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CONVERGENCE IN VARIABLE LEBESGUE SPACES

David Cruz-Uribe, SFO and Alberto Fiorenza

Abstract

We consider the relationship in the variable Lebesgue space
L

p(·)(Ω) between convergence in norm, convergence in modular,
and convergence in measure, for both bounded and unbounded
exponent functions.

1. Introduction

The variable Lebesgue spaces are a generalization of the classical
Lebesgue spaces, where the constant exponent p is replaced by a func-
tion p(·). The variable Lebesgue spaces have a long history, having first
been considered by Orlicz [4] in the 1930’s. They have been the subject
of renewed investigation for the past 15 years, both for their own intrin-
sic interest and for their applications to the calculus of variations and
to problems in physics. For more information we refer the reader to the
surveys by Diening, Hästö and Nekvinda [1] and Samko [6].

In this paper we study the relationship between convergence in
measure, convergence in norm and convergence in modular in variable
Lebesgue spaces. To state our results, we must first give some basic defi-
nitions. For complete information on the properties of variable Lebesgue
spaces, see [3] (also see [2]).

Given a measurable set Ω ⊂ R
n, an exponent function is a measur-

able function p(·) : Ω → [1,∞]. We denote the set of all such functions
by P(Ω). Given p(·) ∈ P(Ω), let Ω∞ = {x ∈ Ω : p(x) = ∞}, and for
any E ⊂ Ω, let

p−(E) = ess inf
x∈E

p(x), p+(E) = ess sup
x∈E

p(x).

For brevity, we will let p− = p−(Ω) and p+ = p+(Ω).
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We define the modular functional

ρ(f) =

∫

Ω\Ω∞

|f(x)|p(x) dx + ‖f‖L∞(Ω∞).

If |Ω∞| = 0, then we set the last term equal to 0; if |Ω \ Ω∞| = 0,
then ρ(f) = ‖f‖L∞(Ω∞). Given E ⊂ Ω, let ρE(f) = ρ(fχE). We

define the space Lp(·)(Ω) to be the set of measurable functions such that
for some λ > 0, ρ(f/λ) < ∞. This is a Banach function space when
equipped with the norm

‖f‖p(·) = inf{λ > 0 : ρ(f/λ) ≤ 1}.

When p(·) = p, a constant, then Lp(·)(Ω) = Lp(Ω) with equality of
norms.

We consider three kinds of convergence on variable Lebesgue spaces:
convergence in norm, convergence in modular, and convergence in mea-
sure. Given a sequence {fk} ⊂ Lp(·)(Ω), we say that it converges in
norm to f ∈ Lp(·)(Ω) if ‖f − fk‖p(·) → 0 as k → ∞. We say that fk → f
in modular if there exists β > 0 such that ρ(β(f − fk)) → 0 as k → ∞.
And we recall the definition of convergence in measure: given any ǫ > 0,
then for all k sufficiently large

|{x ∈ Ω : |f(x) − fk(x)| ≥ ǫ}| < ǫ.

Our starting point for studying the relationship between these three
types of convergence is a result due to Fan and Zhao [2].

Theorem 1.1. Given Ω and p(·) ∈ P(Ω), suppose p+ < ∞. Then

given f ∈ Lp(·)(Ω) and a sequence {fk} ⊂ Lp(·)(Ω), the following are

equivalent:

(1) fk → f in norm,

(2) fk → f in modular,

(3) fk → f in measure and for some γ > 0, ρ(γfk) → ρ(γf).

Their proof, however, was only sketched, with many technical details
omitted. The equivalence of (1) and (2) was proved in [3]; we will prove
this equivalence in a more general setting in Theorem 1.3 below. In
Section 2 below we give a proof of the equivalence of (2) and (3); we do
so both for completeness and because it provides a model for the proofs
of our other results.

Remark 1.2. If fk → f in norm or modular, then we can strengthen our
conclusion slightly. In the proof we actually show that ρ(fk) → ρ(f).
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Since if fk → f in measure, γfk → γf in measure for any γ > 0, and we
can actually conclude that ρ(γfk) → ρ(γf) for any γ > 0.

Our primary goal in this paper is to examine each of these equivalences
for all possible p(·) ∈ P(Ω), including the case p+ = ∞. In this case
the situation is much more complicated and so before stating our precise
results we want to briefly describe what happens to each implication in
Theorem 1.1:

• In general, norm convergence always implies convergence in both
modular and measure.

• If p(·) is bounded on Ω \ Ω∞ or if p(·) = ∞, then modular conver-
gence implies norm convergence.

• Convergence in measure, even with the additional hypothesis
ρ(γfk) → ρ(γf) used in Theorem 1.1, implies norm convergence
only if p+ < ∞.

• Besides the case considered in Theorem 1.1, modular convergence
implies convergence in measure exactly when the set {x ∈ Ω :
p(x) > M} gets small as M gets large.

• Convergence in measure implies modular convergence if we assume
|Ω∞| = 0 and if we replace the hypothesis ρ(γfk) → ρ(γf) used
above with a slightly stronger one.

We prove these results in Theorems 1.3, 1.4, 1.5, and 1.8; the contents
of each theorem are summarized in the following diagram.

Theorem 1.3 Theorem 1.4

Theorems 1.5 & 1.8

Convergence

in Norm

Convergence

in Modular

Convergence

in Measure

We now turn to the precise statement of our results. We first consider
the relationship between norm and modular convergence.
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Theorem 1.3. Given Ω and p(·) ∈ P(Ω), and given a sequence {fk} ⊂
Lp(·)(Ω) and f ∈ Lp(·)(Ω), if fk → f in norm then fk → f in modular.

Conversely, if the sequence converges in modular, then it converges in

norm if and only if either p− = ∞ or p+(Ω \ Ω∞) < ∞.

Theorem 1.3 is essentially proved in [3] but their hypotheses for the
second half are stated incorrectly. They assume p+ < ∞ but only use the
weaker condition p+(Ω \ Ω∞) < ∞. For completeness we will give their
proof of Theorem 1.3, with the necessary modifications, in Section 3.

The relationship between convergence in norm and convergence in
measure is equally straightforward.

Theorem 1.4. Given Ω and p(·) ∈ P(Ω), and given a sequence {fk} ∈
Lp(·)(Ω) and f ∈ Lp(·)(Ω), if fk → f in norm, then fk → f in measure

and for all γ > 0 sufficiently small, ρ(γfk) → ρ(γf). If p+ = ∞, then

the converse is false: convergence in measure and ρ(γfk) → ρ(γf) for

some γ > 0 do not imply convergence in norm.

We will prove Theorem 1.4 in Section 4 below.

The relationship between modular convergence and convergence in
measure is more complicated. If p+(Ω \Ω∞) < ∞, then we can immedi-
ately modify the proof of Theorem 1.1 —replacing p+ with p+(Ω \ Ω∞)
and using the fact that on Ω∞ the modular is just the L∞ norm— to
prove that convergence in modular implies convergence in measure. (De-
tails are left to the reader.) Trivially, the same is true if p− = ∞.

If p+(Ω \ Ω∞) = ∞, then convergence in modular need not imply
convergence in measure. For example, let Ω = (1,∞), p(x) = x, and
fk = 1

2χ(k,k+1). Then ρ(fk) ≤ 2−k, and so ρ(fk) → 0. However, for
all ǫ < 1/2, |{x ∈ (1,∞) : |fk(x)| ≥ ǫ}| = 1, so the sequence does not
converge to 0 in measure.

However, this implication does not always fail: rather, it depends on
the size of the set where p(·) is unbounded. More precisely, we have the
following result.

Theorem 1.5. Given Ω and p(·) ∈ P(Ω), for each M ≥ 1 let

GM = {x ∈ Ω \ Ω∞ : p(x) > M}.

Then the following are equivalent:

(1) for any sequence {fk} ∈ Lp(·)(Ω) and f ∈ Lp(·)(Ω), if fk → f in

modular, then fk → f in measure and for every γ > 0 sufficiently

small, ρ(γfk) → ρ(γf);
(2) |GM | → 0 as M → ∞.
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Remark 1.6. Condition (2) holds automatically if |Ω\Ω∞| < ∞, so in this
case modular convergence always implies convergence in measure. This
is analogous to the fact that pointwise convergence implies convergence
in measure when |Ω| < ∞.

We will prove Theorem 1.5 in Section 5 below. The proof is gotten
by adapting the corresponding part of the proof of Theorem 1.1.

The reverse implication, that convergence in measure implies conver-
gence in modular, can also fail to hold if p(·) is unbounded. However, it
fails in different circumstances. It is never true if |Ω∞| > 0: we will show
that convergence in measure is always strictly weaker than convergence
in modular. In the classical case convergence in measure does not imply
convergence in the L∞ norm. The same example works in our case; we
include it for completeness.

Example 1.7. Given Ω and p(·) ∈ P(Ω), suppose |Ω∞| > 0. Fix a
sequence {Ek} of subsets of Ω∞ with positive measure such that |Ek| →
0. Let f = χΩ∞

and for each k define

fk =

{

1 x ∈ Ω∞ \ Ek

−1 x ∈ Ek.

Then for all k, ρ(f) = ‖f‖L∞(Ω∞) = 1 = ‖fk‖L∞(Ω∞) = ρ(fk), and
|{x ∈ Ω∞ : |f(x)− fk(x)| > 0}| = |Ek|, so fk → f in measure. However,
for any β > 0 and any k, ρ(β(f − fk)) = β‖f − fk‖L∞(Ω∞) = 2β > 0, so
the sequence does not converge in modular.

If |Ω∞| = 0, then we can show that convergence in measure implies
convergence in modular provided that we slightly strengthen the hypoth-
esis that ρ(γfk) → ρ(γf) for some γ > 0.

Theorem 1.8. Given Ω and p(·) ∈ P(Ω) such that |Ω∞| = 0, if f ∈
Lp(·)(Ω) and {fk} ⊂ Lp(·)(Ω) are such that fk → f in measure and for

some γ, 0 < γ < 1, ρ(γf) < ∞ and ρ(γfk/3) → ρ(γf/3), then fk → f
in modular.

We prove Theorem 1.8 in Section 6 below.

We can replace the value “3” in the hypothesis with any r > 2; this
follows immediately from the proof. This hypothesis, though stronger
than that in Theorem 1.1, is not unnatural since as we noted above,
Theorems 1.1 and 1.5 actually show that convergence in modular implies
that for all γ sufficiently small, ρ(γfk) → ρ(γf). We conjecture, but
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cannot prove, that if |Ω| < ∞, and this limit holds for some γ0 > 0, then
it is true for all γ < γ0. We are not certain what is true if |Ω| = ∞.

Finally, we show that the hypothesis ρ(γfk/3) → ρ(γf/3) is necessary
to get convergence in measure.

Example 1.9. Given Ω and p(·) ∈ P(Ω) such that |Ω∞| = 0, there
exists a sequence of functions fk ∈ Lp(·)(Ω) and f ∈ Lp(·)(Ω) such that
fk → f in measure, but for any γ, 0 < γ < 1, {ρ(γfk)} does not converge
to ρ(γf), and {fk} does not converge to f in modular.

The construction of Example 1.9 is given at the end of Section 6.

2. Proof of Theorem 1.1

The equivalence of (1) and (2) if p+ < ∞ is a special case of Theo-
rem 1.3 and is proved in Section 3 below. Here we will prove that (2)
and (3) are equivalent. We will first prove that (2) implies (3) and then
prove the converse. Our proof is based on the proof sketched in [2].

Suppose that fk → f in modular. Then there exists β > 0 such that
ρ(β(f − fk)) → 0 as k → ∞. But since p+ < ∞, it is immediate from
the definition of the modular that for any α > 0,

ρ(α(f − fk)) ≤ (1 + α/β)p+ρ(β(f − fk)),

and so ρ(α(f − fk)) → 0. Take α = 1. Then ρ(f − fk) → 0; hence,
|f(·) − fk(·)|p(·) → 0 in L1(Ω) norm and so in measure. But then for
any ǫ, 0 < ǫ < 1,

|{x∈Ω : |f(x)−fk(x)|≥ǫ}| ≤ |{x∈Ω : |f(x)−fk(x)|p(x)≥ǫp+}|<ǫp+ <ǫ.

Hence fk → f in measure.

We will now show that convergence in modular implies that ρ(γfk) →
ρ(γf) for γ = 1. We begin with an elementary inequality. By the mean
value theorem, if 1 ≤ p < ∞ and a, b ≥ 0, then

(2.1) |ap − bp| ≤ p max(ap−1, bp−1)|a − b| ≤ p(ap−1 + bp−1)|a − b|.

Therefore,

|ρ(f) − ρ(fk)| ≤

∫

Ω

∣

∣|f(x)|p(x) − |fk(x)|p(x)
∣

∣ dx

≤ p+

∫

Ω

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)

|f(x) − fk(x)| dx.
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To estimate the right-hand side we write the domain of integration as
Ω1 ∪ Ω∗, where Ω1 = {x ∈ Ω : p(x) = 1} and Ω∗ = {x ∈ Ω : 1 < p(x) <
∞}. The integral on Ω1 is straightforward to estimate:

p+

∫

Ω1

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)

|f(x) − fk(x)| dx

= 2p+

∫

Ω1

|f(x) − fk(x)|p(x) dx ≤ 2p+ρ(f − fk).

As we noted above, the right-hand side tends to 0 as k → ∞.
To estimate the integral on Ω∗, fix ǫ, 0 < ǫ < 1/4, and apply Young’s

inequality to get

p+

∫

Ω∗

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)

|f(x) − fk(x)| dx

≤ p+

∫

Ω∗

ǫp′(x)

p′(x)

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)p′(x)

dx

+ p+

∫

Ω∗

ǫ−p(x)

p(x)
|f(x) − fk(x)|p(x) dx

= I1 + I2.

We estimate I1 and I2 separately. Since p(x) > 1 for all x ∈ Ω∗,

I2 ≤ p+ρ(ǫ−1(f − fk)).

To estimate I1 we need two additional inequalities: for p > 0 and
a, b > 0, we have by elementary calculus that

ap + bp ≤ max(1, 21−p)(a + b)p,

(a + b)p ≤ max(1, 2p−1)(ap + bp).(2.2)

Hence, since 1 < p′(x) < ∞ on Ω∗,

I1 ≤ p+

∫

Ω∗

ǫp′(x) max(1, 22−p(x))p′(x)
(

|f(x)| + |fk(x)|
)p(x)

dx

≤ p+

∫

Ω∗

(4ǫ)p′(x)
(

2|f(x)| + |f(x) − fk(x)|
)p(x)

dx

≤ 4p+ǫ

∫

Ω∗

2p(x)−1
(

2p(x)|f(x)|p(x) + |f(x) − fk(x)|p(x)
)

dx

≤ p+22p++1ǫρ(f) + p+2p++1ǫρ(f − fk).
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Combining this with the previous estimate, we see that

p+

∫

Ω∗

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)

|f(x) − fk(x)| dx

≤ p+22p++1ǫ ρ(f) + p+2p++1ǫρ(f − fk) + p+ρ(ǫ−1(f − fk)).

Therefore, in the limit,

lim sup
k→∞

p+

∫

Ω∗

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)

|f(x) − fk(x)| dx

≤ p+22p++1ǫ ρ(f).

Since ǫ > 0 was arbitrary, we conclude that |ρ(f) − ρ(fk)| → 0.

Now suppose that fk → f in measure and that for some γ > 0,
ρ(γfk) → ρ(γf). Since we also have that γfk → γf in measure, we may
assume without loss of generality that γ = 1. Then for each ǫ, 0 < ǫ < 1,

|{x∈Ω : |f(x)−fk(x)|p(x) >ǫ}| ≤ |{x ∈ Ω : |f(x) − fk(x)| > ǫ1/p−}|

≤ |{x ∈ Ω : |f(x) − fk(x)| > ǫ}| ≤ ǫ.

Hence, |f(·) − fk(·)|p(·) → 0 in measure.
Further, arguing as we did above using inequalities (2.1) and (2.2),

we have that

∣

∣|f(x)|p(x) − |fk(x)|p(x)
∣

∣

≤ p+

(

|f(x)|p(x)−1 + |fk(x)|p(x)−1
)

|f(x) − fk(x)|

≤ p+|f(x)|p(x)−1|f(x) − fk(x)|

+p+max(1, 2p(x)−2)
(

|f(x)|p(x)−1+|f(x)−fk(x)|p(x)−1
)

|f(x)−fk(x)|

≤ p+(2p+ + 1)|f(x)|p(x)−1|f(x) − fk(x)| + p+2p+ |f(x) − fk(x)|p(x).

(2.3)

Now fix ǫ, 0 < ǫ < 1. Since |f(·)|p(·) ∈ L1(Ω), there exists M ≥ 1
such that

|{x : |f(x)|p(x)−1 > M}| ≤ |{x : |f(x)|p(x) > M}| ≤ ǫ/2.
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By inequality (2.3), since fk → f and |f(·) − fk(·)|p(·) → 0 in measure,
for all k sufficiently large,

|{x :
∣

∣|f(x)|p(x) − |fk(x)|p(x)
∣

∣ > ǫ}|

≤ |{x : |f(x)|p(x)−1 > M}|

+ |{x : p+(2p+ + 1)M |f(x) − fk(x)| > ǫ/2}|

+ |{x : p+2p+ |f(x) − fk(x)|p(x) > ǫ/2}|

<
ǫ

2
+

ǫ

2p+(2p+ + 1)M
+

ǫ

p+2p++1

<
ǫ

2
+

ǫ

4
+

ǫ

4

= ǫ.

Therefore, |fk(·)|p(·) → |f(·)|p(·) in measure.

Now define

hk(x) = 2p+−1|fk(x)|p(x) + 2p+−1|f(x)|p(x) − |f(x) − fk(x)|p(x) ≥ 0;

then hk → 2p+ |f(·)|p(·) in measure. Therefore, by Fatou’s lemma on
the classical Lebesgue spaces with respect to convergence in measure
(see [5]),

2p+

∫

Ω

|f(x)|p(x) dx ≤ lim inf
k→∞

∫

Ω

2p+−1|fk(x)|p(x) + 2p+−1|f(x)|p(x)

− |f(x) − fk(x)|p(x) dx.

Rearranging terms and using the fact that ρ(fk) → ρ(f) we get that

lim sup
k→∞

∫

Ω

|f(x) − fk(x)|p(x) dx ≤ 0.

Therefore, fk → f in modular and our proof is complete.

3. Proof of Theorem 1.3

First suppose that fk → f in norm. As shown in [3], for any ex-
ponent p(·), if ‖g‖p(·) ≤ 1, then ρ(g) ≤ ‖g‖p(·). Therefore, for all k
sufficiently large,

(3.1) ρ(f − fk) ≤ ‖f − fk‖p(·) ≤ 1.

Since the middle term goes to 0 as k → ∞, it follows that fk → f in
modular.
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To prove the converse, note first that if p−=∞, then ρ(g)=‖g‖L∞(Ω∞)=
‖g‖p(·), and so clearly convergence in norm and in modular are equiva-
lent.

Now assume p+(Ω \Ω∞) < ∞. We know that there exists β > 0 such
that ρ(β(f − fk)) → 0. Fix λ, 0 < λ < β−1. Then

ρ((f − fk)/λ) =

∫

Ω\Ω∞

(

β|f(x) − fk(x)|

βλ

)p(x)

dx

+
1

βλ
‖β(f − fk)‖L∞(Ω∞)

≤

(

1

βλ

)p+(Ω\Ω∞)

ρ(β(f − fk)).

Hence, for all k sufficiently large we have that

ρ

(

f − fk

λ

)

≤ 1.

Equivalently, for all such k, ‖f − fk‖p(·) ≤ λ. Since λ can be arbitrarily
small, fk → f in norm.

Now suppose p− < ∞ and p+(Ω \ Ω∞) = ∞. We will construct a
sequence {fk} ⊂ Lp(·)(Ω) such that fk → 0 in modular but ‖fk‖p(·) ≥
1/2 for all k. By the definition of the essential supremum, there exists a
sequence of sets {Ek} with finite measure such that:

(1) Ek ⊂ Ω \ Ω∞,
(2) Ek+1 ⊂ Ek and |Ek \ Ek+1| > 0,
(3) |Ek| → 0,
(4) if x ∈ Ek, p(x) ≥ pk > k.

Define the function f by

f(x) =

(

∞
∑

k=1

1

2k|Ek \ Ek+1|
χEk\Ek+1

(x)

)1/p(x)

,

and for each k let fk = fχEk
. Then for all k ≥ 1,

ρ(fk) =

∞
∑

j=k

∫

Ej\Ej+1

1

2j |Ej \ Ej+1|
dx =

∞
∑

j=k

2−j = 2−k+1;
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hence, fk ∈ Lp(·)(Ω) and ρ(fk) → 0 as k → ∞. On the other hand, for
all k ≥ 1,

ρ

(

fk

1/2

)

=

∞
∑

j=k

∫

Ej\Ej+1

2p(x)

2j|Ej \ Ej+1|
dx ≥

∞
∑

j=k

2pj−j = ∞.

Thus, ‖fk‖p(·) ≥ 1/2.

4. Proof of Theorem 1.4

Suppose to the contrary that there exists a sequence {fk} that con-
verges to f in norm but not in measure. Then by passing to a subse-
quence we may assume that there exists ǫ, 0 < ǫ < 1, such that for
all k,

|{x ∈ Ω : |f(x) − fk(x)| ≥ ǫ}| ≥ ǫ.

Denote the set on the left-hand side by Ak; since for each k either |Ak ∩
Ω∞| ≥ ǫ/2 or |Ak \ Ω∞| ≥ ǫ/2, by passing to another subsequence we
may assume that one of these inequalities holds for all k.

If |Ak ∩ Ω∞| ≥ ǫ/2 for all k, then

‖f − fk‖p(·) ≥ ‖(f − fk)χΩ∞
‖p(·) = ‖f − fk‖L∞(Ω∞) ≥ ǫ,

contradicting our assumption that fk converges to f in norm. If |Ak \
Ω∞| ≥ ǫ/2 for all k, then

ρ

(

f − fk

ǫ2/2

)

≥

∫

Ω\Ω∞

(

|f(x) − fk(x)|

ǫ2/2

)p(x)

dx

≥

∫

Ak\Ω∞

(

2

ǫ

)p(x)

dx ≥

(

2|Ak \ Ω∞|

ǫ

)

≥ 1.

Hence, ‖f − fk‖p(·) ≥ ǫ2/2 > 0, again contradicting our assumption that
fk converges to f in norm.

The proof that if fk → f in norm, then for all γ > 0 sufficiently small,
ρ(γfk) → ρ(γf), is very similar to but simpler than the proof if we only
assume convergence in modular, and we therefore defer the proof until
the end of the proof of Theorem 1.5 in Section 5 below.

Finally, we show that if p+ = ∞, then convergence in measure never
implies convergence in norm. To do so we will construct a sequence {fk}
that converges to 0 in measure but not in norm. If |Ω∞| > 0, then
we have already done so in Example 1.7, since for functions supported
on Ω∞ the norm and the modular are equal.
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Now suppose |Ω∞| = 0 and p+(Ω\Ω∞) = ∞. Let the sets Ek and the
functions fk be defined as in the second half of the proof of Theorem 1.3
above. Then ρ(fk) → 0 = ρ(0), and since |Ek| → 0, the functions fk

converge to 0 in measure. On the other hand, ‖fk‖p(·) ≥ 1/2 so the
sequence does not converge in norm to 0.

5. Proof of Theorem 1.5

We first assume that condition (2) holds. Let fk → f in modular. As
we noted above just after the statement of Theorem 1.4, if |Ω∞| > 0,
it is straightforward to prove that fk → f in measure on Ω∞, so it
would suffice to prove that we have convergence in measure on Ω \ Ω∞.
Therefore, without loss of generality we will treat the special case when
|Ω∞| = 0.

Since we have convergence in modular, there exists β > 0 such that
as k → 0,

∫

Ω

|β(f(x) − fk(x))|p(x) dx → 0.

Therefore, |β(f(·) − fk(·))|p(·) → 0 in measure.
Recall that in our case, for each M > 1,

GM = {x ∈ Ω : p(x) > M}.

By assumption, for any ǫ > 0, there exists M0 > 1 such that if M > M0,
then |GM | < ǫ/2. Fix ǫ, 0 < ǫ < 1/β, and fix M > M0 such that this is
the case and such that (βǫ)M < ǫ/2. Then for all k sufficiently large,

|{x ∈ Ω : |f(x) − fk(x)| > ǫ}|

≤ |GM | + |{x ∈ Ω \ GM : |f(x) − fk(x)| > ǫ}|

≤ |GM | + |{x ∈ Ω \ GM : |β(f(x) − fk(x))|p(x) > (βǫ)M}|

<
ǫ

2
+ (βǫ)M

< ǫ.

Thus, fk → f in measure.

We now show that for every γ > 0 sufficiently small, ρ(γfk) → ρ(γf).
Since convergence in modular implies that ‖f − fk‖L∞(Ω∞) → 0, by
the triangle inequality we have that for any γ > 0, ‖γfk‖L∞(Ω∞) →
‖γf‖L∞(Ω∞); therefore, as before we may restrict to the special case
that |Ω∞| = 0.
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Because fk → f in modular, there exists β > 0 such that ρ(β(f −
fk)) → 0. We will first show that we can take γ = β/5; since for every β′,
0 < β′ < β, we have that ρ(β′(f − fk)) ≤ ρ(β(f − fk)), it follows at once
that we can take any γ ≤ β/5.

Since f ∈ Lp(·)(Ω) and since we may replace β by a smaller value,
we can also assume that ρ(βf) < ∞. In particular, |βf(x)|p(x) dx is an
absolutely continuous measure with respect to Lebesgue measure.

Fix ǫ > 0; since |GM | → 0 as M → ∞, there exists M > 1 such that
ρGM

(βf) < ǫ. Therefore, we have that

ρGM

(

β

2
fk

)

=

∫

GM

(

β

2
|fk(x)|

)p(x)

dx

≤

∫

GM

2p(x)−1

[

(

β

2
|f(x)|

)p(x)

+

(

β

2
|f(x) − fk(x)|

)p(x)
]

dx

≤
1

2
ρGM

(βf) +
1

2
ρGM

(β(f − fk))

<
ǫ

2
+

1

2
ρ(β(f − fk)).

Now let γ = β/5. (The choice of 5 will become clear below.) Let
FM = Ω \ GM . Then

|ρ(γf) − ρ(γfk)| ≤ |ρGM
(γf) − ρGM

(γfk)| + |ρFM
(γf) − ρFM

(γfk)|.

To estimate the first term on the right-hand side, it suffices to note that

|ρGM
(γf)−ρGM

(γfk)|≤
1

5
ρGM

(βf)+
ǫ

2
+

1

2
ρ(β(f−fk))≤ǫ+

1

2
ρ(β(f−fk)).

To estimate the second term we argue as we did in the first part of
the proof of Theorem 1.1:

|ρFM
(γf) − ρFM

(γfk)|

≤

∫

FM

p(x)
(

|γf(x)|p(x)−1 + |γfk(x)|p(x)−1
)

|γ(f(x) − fk(x))| dx

=

∫

FM∩Ω1

+

∫

FM∩Ω∗

.

The first integral is easy to bound since it immediately reduces to
∫

FM∩Ω1

2|γ(f(x) − fk(x))| dx ≤
2

5
ρ(β(f − fk)).
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To estimate the second integral fix ǫ, 0 < ǫ < 1/4, and apply Young’s
inequality to get

∫

FM∩Ω∗

ǫp′(x) p(x)

p′(x)

(

|γf(x)|p(x)−1 + |γfk(x)|p(x)−1
)p′(x)

dx

+

∫

FM∩Ω∗

ǫ−p(x)|γ(f(x) − fk(x))|p(x) dx = I1 + I2.

We immediately have that

I2 ≤
ǫ−M

5
ρ(β(f − fk)).

To estimate I1 we argue as before to get

I1 ≤

∫

FM∩Ω∗

ǫp′(x)(p(x)−1)max(1, 22−p(x))p′(x)(|γf(x)|+|γfk(x)|)p(x) dx

≤

∫

FM∩Ω∗

p(x)(4ǫ)p′(x) (2|γf(x)| + |γ(f(x) − fk(x))|)
p(x)

dx

≤ 4ǫ

∫

FM∩Ω∗

p(x)2p(x)
(

2p(x)|γf(x)|p(x) + |γ(f(x) − fk(x))|p(x)
)

dx

≤ 4ǫ

∫

FM∩Ω∗

p(x)4p(x)|γf(x)|p(x) dx

+ 4ǫ

∫

FM∩Ω∗

p(x)2p(x)|γ(f(x) − fk(x))|p(x) dx

≤ 8ǫρ(βf) + 8ǫρ(β(f − fk)).

To get the last inequality we use the fact that for all x ∈ Ω∗, p(x)4p(x) ≤
2 · 5p(x). (Here our choice of the value 5 above is used.)

Combining all of these estimates we get

|ρ(γf) − ρ(γfk)| < ǫ + 8ǫρ(βf) +

(

1

2
+ 8ǫ +

ǫ−M

5
+

2

5

)

ρ(β(f − fk)).

Therefore, in the limit we have that

lim sup
k→∞

|ρ(γf) − ρ(γfk)| ≤ ǫ + 8ǫρ(βf).

Since ǫ > 0 was arbitrary, it follows that

lim
k→∞

|ρ(γf) − ρ(γfk)| = 0.
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To prove the converse implication, suppose to the contrary that con-
dition (2) does not hold. We will construct a sequence that converges
to 0 in modular but not in measure. By assumption, there exists δ > 0
such that for all M > 1, |GM | ≥ δ. Let FM ⊂ GM be such that |FM | = δ
and define fM = 1

2χFM
. Then

ρ(fM ) =

∫

FM

2−p(x) dx ≤ 2−Mδ.

Therefore, ρ(fM ) → 0 as M → ∞; thus the sequence {fM} converges
to 0 in modular. On the other hand, for any ǫ, 0 < ǫ < 1/2,

|{x ∈ Ω : |fM (x)| ≥ ǫ}| = |FM | = δ,

so this sequence does not converge to 0 in measure.

The proof for convergence in norm. We now complete the proof of
Theorem 1.4. If fk → f in norm, then we can modify the above proof to
again show that ρ(γfk) → ρ(γf) for all γ > 0 sufficiently small. Since

‖f − fk‖L∞(Ω∞) = ‖(f − fk)χΩ∞
‖p(·) ≤ ‖f − fk‖p(·),

by the triangle inequality we again have for all γ >0 that ‖γfk‖L∞(Ω∞) →
‖γf‖L∞(Ω∞), so we can again assume |Ω∞| = 0. Further, it will again
suffice to prove that ρ(γfk) → ρ(γf) for some γ > 0.

Fix β >0 such that ρ(βf) < ∞. Then arguing as we did to prove (3.1),
we have that for all k sufficiently large,

(5.1) ρ(β(f − fk)) ≤ ‖β(f − fk)‖p(·) ≤ 1.

In particular, ρ(β(f − fk)) → 0.
Now let γ = β. Then the argument is very similar to the previous,

except that we do not need to consider the sets GM and FM . Instead
we estimate as follows:

|ρ(γf) − ρ(γfk)|

≤

∫

Ω

p(x)
(

|γf(x)|p(x)−1+ |γfk(x)|p(x)−1|γ(f(x)− fk(x)
)

| dx=

∫

Ω1

+

∫

Ω∗

.

We estimate the first integral exactly as before. To estimate the second
integral we again apply Young’s inequality to get two integrals I1 and I2.
The estimate for I1 goes through as before with no change except replac-
ing the domain of integration FM ∩Ω∗ by Ω∗. To estimate I2, it suffices
to note that again invoking the result from [3], for all k sufficiently large,
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by (5.1)

I2 =

∫

Ω∗

ǫ−p(x)|γ(f(x)−fk(x))|p(x) ≤ ρ(ǫ−1γ|f−fk|) ≤ ǫ−1γ‖f−fk‖p(·),

and so I2 → 0 as k → ∞. The remainder of the argument now goes
through without change.

6. Proof of Theorem 1.8 and Example 1.9

Proof of Theorem 1.8. We prove this by modifying the second half
of the proof of Theorem 1.1. Since fk → f in measure, for any ǫ and α,
0 < ǫ < 1, 0 < α < 1, we have that for all k sufficiently large,

|{x ∈ Ω : |α(f(x) − fk(x))|p(x) > ǫ}|

≤ |{x ∈ Ω : |f(x) − fk(x)| > α−1ǫ1/p−}|

≤ |{x ∈ Ω : |f(x) − fk(x)| > ǫ}|

< ǫ.

Hence,

(6.1) |α(f(·) − fk(·))|p(·) → 0

in measure.
Fix γ > 0 as in the hypotheses, and let β = γ/3 < 1. Then we

have that ρ(γf) < ∞ and ρ(βfk) → ρ(βf). Furthermore, for almost
every x ∈ Ω, p(x)(2p(x)−1 + 1) ≤ 3p(x), and so by (2.1) and (2.2),
∣

∣|βf(x)|p(x) − |βfk(x)|p(x)
∣

∣

≤ p(x)
(

|βf(x)|p(x)−1 + |βfk(x)|p(x)−1
)

|βf(x) − βfk(x)|

≤ p(x)|βf(x)|p(x)−1|βf(x) − βfk(x)|

+ p(x)max(1, 2p(x)−2)

×
(

|βf(x)|p(x)−1 + |βf(x) − βfk(x)|p(x)−1
)

|βf(x) − βfk(x)|

≤ p(x)(2p(x)−1 + 1)|βf(x)|p(x)−1|β(f(x) − fk(x))|

+ p(x)2p(x)−1|β(f(x) − fk(x))|p(x)

≤ |γf(x)|p(x)−1|γ(f(x) − fk(x))| + |γ(f(x) − fk(x))|p(x).
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Fix ǫ > 0. Let

HM = {x ∈ Ω : |γf(x)|p(x)−1 > M};

since ρ(γf) < ∞, |γf(·)|p(·) ∈ L1(Ω), and so there exists M ≥ 1 such
that |HM | ≤ ǫ/4. Hence,

|{x ∈ Ω :
∣

∣|βf(x)|p(x) − |βfk(x)|p(x)
∣

∣ > ǫ}|

≤ |HM |

+ |{x ∈ Ω \ HM : M |γ(f(x) − fk(x))| > 3ǫ/4}|

+ |{x ∈ Ω \ HM : |γ(f(x) − fk(x))|p(x) > ǫ/4}|

≤ |HM |

+ |{x ∈ Ω \ HM : |β(f(x) − fk(x))| > ǫ/4M}|

+ |{x ∈ Ω \ HM : |γ(f(x) − fk(x))|p(x) > ǫ/4}|

<
ǫ

4
+

ǫ

4M
+

ǫ

4

< ǫ;

the second to last inequality holds by our choice of M , since βfk →
βf in measure, and by inequality (6.1) with α = γ < 1. Therefore,
|βfk(·)|p(·) → |βf(·)|p(·) in measure.

Now let β̄ = β/2 and define

hk(x) = |βfk(x)|p(x) + |βf(x)|p(x) − |β̄(f(x) − fk(x))|p(x).

Since

|β̄(f(x) − fk(x))|p(x) ≤ 2p(x)−1(|β̄f(x)|p(x) + |β̄fk(x)|p(x)),

hk(x) ≥ 0. Further, by (6.1) with α = β̄, hk → 2|βf(·)|p(·) in measure.
Therefore, by Fatou’s lemma with respect to convergence in measure,

2

∫

Ω

|βf(x)|p(x) dx

≤ lim inf
k→∞

∫

Ω

|βf(x)|p(x) + |βfk(x)|p(x) − |β̄(f(x) − fk(x))|p(x) dx.

Re-arranging terms and using the fact that ρ(βfk) → ρ(βf), we have
that

lim sup
k→0

∫

Ω

|β̄(f(x) − fk(x))|p(x) dx ≤ 0.

Hence, fk → f in modular.
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Construction of Example 1.9. Fix a set E ⊂ Ω such that |E| < ∞
and p+(E) < ∞. Let {Ek} be a sequence of subsets of E of positive
measure such that |Ek| → 0. Define f = χE and

fk = χE\Ek
+ |Ek|

−2χEk
.

Since |Ek| → 0, fk → f in measure. For any γ, 0 < γ < 1,

ρ(γf) =

∫

E

γp(x) dx < |E|,

and, since for all k sufficiently large, |Ek|
2 < γ,

ρ(γfk) =

∫

E\Ek

γp(x) dx

+

∫

Ek

(

γ|Ek|
−2
)p(x)

dx < |E| + |Ek|
(

γ|Ek|
−2
)p+(E)

< ∞.

Hence, {fk} ⊂ Lp(·)(Ω) and f ∈ Lp(·)(Ω). On the other hand, for all
such values of k,

ρ(γfk) ≥

∫

Ek

(

γ|Ek|
−2
)p(x)

dx ≥ γ|Ek|
−1.

Thus, ρ(γfk) → ∞ and so does not converge to ρ(γf).
Similarly, given any β > 0, for all k sufficiently large we have that

β
(

|Ek|
−2 − 1

)

≥ 1,

and so

ρ(β(f − fk)) ≥ |Ek|β
(

|Ek|
−2 − 1

)

.

Since the right-hand side diverges, fk does not converge to f in modular.
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