element x P m that is neither in any minimal prime ideal of R,
nor in m2. Apply the induction hypothesis to R{ xxy.

Lemma 57. Let pR,mq be a complete local ring of equal characteristic
and assume that A is a homomorphic image π : R Ñ A of R. If K is a
subfield of A, then there is a subfield L of R such that π|L : L Ñ K is
an isomorphism.

Proof: Let B � π�1pKq. Then B is a local subring of R with maximal
ideal q � π�1p0q. Note that q � kerπ as subsets of R. Since B{q � K,
B is also of equal characteristic. In general B need not be noetherian.
We claim that B � R is a closed subset in the m-adic topology of R.
To see this, let n be the maximal ideal of A and note that the topol-
ogy induced from the n-adic topology of A on any subfield of A is the
discrete topology. Therefore, any subfield of A is complete with respect
to the topology induced from A, and hence is closed in A. Since π is a
continuous map and B � π�1pKq, the claim follows. In particular, B is
complete with respect to the topology induced from the m-adic topology
of R.

Denote the q-adic completion of B by pB. Since B is a local subring

of R and R is complete, we obtain a map pi : pB Ñ R, where i : B ãÑ R
is the inclusion homomorphism. Furthermore, since B is complete with
respect to the topology induced from the m-adic topology of R, we see

that pip pBq � B. Let L1 be a coefficient field of pB. (For the existence of
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coefficient fields in complete local rings that are not necessarily noether-
ian, see [38, Theorem 31.1], or [35, Theorem 28.3] or [21, Corollary 2].)

Let L :� pipL1q. Then L is subfield of B that is isomorphic to L1. Further-
more, the following diagram is commutative, and shows that π|L : LÑ K
is an isomorphism.

L1 pB B L

pB{pq K

pi

�

�

π|B

�

Theorem 3. Let pA, n, ϕq be a local algebraic dynamical system and as-
sume that A is a homomorphic image π : R� A of an equicharacteristic
complete regular local ring pR,mq. Then ϕ can be lifted (non uniquely) to
an endomorphism of finite length ψ of R such that π � ψ � ϕ � π. Thus,
π : pR,ψq Ñ pA,ϕq becomes a morphism of local algebraic dynamical
systems.

Proof: Let K be an arbitrary coefficient field of R. Then ϕ pπpKqq is
a subfield of A, and can be lifted to a subfield L of R, by Lemma 57,
in such a way that π|L : L Ñ ϕ pπpKqq is an isomorphism. We will use
L at the end of our proof to construct an endomorphism ψ of R. Let
d � dimA and let δ be the embedding dimension of A. By Lemma 56
we can choose a strong system of parameters tx1, . . . , xdu of A which
is part of a minimal set of generators tx1, . . . , xd, . . . , xδu of n. Choose
elements X1, . . . , Xδ in m in such a way that π pXiq � xi for each i. We
claim that since the images of x1, . . . , xδ in n{n2 are linearly indepen-
dent over A{n, the images X1, . . . , Xδ of X1, . . . , Xδ in m{m2 are also
linearly independent over R{m. If not, there will be a dependence rela-
tion α1X1 � � � � � αδXδ � 0 with αi P R{m not all zero. This means if
we choose ai P R such that they map to αi in R{m for 1 ¤ i ¤ δ, then

a1X1 � � � � � aδXδ P m2.

If we apply π to this relation, we obtain πpa1qx1�� � ��πpaδqxδ P n2. But
then the image in n{n2 would provide a nontrivial dependence relation

πpa1qx1 � � � � � πpaδqxδ � 0,
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contradicting the linear independence of x1, . . . , xδ in n{n2 over A{n. Our
claim follows. Hence, we can extend tX1, . . . , Xδu to a basis tX1, . . . ,
Xδ, . . . , Xnu of m{m2 over R{m, where n � dimR. If we choose ele-
ments Xi P m such that they map to Xi in m{m2 for δ � 1 ¤ i ¤ n,
then by Nakayama’s Lemma tX1, . . . , Xnu is a minimal set of generators
of m. Furthermore, it follows from the Cohen Structure Theorem that
R � KJX1, . . . , XnK.

Now consider elements ϕ pπpXiqq in A and for 1 ¤ i ¤ d choose fi P m
such that πpfiq � ϕ pπpXiqq. We claim that the ideal xf1, . . . , fdy of R
has height d. First, by Krull’s Theorem ht xf1, . . . , fdy ¤ d. For the in-
equality in the other direction, note that the ideal b :� xϕ pπpX1qq , . . . ,
ϕ pπpXdqqy is n-primary. Hence, π�1pbq � xf1, . . . , fdy � kerπ is an
m-primary ideal in R. Since R is regular, by Serre’s Intersection Theo-
rem [45, Chapter V, Theorem 1]

dimpR{ kerπq � dimpR{ xf1, . . . , fdyq ¤ dimR,

or, d � pdimR{ xf1, . . . , fdyq ¤ n. But dimpR{ xf1, . . . , fdyq � n �
ht xf1, . . . , fdy as R is regular. We obtain ht xf1, . . . , fdy ¥ d and our
claim follows.

Next, we will choose elements fd�1, . . . , fn P m inductively, making
sure at each step that πpftq � ϕpπpXtqq and that dimR{ xf1, . . . , fty �
n � t. Assume d ¤ t   n and that f1, . . . , ft have been chosen with
desired properties. To choose ft�1 we use the coset version of the Prime
Avoidance Lemma due to E. Davis (see [27, Theorem 124] or [35, Ex-
ercise 16.8]), that can be stated as follows: let I be an ideal of a com-
mutative ring R and x P R be an element. Let p1, . . . , ps be prime ideals
of R none of which contain I. Then

x� I �
�s
i�1pi.

Choose an element u P m such that πpuq � ϕ pπpXt�1qq. If

dimR{ xf1, . . . , ft, uy � n� t� 1,

then set ft�1 � u. If not, let tp1, . . . , psu be the set of minimal associated
prime ideals of R{ xf1, . . . , fty that satisfy

dimR{pi � dimR{ xf1, . . . , fty .

Since xf1, . . . , fty � kerπ is an m-primary ideal in R, none of these pi’s
can contain kerπ. Therefore by the coset version of the Prime Avoidance
Lemma there exists an element a P kerπ such that

u� a R
�s
i�1pi.
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Setting ft�1 � u � a we see that dimR{ xf1, . . . , ft�1y � n � t � 1 and
πpft�1q � ϕ pπpXt�1qq, as desired.

After choosing tf1, . . . ,fnu as described, we define an endomorphism ψ
of R � KJX1, . . . , XnK as follows. For each 1 ¤ i ¤ n, we define
ψpXiq to be fi and for every element α of K we define ψpαq to be

pπ|Lq
�1
pϕ pπpαqqq. Then we extend the definition of ψ to all elements

of R by continuity. Since ψpmqR � xf1, . . . , fny is m-primary by con-
struction of the fi’s, ψ is of finite length. Moreover, it is clear from the
construction that ϕ�π � π�ψ, that is, π : pR,ψq Ñ pA,ϕq is a morphism
of local algebraic dynamical systems.

Corollary 58. If ϕ in Theorem 3 is finite, then so is ψ.

Proof: This follows from [13, Theorem 8]: a local homomorphism f : SÑ
T of complete noetherian local rings is finite if and only if f is of finite
length, and rf� kT : kSs is a finite (algebraic) field extension, where kS
and kT are residue fields of S and T .

Question 59. Is it possible in Theorem 3 to take ψ to satisfy vhpψq �
vhpϕq, whpψq � whpϕq and pdimAq � hlocpψq � pdimRq � hlocpϕq?
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