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INTERPOLATION OF SOBOLEV SPACES,

LITTLEWOOD-PALEY INEQUALITIES AND RIESZ

TRANSFORMS ON GRAPHS

Nadine Badr and Emmanuel Russ

Abstract

Let Γ be a graph endowed with a reversible Markov kernel p, and
P the associated operator, defined by Pf(x) =

P

y p(x, y)f(y).

Denote by ∇ the discrete gradient. We give necessary and/or
sufficient conditions on Γ in order to compare ‖∇f‖p and
‚

‚(I − P )1/2f
‚

‚

p
uniformly in f for 1 < p < +∞. These con-

ditions are different for p < 2 and p > 2. The proofs rely on
recent techniques developed to handle operators beyond the class
of Calderón-Zygmund operators. For our purpose, we also prove
Littlewood-Paley inequalities and interpolation results for Sobolev
spaces in this context, which are of independent interest.
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1. Introduction and results

It is well-known that, if n ≥ 1, ‖∇f‖Lp(Rn) and
∥∥(−∆)1/2f

∥∥
Lp(Rn)

are

comparable uniformly in f for all 1 < p < +∞. This fact means that
the classical Sobolev space W 1,p(Rn) defined by means of the gradient
coincides with the Sobolev space defined through the Laplace operator.
This is interesting in particular because ∇ is a local operator, while
(−∆)1/2 is not.

Generalizations of this result to geometric contexts can be given. On
a Riemannian manifold M , it was asked by Strichartz in [50] whether,
if 1 < p < +∞, there exists Cp > 0 such that, for all function f ∈
C∞

0 (M),

(1.1) C−1
p

∥∥∥∆1/2f
∥∥∥

p
≤ ‖|df |‖p ≤ Cp

∥∥∥∆1/2f
∥∥∥

p
,

where ∆ stands for the Laplace-Beltrami operator on M and d for the
exterior differential. Under suitable assumptions on M , which can be
formulated, for instance, in terms of the volume growth of balls in M ,
uniform L2 Poincaré inequalities on balls of M , estimates on the heat
semigroup (i.e. the semigroup generated by ∆) or the Ricci curvature,
each of the two inequalities contained in (1.1) holds for a range of p’s
(which is, in general, different for the two inequalities). The second in-
equality in (1.1) means that the Riesz transform d∆−1/2 is Lp-bounded.
We refer to [3], [5], [11], [25] and the references therein.

In the present paper, we consider a graph equipped with a discrete gra-
dient and a discrete Laplacian and investigate the corresponding coun-
terpart of (1.1). To that purpose, we prove, among other things, an in-
terpolation result for Sobolev spaces defined via the differential, similar
to those already considered in [45], as well as Lp bounds for Littlewood-
Paley functionals.
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1.1. Presentation of the discrete framework.

Let us give precise definitions of our framework. The following pre-
sentation is partly borrowed from [30]. Let Γ be an infinite set and
µxy = µyx ≥ 0 a symmetric weight on Γ × Γ. We call (Γ, µ) a weighted
graph. In the sequel, we write most of the time Γ instead of (Γ, µ),
somewhat abusively. If x, y ∈ Γ, say that x ∼ y if and only if µxy > 0.
Denote by E the set of edges in Γ, i.e.

E = {(x, y) ∈ Γ × Γ; x ∼ y} ,
and notice that, due to the symmetry of µ, (x, y) ∈ E if and only if
(y, x) ∈ E.

For x, y ∈ Γ, a path joining x to y is a finite sequence of edges x0 =
x, . . . , xN = y such that, for all 0 ≤ i ≤ N − 1, xi ∼ xi+1. By definition,
the length of such a path is N . Assume that Γ is connected, which
means that, for all x, y ∈ Γ, there exists a path joining x to y. For
all x, y ∈ Γ, the distance between x and y, denoted by d(x, y), is the
shortest length of a path joining x and y. For all x ∈ Γ and all r ≥ 0,
let B(x, r) = {y ∈ Γ, d(y, x) ≤ r}. In the sequel, we always assume that
Γ is locally uniformly finite, which means that there exists N ∈ N

∗ such
that, for all x ∈ Γ, ♯B(x, 1) ≤ N (here and after, ♯A denotes the cardinal
of any subset A of Γ). If B = B(x, r) is a ball, set αB = B(x, αr) for
all α > 0, and write C1(B) = 4B and Cj(B) = 2j+1B \ 2jB for all
integer j ≥ 2.

For any subset A ⊂ Γ, set

∂A = {x ∈ A; ∃ y ∼ x, y /∈ A} .
For all x ∈ Γ, set m(x) =

∑
y∼x

µxy. We always assume in the sequel

that m(x) > 0 for all x ∈ Γ. If A ⊂ Γ, define m(A) =
∑

x∈A

m(x). For

all x ∈ Γ and r > 0, write V (x, r) instead of m(B(x, r)) and, if B is a
ball, m(B) will be denoted by V (B).

For all 1 ≤ p < +∞, say that a function f on Γ belongs to Lp(Γ,m)
(or Lp(Γ)) if

‖f‖p :=

(
∑

x∈Γ

|f(x)|pm(x)

)1/p

< +∞.

Say that f ∈ L∞(Γ,m) (or L∞(Γ)) if

‖f‖∞ := sup
x∈Γ

|f(x)| < +∞.
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Define p(x, y) = µxy/m(x) for all x, y ∈ Γ. Observe that p(x, y) = 0
if d(x, y) ≥ 2. Set also

p0(x, y) = δ(x, y)

and, for all k ∈ N and all x, y ∈ Γ,

pk+1(x, y) =
∑

z∈Γ

p(x, z)pk(z, y).

The pk’s are called the iterates of p. Notice that, for all x ∈ Γ, there are
at most N non-zero terms in this sum. Observe also that, for all x ∈ Γ,

(1.2)
∑

y∈Γ

p(x, y) = 1

and, for all x, y ∈ Γ,

(1.3) p(x, y)m(x) = p(y, x)m(y).

For all function f on Γ and all x ∈ Γ, define

Pf(x) =
∑

y∈Γ

p(x, y)f(y)

(again, this sum has at most N non-zero terms). Since p(x, y) ≥ 0 for
all x, y ∈ Γ and (1.2) holds, one has, for all p ∈ [1,+∞] and all f ∈ Lp(Γ),

(1.4) ‖Pf‖Lp(Γ) ≤ ‖f‖Lp(Γ) .

We make use of the operator P to define a Laplacian on Γ. Consider a
function f ∈ L2(Γ). By (1.4), (I − P )f ∈ L2(Γ) and

〈(I − P )f, f〉L2(Γ) =
∑

x,y

p(x, y)(f(x) − f(y))f(x)m(x)

=
1

2

∑

x,y

p(x, y) |f(x) − f(y)|2m(x),

(1.5)

where we use (1.2) in the first equality and (1.3) in the second one. If
we define now the operator “length of the gradient” by

∇f(x) =



1

2

∑

y∈Γ

p(x, y) |f(y) − f(x)|2



1/2

for all function f on Γ and all x ∈ Γ (this definition is taken from [26]),
(1.5) shows that

(1.6) 〈(I − P )f, f〉L2(Γ) = ‖∇f‖2
L2(Γ) .
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Because of (1.3), the operator P is self-adjoint on L2(Γ) and I − P ,
which, by (1.6) , can be considered as a discrete “Laplace” operator, is
non-negative and self-adjoint on L2(Γ). By means of spectral theory,
one defines its square root (I −P )1/2. The equality (1.6) exactly means
that

(1.7)
∥∥∥(I − P )1/2f

∥∥∥
L2(Γ)

= ‖∇f‖L2(Γ) .

This equality has an interpretation in terms of Sobolev spaces defined
through ∇. Let 1 ≤ p ≤ +∞. Say that a scalar-valued function f on Γ
belongs to the (inhomogeneous) Sobolev space W 1,p(Γ) (see also [45],
[37]) if and only if

‖f‖W 1,p(Γ) := ‖f‖Lp(Γ) + ‖∇f‖Lp(Γ) < +∞.

If B is any ball in Γ and 1 ≤ p ≤ +∞, denote by W 1,p
0 (B) the subspace

of W 1,p(Γ) made of functions supported in B.
We will also consider the homogeneous versions of Sobolev spaces. For

1 ≤ p ≤ +∞, define Ė1,p(Γ) as the space of all scalar-valued functions f
on Γ such that ∇f ∈ Lp(Γ), equipped with the semi-norm

‖f‖Ė1,p(Γ) := ‖∇f‖Lp(Γ) .

Then Ẇ 1,p(Γ) is the quotient space Ė1,p(Γ)/R, equipped with the cor-
responding norm. It is then routine to check that both inhomogeneous
and homogeneous Sobolev spaces on Γ are Banach spaces.

The equality (1.7) means that
∥∥(I − P )1/2f

∥∥
L2(Γ)

= ‖f‖Ė1,2(Γ). In

other words, for p = 2, the Sobolev spaces defined by ∇ and by the
Laplacian coincide. In the sequel, we address the analogous question
for p 6= 2.

1.2. Statement of the problem.

To that purpose, we consider separately two inequalities, the validity
of which will be discussed in the sequel. Let 1 < p < +∞. The first
inequality we look at says that there exists Cp > 0 such that, for all

function f on Γ such that (I − P )1/2f ∈ Lp(Γ),

(Rp) ‖∇f‖p ≤ Cp

∥∥∥(I − P )1/2f
∥∥∥

p
.

This inequality means that the operator ∇(I −P )−1/2, which is nothing
but the Riesz transform associated with (I − P ), is Lp(Γ)-bounded.
Here and after, say that a (sub)linear operator T is Lp-bounded, or is
of strong type (p, p), if there exists C > 0 such that ‖Tf‖p ≤ C ‖f‖p for

all f ∈ Lp(Γ). Say that it is of weak type (p, p) if there exists C > 0
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such that m ({x ∈ Γ, |Tf(x)| > λ}) ≤ C
λp ‖f‖p

p for all f ∈ Lp(Γ) and
all λ > 0. Notice that he functions f will be defined on Γ, whereas
Tf may be defined on Γ or on E.

The second inequality under consideration says that there exists Cp >

0 such that, for all function f ∈ Ė1,p(Γ),

(RRp)
∥∥∥(I − P )1/2f

∥∥∥
p
≤ Cp ‖∇f‖p .

(The notations (Rp) and (RRp) are borrowed from [3].) We have just
seen, by (1.7), that (R2) and (RR2) always hold. A well-known fact
(see [46] for a proof in this context) is that, if (Rp) holds for some
1 < p < +∞, then (RRp) holds with p′ such that 1/p+ 1/p′ = 1, while
the converse is unclear in this discrete situation (it is false in the case of
Riemannian manifolds, see [3]). As we will see, we have to consider four
distinct issues: (Rp) for p < 2, (Rp) for p > 2, (RRp) for p < 2, (RRp)
for p > 2.

1.3. The Lp-boundedness of the Riesz transform.

1.3.1. The case when p < 2.

Let us first consider (Rp) when p < 2. This problem was dealt with
in [46], and we just recall the result proved therein, which involves some
further assumptions on Γ. The first one is of geometric nature. Say that
(Γ, µ) satisfies the doubling property if there exists C > 0 such that, for
all x ∈ Γ and all r > 0,

(D) V (x, 2r) ≤ CV (x, r).

Note that this assumption implies that there exist C,D > 0 such that,
for all x ∈ Γ, all r > 0 and all θ > 1,

(1.8) V (x, θr) ≤ CθDV (x, r).

Remark 1.1. Observe also that, since (Γ, µ) is infinite, it is also un-
bounded (since it is locally uniformly finite) so that, if (D) holds, then
m(Γ) = +∞ (see [43]).

The second assumption on (Γ, µ) is a uniform lower bound for p(x, y)
when x ∼ y, i.e. when p(x, y) > 0. For α > 0, say that (Γ, µ) satisfies
the condition ∆(α) if, for all x, y ∈ Γ,

(∆(α)) (x ∼ y ⇔ µxy ≥ αm(x)) and x ∼ x.

The next two assumptions on (Γ, µ) are pointwise upper bounds for
the iterates of p. Say that (Γ, µ) satisfies (DUE ) (a on-diagonal upper
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estimate for the iterates of p) if there exists C > 0 such that, for all
x ∈ Γ and all k ∈ N

∗,

(DUE ) pk(x, x) ≤ Cm(x)

V (x,
√
k)
.

Say that (Γ, µ) satisfies (UE ) (an upper estimate for the iterates of p) if
there exist C, c > 0 such that, for all x, y ∈ Γ and all k ∈ N

∗,

(UE ) pk(x, y) ≤ Cm(x)

V (x,
√
k)
e−c d2(x,y)

k .

Notice that, when (D) holds, the estimate (UE ) is also equivalent to

(1.9) pk(x, y) ≤ Cm(x)

V (y,
√
k)
e−c d2(x,y)

k ,

which will be of frequent use in the sequel.
Recall that, under assumption (D), estimates (DUE ) and (UE ) are

equivalent (and the conjunction of (D) and (DUE ) is also equivalent
to a Faber-Krahn inequality, [26, Theorem 1.1]). The following result
holds:

Theorem 1.2 ([46]). Under assumptions (D), (∆(α)) and (DUE ),
(Rp) holds for all 1 < p ≤ 2. Moreover, the Riesz transform is of weak
(1, 1) type, which means that there exists C > 0 such that, for all λ > 0
and all function f ∈ L1(Γ),

m
({
x ∈ Γ; ∇(I − P )−1/2f(x) > λ

})
≤ C

λ
‖f‖1 .

As a consequence, under the same assumptions, (RRp) holds for all 2 ≤
p < +∞.

Notice that, according to [40], the assumptions of Theorem 1.2 hold,
for instance, when Γ is the Cayley graph of a group with polynomial
volume growth and p(x, y) = h(y−1x), where h is a symmetric bounded
probability density supported in a ball and bounded from below by a
positive constant on an open generating neighborhood of e, the identity
element of G, and actually Theorem 1.2 had already been proved in [40].

1.3.2. The case when p > 2.

When p > 2, assumptions (D), (UE ) and (∆(α)) are not sufficient to
ensure the validity of (Rp), as the example of two copies of Z

2 linked
between with an edge shows (see [46, Section 4]). More precisely, in this
example, as explained in Section 4 of [46], the validity of (Rp) for p > 2
would imply an L2 Poincaré inequality on balls.



280 N. Badr, E. Russ

Say that (Γ, µ) satisfies a scaled L2 Poincaré inequality on balls (this
inequality will be denoted by (P2) in the sequel) if there exists C > 0
such that, for any x ∈ Γ, any r > 0 and any function f locally square
integrable on Γ such that ∇f is locally square integrable on E,

(P2)
∑

y∈B(x,r)

|f(y) − fB|2m(y) ≤ Cr2
∑

y∈B(x,r)

|∇f(y)|2m(y),

where

fB =
1

V (B)

∑

x∈B

f(x)m(x)

is the mean value of f on B. Under assumptions (D), (P2) and (∆(α)),
not only does (UE ) hold, but the iterates of p also satisfy a pointwise
Gaussian lower bound. Namely, there exist c1, C1, c2, C2 > 0 such that,
for all n ≥ 1 and all x, y ∈ Γ with d(x, y) ≤ n,

(LUE )
c1m(x)

V (x,
√
n)
e−C1

d2(x,y)
n ≤ pn(x, y) ≤ C2m(x)

V (x,
√
n)
e−c2

d2(x,y)
n .

Actually, (LUE ) is equivalent to the conjunction of (D), (P2) and (∆(α)),
and also to a discrete parabolic Harnack inequality, see [30] (see also [4]
for another approach of (LUE )).

Let p > 2 and assume that (Rp) holds. Then, if f ∈ Lp(Γ) and n ≥ 1,

(Gp) ‖∇Pnf‖p ≤ Cp√
n
‖f‖p .

Indeed, (Rp) implies that

‖∇Pnf‖p ≤ Cp

∥∥∥(I − P )1/2Pnf
∥∥∥

p
,

and, due to the analyticity of P on Lp(Γ), one also has

∥∥∥(I − P )1/2Pnf
∥∥∥

p
≤ C′

p√
n
‖f‖p .

More precisely, as was explained in [46], assumption ∆(α) implies that
−1 does not belong to the spectrum of P on L2(Γ). As a consequence,
P is analytic on L2(Γ) (see [28, Proposition 3]), and since P is submarko-
vian, P is also analytic on Lp(Γ) (see [28, p. 426]). Proposition 2 in [28]
therefore yields the second inequality in (Gp). Thus, condition (Gp)
is necessary for (Rp) to hold. Our first result is that, under assump-
tions (D), (P2) and (∆(α)), for all q > 2, condition (Gq) is also sufficient
for (Rp) to hold for all 2 < p < q:
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Theorem 1.3. Let p0 ∈ (2,+∞]. Assume that (Γ, µ) satisfies (D),
(P2), (∆(α)) and (Gp0). Then, for all 2 ≤ p < p0, (Rp) holds. As
a consequence, if p′0 is such that 1/p0 + 1/p′0 = 1, (RRp) holds for all
p′0 < p ≤ 2.

An immediate consequence of Theorem 1.3 and the previous discus-
sion is the following result:

Theorem 1.4. Assume that (Γ, µ) satisfies (D), (P2) and (∆(α)). Let
p0 ∈ (2,+∞]. Then, the following two assertions are equivalent:

(i) for all p ∈ (2, p0), (Gp) holds,
(ii) for all p ∈ (2, p0), (Rp) holds.

Remark 1.5. In the recent work [32], property (Gp) is shown to be
true for all p ∈ (1, 2] under the sole assumption that Γ satisfies a local
doubling property for the volume of balls.

Remark 1.6. On Riemannian manifolds, the L2 Poincaré inequality on
balls is neither necessary, nor sufficient to ensure that the Riesz transform
is Lp-bounded for all p ∈ (2,∞), see [3] and the references therein. We
do not know if the corresponding assertion holds in the context of graphs.

1.3.3. Riesz transforms and harmonic functions.

We also obtain another characterization of the validity of (Rp) for
p > 2 in terms of reverse Hölder inequalities for the gradient of
harmonic functions, in the spirit of [48] (in the Euclidean context for
second order elliptic operators in divergence form) and [3] (on Riemann-
ian manifolds). If B is any ball in Γ and u a function on B, say that u
is harmonic on B if, for all x ∈ B \ ∂B,

(1.10) (I − P )u(x) = 0.

We will prove the following result:

Theorem 1.7. Assume that (D), (∆(α)) and (P2) hold. Then, there
exists p0 ∈ (2,+∞] such that, for all q ∈ (2, p0), the following two
conditions are equivalent:

(a) (Rp) holds for all p ∈ (2, q),
(b) for all p ∈ (2, q), there exists Cp > 0 such that, for all ball B ⊂ Γ,

all function u harmonic in 32B,

(RHp)

(
1

V (B)

∑

x∈B

|∇u(x)|pm(x)

)1
p

≤Cp

(
1

V (16B)

∑

x∈16B

|∇u(x)|2m(x)

)1
2

.
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Assertion (b) says that the gradient of any harmonic function in 32B
satisfies a reverse Hölder inequality. Remember that such an inequality
always holds for solutions of div(A∇u) = 0 on any ball B ⊂ R

n, if
u is assumed to be in H1(B) and A is bounded and uniformly elliptic
(see [44]). In the present context, a similar self-improvement result can
be shown:

Proposition 1.8. Assume that (D), (∆(α)) and (P2) hold. Then there
exists p0 > 2 such that (RHp) holds for any p ∈ (2, p0). As a conse-
quence, (Rp) holds for any p ∈ (2, p0).

As a corollary of Theorem 1.2 and Proposition 1.8, we get:

Corollary 1.9. Assume that (D), (∆(α)) and (P2) hold. Then, there
exists ε > 0 such that, for all 2−ε < p < 2+ε, ‖∇f‖p ∼

∥∥(I − P )1/2f
∥∥

p
.

1.4. The reverse inequality.

Let us now focus on (RRp). As already seen, (RRp) holds for all p > 2
under (D), (∆(α)) and (DUE ), and for all p′0 < p < 2 under (D), (P2),
(∆(α)) and (Gp0 ) if p0 > 2 and 1/p0 + 1/p′0 = 1. However, we can
also give a sufficient condition for (RRp) to hold for all p ∈ (q0, 2) (for
some q0 < 2) which does not involve any assumption such that (Gp0 ).
For 1 ≤ p < +∞, say that (Γ, µ) satisfies a scaled Lp Poincaré inequality
on balls (this inequality will be denoted by (Pp) in the sequel) if there
exists C > 0 such that, for any x ∈ Γ, any r > 0 and any function f
on Γ such that |f |p and |∇f |p are locally integrable on Γ,

(Pp)
∑

y∈B(x,r)

|f(y) − fB|pm(y) ≤ Crp
∑

y∈B(x,r)

|∇f(y)|pm(y).

If 1 ≤ p < q < +∞, then (Pp) implies (Pq) (this is a very general
statement on spaces of homogeneous type, i.e. on metric measured spaces
where (D) holds, see [39]). The converse implication does not hold but
an Lp Poincaré inequality still has a self-improvement in the following
sense:

Proposition 1.10. Let (Γ, µ) satisfy (D). Then, for all p ∈ (1,+∞),
if (Pp) holds, there exists ε > 0 such that (Pp−ε) holds.

This deep result actually holds in the general context of spaces of
homogeneous type, i.e. when (D) holds, see [42].

Assuming that (Pq) holds for some q < 2, we establish (RRp) for
q < p < 2:
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Theorem 1.11. Let 1 ≤ q < 2. Assume that (D), (∆(α)) and (Pq) hold.
Then, for all q < p < 2, (RRp) holds. Moreover, there exists C > 0 such
that, for all λ > 0,

(1.11) m
({
x ∈ Γ;

∣∣∣(I − P )1/2f(x)
∣∣∣ > λ

})
≤ C

λq
‖∇f‖q

q .

As a corollary of Theorem 1.2, Proposition 1.10 and Theorem 1.11,
we get the following consequence:

Corollary 1.12. Assume that (D), (∆(α)) and (Pp) hold for some p ∈
(1, 2). Then, there exists ε > 0 such that, for all p − ε < q < +∞,
(RRq) holds. In particular, (RRp) holds.

1.5. An overview of the method.

Let us briefly describe the proofs of our results. Let us first consider
Theorem 1.3. The operator T = ∇(I − P )−1/2 can formally be written
as

(1.12) T = ∇
(

+∞∑

k=0

akP
k

)
,

where the ak’s are defined by the expansion

(1.13) (1 − x)−1/2 =
+∞∑

k=0

akx
k

for −1 < x < 1. The precise meaning of (1.12) is the following statement,
which will be proved in Appendix B:

Lemma 1.13. Define

E :=
{
f ∈ L2(Γ); f = (I − P )1/2g for some g ∈ L2(Γ)

}
.

Then, E is dense in L2(Γ) and, for all f ∈ E,

(1.14) ∇
(

n∑

k=0

akP
kf

)
→ ∇(I − P )−1/2f in L2(Γ).

The kernel of T is therefore given by

∇x

(
+∞∑

k=0

akpk(x, y)

)
.

It was proved in [47] that, under (D) and (P2), this kernel satisfies the
Hörmander integral condition, which implies the H1(Γ)−L1(Γ) bound-
edness of T and therefore its Lp(Γ)-boundedness for all 1 < p < 2, where
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H1(Γ) denotes the Hardy space on Γ defined in the sense of Coifman and
Weiss ([21]). However, the Hörmander integral condition does not yield
any information on the Lp-boundedness of T for p > 2. The proof of
Theorem 1.3 actually relies on a theorem due to Auscher and Martell
(see [6]), which, given some p0 ∈ (2,+∞], provides sufficient conditions
for an L2-bounded sublinear operator to be Lp-bounded for 2 < p < p0.
Let us recall this theorem here in the form to be used in the sequel for the
sake of completeness (see [6, Theorem 3.7], and also [5, Theorem 2.1],
[2, Theorem 2.2]):

Theorem 1.14. Let p0 ∈ (2,+∞]. Assume that Γ satisfies the doubling
property (D) and let T be a sublinear operator acting from a dense subset
of L2(Γ) into L2(Γ). For any ball B, let AB be a linear operator acting
on L2(Γ), and assume that there exists C > 0 such that, for all f ∈
L2(Γ), all x ∈ Γ and all ball B ∋ x,

(1.15)
1

V 1/2(B)
‖T (I −AB)f‖L2(B) ≤ C

(
M(|f |2)

)1/2

(x)

and

(1.16)
1

V 1/p0(B)
‖TABf‖Lp0(B) ≤ C

(
M(|Tf |2)

)1/2

(x).

If 2 < p < p0, then there exists Cp > 0 such that, for all f ∈ L2(Γ) ∩
Lp(Γ),

‖Tf‖Lp(Γ) ≤ Cp ‖f‖Lp(Γ) .

Notice that, to simplify the notations in our foregoing proofs, the
formulation of Theorem 1.14 is slightly different from the one given in [2]
and in [5], since the family of operators (Ar)r>0 used in these papers is
replaced by a family (AB) indexed by the balls B ⊂ Γ, see Remark 5
after Theorem 2.2 in [2]. Observe also that this theorem extends to
vector-valued functions (this will be used in Section 3). Finally, here
and after, M denotes the Hardy-Littlewood maximal function: for any
locally integrable function f on Γ and any x ∈ Γ,

Mf(x) = sup
B∋x

1

V (B)

∑

y∈B

|f(y)|m(y),

where the supremum is taken over all balls B containing x. Recall that,
by the Hardy-Littlewood maximal theorem, since (D) holds, M is of
weak type (1, 1) and of strong type (p, p) for all 1 < p ≤ +∞.

Following the proof of Theorem 2.1 in [5], we will obtain Theorem 1.3

by applying Theorem 1.14 with AB = I − (I − P k2

)n where k is the



Riesz Transforms and Inequalities on Graphs 285

radius of B and n is an integer only depending from the constant D
in (1.8).

As far as Theorem 1.11 is concerned, note first that (RRp) cannot
be derived from (Rp′ ) in this situation (where 1/p + 1/p′ = 1), since
we do not know whether (Rp′) holds or not under these assumptions.
Following [3], we first prove (1.11). The proof relies on a Calderón-
Zygmund decomposition for Sobolev functions, which is the adaptation
to our context of Proposition 1.1 in [3] (see also [1] in the Euclidean
case and [6, Proposition 9.1], for the extension to a weighted Lebesgue
measure):

Proposition 1.15. Assume that (D) and (Pq) hold for some q ∈ [1,∞)

and let p ∈ [q,+∞). Let f ∈ Ė1,p(Γ) and λ > 0. Then one can find a

collection of balls (Bi)i∈I , functions (bi)i∈I ∈ Ė1,q(Γ) and a function g ∈
Ė1,∞ such that the following properties hold:

f = g +
∑

i∈I

bi,(1.17)

‖∇g‖∞ ≤ Cλ,(1.18)

supp bi ⊂ Bi,
∑

x∈2Bi

|∇bi|q(x)m(x) ≤ CλqV (Bi),(1.19)

∑

i∈I

V (Bi) ≤ Cλ−p
∑

x∈Γ

|∇f |p(x)m(x),(1.20)

∑

i∈I

χBi
≤ N,(1.21)

where C and N only depend on q, p and on the constants in (D) and (Pq).

As in [3], we rely on this Calderón-Zygmund decomposition to es-
tablish (1.11). The argument also uses the Lp(Γ)-boundedness, for
all 2 < p < +∞, of a discrete version of the Littlewood-Paley-Stein
g-function (see [49]), which does not seem to have been stated before
in this context and is interesting in itself. For all function f on Γ and
all x ∈ Γ, define

g(f)(x) =



∑

l≥1

l
∣∣(I − P )P lf(x)

∣∣2



1/2

.

Observe that this is indeed a discrete analogue of the g-function intro-
duced by Stein in [49], since (I − P )P l = P l − P l+1 can be seen as a
discrete time derivative of P l and P is a Markovian operator.
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It is easy to check that the sublinear operator g is bounded in L2(Γ).
Indeed, as already said, the assumption (∆(α)) implies that the spectrum
of P is contained in [a, 1] for some a > −1. As a consequence, P can be
written as

P =

∫ 1

a

λdE(λ),

so that, for all integer l ≥ 1,

(I − P )P l =

∫ 1

a

(1 − λ)λl dE(λ)

and, for all f ∈ L2(Γ),

∥∥(I − P )P lf
∥∥2

2
=

∫ 1

a

(1 − λ)2λ2l dEf,f (λ).

It follows that, for all f ∈ L2(Γ),

‖g(f)‖2
2 =

∑

l≥1

l
∥∥(I − P )P lf

∥∥2

2

=

∫ 1

a

(1 − λ)2
∑

l≥1

lλ2l dEf,f (λ)

=

∫ 1

a

(
λ

1 + λ

)2

dEf,f (λ)

≤ ‖f‖2
2 .

It turns out that, as in the Littlewood-Paley-Stein semigroup theory, g is
also Lp-bounded for 1 < p < +∞:

Theorem 1.16. Assume that (D), (DUE ) and (∆(α)) hold. Let 1 <
p < +∞. There exists Cp > 0 such that, for all f ∈ Lp(Γ),

‖g(f)‖p ≤ Cp ‖f‖p .

Actually, this inequality will only be used for p > 2 in the sequel, but
the result, which is interesting in itself, does hold and will be proved for
all 1 < p < +∞.

Before going further, let us mention that, in [32], N. Dungey es-
tablishes, under a local doubling property for the volume of balls, the
Lp-boundedness for all p ∈ (1, 2] of another version of the Littlewood-
Paley-Stein functional, involving the gradient instead of the “time de-
rivative” and the (continuous time) semigroup generated by I − P . Al-
though we do not use Dungey’s result here, it may prove useful to study
the boundedness of Riesz transforms on graphs.



Riesz Transforms and Inequalities on Graphs 287

The proof of Theorem 1.16 for p > 2 relies on the vector-valued version
of Theorem 1.14, while, for p < 2, we use the vector-valued version of
the following result (see [2, Theorem 2.1] and [16] for an earlier version):

Theorem 1.17. Let p0 ∈ [1, 2). Assume that Γ satisfies the doubling
property (D) and let T be a sublinear operator of strong type (2, 2). For
any ball B, let AB be a linear operator acting on L2(Γ). Assume that,
for all j ≥ 1, there exists g(j) > 0 such that, for all ball B ⊂ Γ and all
function f supported in B,

(1.22)
1

V 1/2(2j+1B)
‖T (I −AB)f‖L2(Cj(B)) ≤ g(j)

1

V 1/p0(B)
‖f‖Lp0

for all j ≥ 2 and

(1.23)
1

V 1/2(2j+1B)
‖ABf‖L2(Cj(B)) ≤ g(j)

1

V 1/p0(B)
‖f‖Lp0

for all j ≥ 1. If
∑
j≥1

g(j)2Dj < +∞ where D is given by (1.8), then

T is of weak type (p0, p0), and is therefore of strong type (p, p) for all
p0 < p < 2.

Going back to Theorem 1.11, once (1.11) is established, we conclude
by applying real interpolation theorems for Sobolev spaces, which are
also new in this context. More precisely, we prove:

Theorem 1.18. Let q ∈ [1,+∞) and assume that (D), (Pq) and (∆(α))

hold. Then, for all q < p < +∞, Ẇ 1,p(Γ) =
(
Ẇ 1,q(Γ), Ẇ 1,∞(Γ)

)

1− q

p
,p
.

As an immediate corollary, we obtain:

Corollary 1.19 (The reiteration theorem). Assume that Γ satisfies (D),
(Pq) for some 1 ≤ q < +∞ and (∆(α)). Define q0 = inf {q ∈ [1,∞) :

(Pq) holds}. For q0 < p1 < p < p2 ≤ +∞, if
1

p
=

1 − θ

p1
+

θ

p2
, then

Ẇ 1,p(Γ) =
(
Ẇ 1,p1(Γ), Ẇ 1,p2(Γ)

)

θ,p
.

Corollary 1.19, in conjunction with (1.11), conclude the proof of The-
orem 1.11. Notice that, since we know that Sobolev spaces interpolate by
the real method, we do not need any argument as the one in Section 1.3
of [3].

For the proof of Theorem 1.7, we introduce a discrete differential
and go through a property analogous to (Πp) in [3], see Section 8 for
detailed definitions. As far as Proposition 1.8 is concerned, its proof is
entirely similar to the one of Proposition 2.2 in [3] (and will therefore
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be skipped in the present paper). Let us just mention that it relies on
an elliptic Caccioppoli inequality (analogous to the Euclidean version,
see [36]), Proposition 1.10 and Gehring’s self-improvement of reverse
Hölder inequalities ([35]).

The plan of the paper is as follows. After recalling some well-known
estimates for the iterates of p and deriving some consequences (Sec-
tion 2), we first prove Theorem 1.16, which is of independent interest,
in Section 3. In Section 4, we prove Theorem 1.3 using Theorem 1.14.
Section 5 is devoted to the proof of Proposition 1.15. Theorem 1.18 is
established in Section 6 by methods similar to [10] and, in Section 7, we
prove Theorem 1.11. Finally, Section 8 contains the proof of Theorem 1.7
and of Proposition 1.8.

2. Kernel bounds

In this section, we gather some estimates for the iterates of p and
some straightforward consequences of frequent use in the sequel. We
always assume that (D), (P2) and (∆(α)) hold. First, as already said,
(LUE ) holds. Moreover, we also have the following pointwise estimate
for the discrete “time derivative” of pl: there exist C, c > 0 such that,
for all x, y ∈ Γ and all l ∈ N

∗,

(2.1) |pl(x, y) − pl+1(x, y)| ≤
Cm(y)

lV (x,
√
l)
e−c d2(x,y)

l .

This “time regularity” estimate, which is a consequence of the L2 analyt-
icity of P , was first proved by Christ ([19]) by a quite difficult argument.
Simpler proofs have been given by Blunck ([15]) and, more recently, by
Dungey ([31]).

Thus, if B is a ball in Γ with radius k, f any function supported in B
and i ≥ 2, one has, for all x ∈ Ci(B) and all l ≥ 1,

(2.2)
∣∣P lf(x)

∣∣+ l
∣∣(I − P )P lf(x)

∣∣ ≤ C

V (B)
e−c 4ik2

l ‖f‖L1 .

This “off-diagonal” estimate follows from (UE ) and (2.1) and the fact
that, for all y ∈ B, by (D),

V (y, k) ∼ V (B) and
V (y, k)

V (y,
√
l)

≤ C sup

(
1,

(
k√
l

)D
)
.

Similarly, if B is a ball in Γ with radius k, i ≥ 2 and f any function
supported in Ci(B), one has, for all x ∈ B and all l ≥ 1,

(2.3)
∣∣P lf(x)

∣∣+ l
∣∣(I − P )P lf(x)

∣∣ ≤ C

V (2iB)
e−c 4ik2

l ‖f‖L1 .
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Finally, for all ball B with radius k, all i ≥ 2, all function f supported
in Ci(B) and all l ≥ 1,

(2.4)
∥∥∇P lf

∥∥
L2(B)

≤ C√
l
e−c 4ik2

l ‖f‖L2(Ci(B)) .

See Lemma 2 in [46]. If one furthermore assumes that (Gp0 ) holds for
some p0 > 2, then, by interpolation between (2.4) and (Gp0), one obtains,
for all p ∈ (2, p0), all f supported in Ci(B) and all l ≥ 1,

(2.5)
∥∥∇P lf

∥∥
Lp(B)

≤ Cp√
l
e−c 4ik2

l ‖f‖Lp(Ci(B)) .

Inequalities (2.4) and (2.5) may be regarded as “Gaffney” type inequal-
ities, in the spirit of [34].

3. Littlewood-Paley inequalities

In this section, we establish Theorem 1.16. The proofs rely on the
following estimates:

Lemma 3.1. Let p0 ∈ (1,+∞). For all positive integer n, all ball B =
B(x0, k) ⊂ Γ, all f ∈ Lp0(Γ) supported in B and for all integer j ≥ 2:

(1)

(3.1)
∑

x∈Cj(B)

∑

1≤l≤(2j+1)k2

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ Ce−c2j V (2jB)

V
2

p0 (B)
‖f‖2

Lp0 ,

(2)

(3.2)
∑

x∈Cj(B)

∑

l>(2j+1)k2

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ C2
j( 2D

p0
−2n) V (2jB)

V
2

p0 (B)
‖f‖2

Lp0 .
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Lemma 3.2. For all positive integer n, all ball B = B(x0, k) ⊂ Γ,
all j ≥ 2 and all f ∈ L2(Γ) supported in Cj(B):

(1)

(3.3)
∑

x∈B

∑

1≤l≤(2j+1)k2

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ Ce−c2j V (B)

V (2jB)
‖f‖2

L2 ,

(2)

(3.4)
∑

x∈B

∑

l>(2j+1)k2

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ C2j( 3D
2 −2n) V (B)

V (2jB)
‖f‖2

L2 .

Proof of Lemma 3.1: Let us first prove (3.1). Let 0 ≤ q ≤ 2j be an
integer and consider l such that qk2 < l ≤ (q + 1)k2. We use the
expansion

(I − P )P l(I − P k2

)nf(x) =

n∑

m=0

(−1)mCm
n (I − P )P l+mk2

f(x).

Fix 0 ≤ m ≤ n. For all x ∈ Cj(B), one has

∣∣∣(I−P )P l+mk2

f(x)
∣∣∣ ≤ C

(l+mk2)V (x,
√
l+mk2)

∑

y∈B

e
−c d2(x,y)

l+mk2 |f(y)|m(y)

≤ C
e
−c 4jk2

l+mk2

(l +mk2)V
1

p0 (x,
√
l +mk2)

‖f‖Lp0

≤ C
e
−c 4jk2

l+mk2

(l +mk2)V
1

p0 (x0,
√
l +mk2)

‖f‖Lp0

≤ C
e
−c 4jk2

l+mk2

(l +mk2)V
1

p0 (B)
‖f‖Lp0 ,

where the first inequality follows from (2.1), the second one from the
Hölder inequality and Lemma 3 in [46], the third and the fourth one are
due to (1.8). More precisely, the fourth inequality is trivial when m ≥ 1
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since V (B) ≤ V (x0,
√
l +mk2), and when m = 0, (1.8) shows that

V (x0, k)

V (x0,
√
l)

≤ C

(
k√
l

)D

≤ Ceα k2

l ,

for any α > 0, which is enough to conclude. As a consequence,

∥∥∥(I − P )P l+mk2

f
∥∥∥

L2(Cj(B))
≤ C

V 1/2(2jB)

V
1

p0 (B)

e
−c 4jk2

l+mk2

l+mk2
‖f‖Lp0 .

Summing up on l ∈ (qk2, (q + 1)k2], one obtains

(3.5)
∑

qk2<l≤(q+1)k2

∑

x∈Cj(B)

l
∣∣∣(I − P )P l+mk2

f(x)
∣∣∣
2

m(x)

≤ C




∑

qk2<l≤(q+1)k2

le
−c 4jk2

l+mk2

(l +mk2)2


 V (2jB)

V
2

p0 (B)
‖f‖2

Lp0 .

Noticing that

∑

qk2<l≤(q+1)k2

le
−c 4jk2

l+mk2

(l +mk2)2
≤ C

∫ (q+1)k2+1

qk2

te
−c 4j k2

t+mk2

(t+mk2)2
dt

≤ C

∫ q+m+2

q+m

e−c 4j

v
dv

v
,

we sum up on q ∈ [0, 2j] in (3.5), which yields

∑

1≤l≤(2j+1)k2

∑

x∈Cj(B)

l
∣∣∣(I − P )P lP l+mk2

f(x)
∣∣∣
2

≤ C

(∫ 2j+n+2

0

e−c 4j

v
dv

v

)
V (2jB)

V
2

p0 (B)
‖f‖2

Lp0

≤ Ce−c2j V (2jB)

V
2

p0 (B)
‖f‖2

Lp0 .

Summing up on m ∈ [0, n] yields the desired conclusion.
Let us now turn to (3.2). Assume that qk2 < l ≤ (q + 1)k2 for some

integer q > 2j. Consider first the case when l is even and write l = 2m.
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For any function g ∈ Lp0(Γ) and all x ∈ Cj(B), one has

|(I − P )Pmg(x)| ≤ C

mV (x,
√
m)



∑

y∈Γ

e−cq0
d2(x,y)

m m(y)




1
q0

‖g‖Lp0

≤ C

mV
1

p0 (x,
√
m)

‖g‖Lp0

≤ C

mV
1

p0 (x0,
√
m)

2
jD

p0 ‖g‖Lp0

where 1
p0

+ 1
q0

= 1, the first inequality follows from (2.1) and Hölder

again, the second one from Lemma 3 in [46] and the last one is due to
the fact that

V (x0,
√
m) ≤ V (x,

√
m+ d(x, x0))

≤ V (x,
√
m+ 2j+1k)

≤ CV (x,
√
m)

(
1 +

2j+1k√
m

)D

≤ C′V (x,
√
m)2jD,

by (1.8) and the fact that qk2 < l ≤ (q + 1)k2. As a consequence,

(3.6) ‖(I − P )Pmg‖2
L2(Cj(B)) ≤

CV (2jB)

m2V
2

p0 (x0,
√
m)

2
2jD

p0 ‖g‖2
Lp0 .

Moreover, since P k2

is a Markov operator and is analytic on L2(Γ) (more

precisely,
∥∥∥P sk2 − P (s+1)k2

∥∥∥
2→2

≤ C
s for all integer s ≥ 1, with a con-

stant C > 0 independent from k), it is also analytic on Lp0(Γ) since
p0 ∈ (1,+∞) (see [28, p. 426]). This means that, if q′ denotes the
greatest integer such that q′ ≤ q

2 ,

∥∥∥(I − P k2

)nPmf
∥∥∥

Lp0

≤
∥∥∥(I − P k2

)nP q′k2

f
∥∥∥

Lp0

≤ Cq′−n ‖f‖Lp0

≤ C

(
k2

l

)n

‖f‖Lp0 .

(3.7)
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Combining (3.6) and (3.7), one obtains
∥∥∥(I−P )P l(I−P k2

)nf
∥∥∥

2

L2(Cj(B))
=
∥∥∥(I−P )Pm(I−P k2

)nPmf
∥∥∥

2

L2(Cj(B))

≤ CV (2jB)

l2V
2

p0 (x0,
√
l)

(
k2

l

)2n

2
2jD

p0 ‖f‖2
Lp0 .

We argue similarly when l is odd, writing l = m+m+1, and obtain the
same estimate. Summing up on l > (2j + 1)k2 yields

∑

x∈Cj(B)

∑

l>(2j+1)k2

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ C2
2jD

p0 V (2jB) ‖f‖2
Lp0

×




∑

l>(2j+1)k2

1

lV
2

p0 (x0,
√
l)

(
k2

l

)2n



≤ C2
j

“
2D
p0

−2n
”
V (2jB)

V
2

p0 (B)
‖f‖2

Lp0 ,

(3.8)

which is the desired conclusion.

The proof of Lemma 3.2 is identical with the obvious modifications.
The main difference is that one has to replace (3.8) by

∑

x∈B)

∑

l>(2j+1)k2

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ C2jDV (B) ‖f‖2
L2

×




∑

l>(2j+1)k2

1

lV (x0,
√
l)

(
k2

l

)2n



≤ C2j( 3D
2 −2n) V (B)

V (2jB)
‖f‖2

L2 .

In the last inequality, we use the fact that

V (x0, 2
jk)

V (x0,
√
l)

≤





1 if l ≥ 22jk2,

C
(

2jk√
l

)D

if l < 22jk2,

and since l > (2j + 1)k2,
(

2jk√
l

)D

≤ C2
jD

2 .
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Proof of Theorem 1.16 when 1 < p < 2: We apply Theorem 1.17 with
T = g and p0 ∈ (1, 2) and, for all ball B with radius k, AB defined
by

AB = I − (I − P k2

)n,

where n is a positive integer, to be chosen in the proof.
Let us first check (1.22). Let p0 ∈ (1, 2), B := B(x0, k) and f sup-

ported in B. Choose n > 2D. If j ≥ 2, Lemma 3.1 shows that

1

V (2jB)

∑

x∈Cj(B)

∑

l≥1

l
∣∣∣(I − P )P l(I − P k2

)nf(x)
∣∣∣
2

m(x)

≤ C2
j

“
2D
p0

−2n
”

1

V
2

p0 (B)
‖f‖2

Lp0 ,

which means that (1.22) holds with g(j) := 2
j( D

p0
−n)

, which satisfies∑
j g(j)2

Dj < +∞.

Let us now check (1.23). Since

AB =

n∑

p=1

Cp
n(−1)pP pk2

,

it is enough to prove that, for all j ≥ 1 and all 1 ≤ p ≤ n,

(3.9)
1

V 1/2(2j+1B)

∥∥∥P pk2

f
∥∥∥

L2(Cj(B))
≤ g(j)

1

V
1

p0 (B)
‖f‖Lp0(B) .

For all x ∈ Cj(B), (2.2) yields

∣∣∣P pk2

f(x)
∣∣∣ ≤ C

e−c′ 4j

p

V
1

p0 (B)
‖f‖Lp0(B)

if j ≥ 2, and
∣∣∣P pk2

f(x)
∣∣∣ ≤ C

V
1

p0 (B)
‖f‖Lp0(B)

for j = 1, just by (UE ). As a consequence,

∥∥∥P pk2

f
∥∥∥

L2(Cj(B))
≤ C

e−c′ 4j

p

V
1

p0 (B)
V 1/2(2j+1B) ‖f‖Lp0(B) ,

so that (3.9) holds. This ends the proof of Theorem 1.16 when 1 < p <
2.
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Proof of Theorem 1.16 when 2 < p < +∞: We apply Theorem 1.14 with
the same choice of AB and p0 = +∞. Let us first check (1.15), which
reads in this situation as

1

V 1/2(B)
‖T (I −AB)f‖L2(B) ≤ C

(
M
(
|f |2

))1/2

(y)

for all f ∈ L2(Γ), all ball B ⊂ Γ and all y ∈ B. Fix such an f , such a
ball B and y ∈ B. Write

f =
∑

j≥1

fχCj(B) :=
∑

j≥1

fj.

The L2-boundedness of g and AB and the doubling property (D) yield

1

V 1/2(B)
‖T (I−AB)f1‖L2(B)≤

C

V 1/2(B)
‖f‖L2(4B)≤C

(
M
(
|f |2

))1/2

(y).

Let j ≥ 2. It follows from Lemma 3.2 that

1

V (B)

∑

x∈B

|T (I −AB)fj(x)|2m(x)

=
1

V (B)

∑

x∈B

∑

l≥1

l
∣∣∣(I − P )P l(I − P k2

)nfj(x)
∣∣∣
2

m(x)

≤ Ce−c2j 1

V (2jB)
‖fj‖2

L2 + C2j( 3D
2 −2n) 1

V (2jB)
‖fj‖2

L2

≤ C22j( 3D
2 −n)M(|f |2)(y).

Summing up on j therefore yields (1.15) provided that n > 3D
4 .

To prove (1.16), it suffices to establish that, for all 1 ≤ j ≤ n, all
ball B ⊂ Γ and all y ∈ B,

∥∥∥TP jk2

f
∥∥∥

L∞(B)
≤ C

(
M
(
|Tf |2

)
(y)
)1/2

.

Let x ∈ B. By Cauchy-Schwarz and the fact that
∑

z∈Γ

pjk2 (x, z) = 1

for all x ∈ Γ, one has, for any function h ∈ L2(Γ),

∣∣∣P jk2

h(x)
∣∣∣ ≤

(
P jk2 |h|2 (x)

)1/2

.
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It follows that, for all l ≥ 1,

∣∣∣P jk2

(
√
l(I − P )P lf)(x)

∣∣∣
2

≤ P jk2
(
l
∣∣(I − P )P lf

∣∣2
)

(x),

so that

∑

l≥1

∣∣∣P jk2

(
√
l(I − P )P lf)(x)

∣∣∣
2

≤ P jk2



∑

l≥1

l
∣∣(I − P )P lf

∣∣2

 (x)

= P jk2
(
|Tf |2

)
(x)

≤ CM
(
|Tf |2

)
(y),

which is the desired estimate (note that the last inequality follows eas-
ily from (UE )). Thus, (1.16) holds and the proof of Theorem 1.16 is
therefore complete.

4. Riesz transforms for p > 2

In the present section, we establish Theorem 1.3, applying Theo-

rem 1.14 with AB = I − (I − P 2k2

)n. One has ‖AB‖2,2 = 1. In view of
Theorem 1.14, it suffices to show that

(4.1)
1

V 1/2(B)

∥∥∥T (I − P 2k2

)nf
∥∥∥

L2(B)
≤ C

(
M(|f |2)

)1/2

(x)

and

(4.2)
1

V 1/p0(B)

∥∥∥T
(
I − (I − P 2k2

)n
)
f
∥∥∥

Lp0(B)
≤C

(
M(|Tf |2)

)1/2

(x)

for all f ∈ L2(Γ), all x ∈ Γ and all ball B ⊂ Γ containing x. Fix such
data f , x and B.

Proof of (4.1): Set fi = fχCi(B) for all i ≥ 1. The L2-boundedness of

T (I − P 2k2

)n yields

1

V 1/2(B)

∥∥∥T (I − P 2k2

)nf1

∥∥∥
L2(B)

≤ C

V 1/2(B)
‖f1‖L2(Γ)

≤ C
(
M(|f |2)

)1/2

(x).

(4.3)
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Fix now i ≥ 2. In order to estimate the left-hand side of (4.1) with
f replaced by fi, we use Lemma 1.13 (observe that fi ∈ E), which yields

∇
(
(I − P )−1/2(I − P 2k2

)nfi

)
= ∇

(
+∞∑

l=0

alP
l(I − P 2k2

)nfi

)

= ∇




+∞∑

l=0

al

n∑

j=0

Cj
n(−1)jP l+2jk2

fi





= ∇
(

+∞∑

l=0

dlP
lfi

)
,

where

dl =
∑

0≤j≤n, 2jk2≤l

(−1)jCj
nal−2jk2

(recall that, for all l ≥ 0, al > 0). It follows that

∣∣∣T (I − P 2k2

)nfi(x)
∣∣∣ ≤

+∞∑

l=1

|dl| ∇P lfi(x)

for all x ∈ B. Indeed, if x ∈ B and l = 0, ∇P lfi(x) = ∇fi(x) = 0
because fi is supported in Ci(B). Thus, one has

∥∥∥T (I − P 2k2

)nfi

∥∥∥
L2(B)

≤
+∞∑

l=1

|dl|
∥∥∣∣∇P lfi

∣∣∥∥
L2(B)

.

According to (2.4), one has

(4.4)
∥∥∥T (I − P 2k2

)nfi

∥∥∥
L2(B)

≤ C

+∞∑

l=1

|dl|
e−c 4ik2

l√
l

‖f‖L2(2i+1B\2iB) .

We claim that the following estimates hold for the dl’s:

Lemma 4.1. There exists C > 0 only depending on n with the following
properties: for all integer l ≥ 1,

(i) if there exists an integer 0 ≤ m ≤ 2n such that mk2 < l < (m +
1)k2, |dl| ≤ C√

l−mk2
,

(ii) if there exists an integer 0 ≤ m ≤ 2n such that l = (m + 1)k2,
|dl| ≤ C,

(iii) if l > (2n+ 1)k2, |dl| ≤ Ck2nl−n− 1
2 .
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We postpone the proof of this lemma to the Appendix A and end the
proof of (4.1). According to (4.4), one has

∥∥∥T (I − P 2k2

)nfi

∥∥∥
L2(B)

≤ C

n∑

m=0

∑

mk2<l<(m+1)k2

|dl|
e−c 4ik2

l√
l

‖f‖L2(2i+1B\2iB)

+ C

n∑

m=0

∣∣d(m+1)k2

∣∣ e−c 4ik2

m+1

k
√
m+ 1

‖f‖L2(2i+1B\2iB)

+ C
∑

l>(n+1)k2

|dl|
e−c 4ik2

l√
l

‖f‖L2(2i+1B\2iB)

:= S1 + S2 + S3.

(4.5)

For S1, Lemma 4.1 yields

|S1| ≤ C

n∑

m=0

∑

mk2<l<(m+1)k2

e−c 4ik2

l√
l
√
l−mk2

‖f‖L2(2i+1B\2iB) .

But, for each 1 ≤ m ≤ n,

∑

mk2<l<(m+1)k2

e−c 4ik2

l√
l
√
l −mk2

≤ C

∫ (m+1)k2

mk2

e−c 4ik2

t√
t−mk2

√
t
dt

≤ C

∫ 1

0

e−c 4i

n(1+w)

√
w(w + 1)

dw

≤ Ce−c4i

,

where C, c > 0 only depend on n. For m = 0,

∑

0<l<k2

e−c 4ik2

l

l
≤
∫ 1

0

e−c 4i

u
du

u
≤ Ce−c4i

.

Therefore,

(4.6) |S1| ≤ Ce−c4i ‖f‖L2(2i+1B\2iB) .

As for S2, Lemma 4.1 gives at once

(4.7) |S2| ≤ Ce−c4i ‖f‖L2(2i+1B\2iB) ,
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where C, c > 0 only depend on n once more. Finally, for S3, Lemma 4.1
provides

|S3| ≤ Ck2n
∑

l>(n+1)k2

l−n− 1
2
e−c 4ik2

l√
l

‖f‖L2(2i+1B\2iB) .

But one clearly has

∑

l>(n+1)k2

l−n− 1
2
e−c 4ik2

l√
l

≤
∫ +∞

(n+1)k2

t−n− 1
2
e−c 4ik2

t√
t

dt

= (4ik2)−n

∫ +∞

n+1

4i

u−ne−
c
u
du

u

≤ Ck−2n4−in

∫ +∞

0

u−ne−
c
u
du

u
≤ C4−in,

so that, since k ≥ 1,

(4.8) |S3| ≤ C4−in ‖f‖L2(2i+1B\2iB) .

Summing up the upper estimates (4.6), (4.7) and (4.8) and using (4.5),
one obtains

(4.9)
∥∥∥T (I − P 2k2

)nfi

∥∥∥
L2(B)

≤ C4−in ‖f‖L2(2i+1B\2iB) .

The definition of the maximal function and property (1.8) yield

‖f‖L2(2i+1B\2iB) ≤ V 1/2(2i+1B)
(
M(|f |2)(x)

)1/2

≤ C2(i+1)D/2V (B)1/2
(
M(|f |2)(x)

)1/2

.

Choosing now n >
D

4
and summing up over i ≥ 1, one concludes

from (4.3) and (4.9) that

∥∥∥T (I − P 2k2

)nf
∥∥∥

L2(B)
≤ C

(
+∞∑

i=0

2i(D
2 −2n)

)
V (B)1/2

(
M(|f |2)(x)

)1/2

,

which ends the proof of (4.1).

Proof of (4.2): We use the following lemma:
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Lemma 4.2. For all p ∈ (2, p0), there exists C,α > 0 such that, for all
ball B ⊂ Γ with radius k, all integer i ≥ 1 and all function f ∈ L2(Γ)
supported in Ci(B), and for all j ∈ {1, . . . , n} (where n is chosen as
above), one has

(
1

V (B)1/p

)∥∥∥∇P 2jk2

f
∥∥∥

Lp(B)
≤ Ce−α4i

k

1

V (2i+1B)1/2
‖f‖L2(Γ) .

Proof of Lemma 4.2: This proof is very similar to the one of Lemma 3.2
in [5], and we will therefore only indicate the main steps. First, (2.5)
yields

(4.10)
∥∥∥∇P 2jk2

f
∥∥∥

Lp(B)
≤ C

k

∥∥∥P jk2

f
∥∥∥

Lp(Γ)
.

Using (UE ), and noticing that, by (D), for y ∈ B, V (y, k
√
j) ∼ V (B),

one has, for all x ∈ Γ and all y ∈ B,

pjk2 (x, y) ≤ C

V (B)
exp

(
−cd

2(x, y)

jk2

)
m(y).

As a consequence, for all x ∈ Γ,

(4.11)
∣∣∣P jk2

f(x)
∣∣∣ ≤ C

V 1/2(B)
‖f‖L2(4B) .

The L2 contractivity of P shows that

(4.12)
∥∥∥P jk2

f
∥∥∥

L2(Γ)
≤ C ‖f‖L2(4B) ,

so that, gathering (4.11) and (4.12),

(4.13)
∥∥∥P jk2

f
∥∥∥

Lp(Γ)
≤ CV (B)

1
p
− 1

2 ‖f‖L2(Γ) .

Finally, (4.13) and (4.10) yield the conclusion of Lemma 4.2 when i = 1.
Consider now the case when i ≥ 2. Let χl the characteristic function

of Cl(B) for all l ≥ 1. One has, for all x ∈ Γ,

∇P 2jk2

f(x) ≤
∑

l≥1

∇P jk2

χlP
jk2

f(x) =:
∑

l≥1

gl(x).
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By (2.5) and (1.8),

1

V 1/p(B)
‖gl‖Lp(B)≤ C

(
V (2l+1B)

V (B)

)1/p

× e−c4l

k

1

V 1/p(2l+1B)

∥∥∥P jk2

f
∥∥∥

Lp(2l+1B\2lB)

≤C2(l+1)D/p e
−c4l

k

1

V 1/p(2l+1B)

∥∥∥P jk2

f
∥∥∥

Lp(2l+1B\2lB)
.

Using (UE ) and arguing as in the proof of Lemma 3.2 in [5], one obtains

(4.14)
1

V (2l+1B)

∥∥∥P jk2

f
∥∥∥

2

L2(Cl)
≤ Kil

1

V (2i+1B)
‖f‖2

L2(Ci)

and, for all x ∈ 2l+1B \ 2lB,

(4.15)
∣∣∣P jk2

f(x)
∣∣∣ ≤ Kil2

(i+2)D 1

V 1/2(2i+1B)
‖f‖L2(2i+1B\2iB) ,

where

Kil =





Ce−c4i

if l ≤ i− 2,

C if i− 1 ≤ l ≤ i+ 1,

Ce−c4l

if l ≥ i+ 2.

Interpolating between (4.14) and (4.15) therefore yields

1

V 1/p(2l+1B)

∥∥∥P jk2

f
∥∥∥

Lp(Cl)
≤ Kil2

(i+2)D(1− 2
p) 1

V 1/2(2i+1B)
‖f‖L2(Ci)

.

Summing up in l, one ends the proof of Lemma 4.2 as in [5].

To prove (4.2), it is enough to show that, if p ∈ (2, p0), there exists
Cp > 0 such that, for all j ∈ {1, . . . , n}, all function f ∈ L2

loc(Γ) with
∇f ∈ L2

loc(Γ), all ball B ⊂ Γ with radius k and any point x ∈ B,

1

V 1/p(B)

∥∥∥∇P 2jk2

f
∥∥∥

Lp(B)
≤ C

(
M(|∇f |2)

)1/2

(x).

But, since for all l ≥ 0, P l1 = 1, one has

∇P lf = ∇P l(f − f4B),

so that
∇P 2jk2

f =
∑

l≥1

∇P 2jk2

(χl(f − f4B)).

One concludes the proof of (4.2) as in [5], using the Poincaré inequality
and Lemma 4.2.



302 N. Badr, E. Russ

5. The Calderón-Zygmund decomposition for functions
in Sobolev spaces

The present section is devoted to the proof of Proposition 1.15, for
which we adapt the proof of Proposition 1.1 in [3] to the discrete setting.

Let f ∈ Ė1,p(Γ), λ > 0. Consider Ω = {x ∈ Γ : M(|∇f |q)(x) > λq}.
If Ω = ∅, then set

g = f, bi = 0 for all i ∈ I

so that (1.18) is satisfied thanks to the Lebesgue differentiation theorem
and the other properties in Proposition 1.15 obviously hold. Otherwise
the Hardy-Littlewood maximal theorem gives

m(Ω) ≤ Cλ−p‖(∇f)q‖
p
q
p

q

= Cλ−p
(∑

x

|∇f |p(x)m(x)
)

< +∞.

(5.1)

In particular, Ω is a proper open subset of Γ, as m(Γ) = +∞ (see
Remark 1.1). Let (Bi)i∈I be a Whitney decomposition of Ω ([21]). That
is, Ω is the union of the Bi’s, the Bi’s being pairwise disjoint open balls,
and there exist two constants C2 > C1 > 1, depending only on the
metric, such that, if F = Γ \ Ω,

(1) the balls Bi = C1Bi are contained in Ω and have the bounded
overlap property;

(2) for each i ∈ I, ri = r(Bi) = 1
2d(xi, F ) where xi is the center of Bi;

(3) for each i ∈ I, if Bi = C2Bi, Bi ∩ F 6= ∅ (C2 = 4C1 works).

For x ∈ Ω, denote Ix = {i ∈ I; x ∈ Bi}. By the bounded overlap prop-
erty of the balls Bi, there exists an integer N such that ♯Ix ≤ N for
all x ∈ Ω. Fixing j ∈ Ix and using the properties of the Bi’s, we easily
see that 1

3ri ≤ rj ≤ 3ri for all i ∈ Ix. In particular, Bi ⊂ 7Bj for
all i ∈ Ix.

Condition (1.21) is nothing but the bounded overlap property of
the Bi’s and (1.20) follows from (1.21) and (5.1). The doubling property
and the fact that Bi ∩ F 6= ∅ yield:

(5.2)
∑

x∈2Bi

|∇f |q(x)m(x)≤
∑

x∈Bi

|∇f |q(x)m(x)≤λqV (Bi)≤CλqV (Bi).

Let us now define the functions bi’s. Let (χi)i∈I be a partition of
unity of Ω subordinated to the covering (Bi)i∈I , which means that, for
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all i ∈ I, χi is a Lipschitz function supported in Bi with ‖∇χi‖∞ ≤
C

ri
and

∑
i∈I

χi(x) = 1 for all x ∈ Γ (it is enough to choose χi(x) =

ψ

(
C1d(xi, x)

ri

)(∑
k

ψ

(
C1d(xk, x)

rk

))−1

, where ψ∈D(R), ψ=1 on [0, 1],

ψ = 0 on [1+C1

2 ,+∞) and 0 ≤ ψ ≤ 1). Note that χi is actually

supported in 1+C1

2C1
Bi, so that ∇χi is supported in C3Bi ⊂ Ω, where

C3 = 1+ 1+C1

2C1
< 2. We set bi = (f−fBi

)χi. It is clear that supp bi ⊂ Bi.

Let us estimate
∑

x∈2Bi
|∇bi|q(x)m(x). Since

∇bi(x) = ∇((f − fBi
)χi)(x) ≤ max

y∼x
χi(y)∇f(x) + |f(x) − fBi

|∇χi(x)

and since χi(y) ≤ 1 for all y ∈ Γ, we get by (Pq) and (5.2) that

∑

x∈2Bi

|∇bi|qm(x) ≤ C

(
∑

x∈2Bi

|∇f |q(x)m(x)

+
∑

x∈2Bi

|f − fBi
|q(x)|∇χi|q(x)m(x)

)

≤ CλqV (Bi) + C
Cq

rq
i

rq
i

∑

x∈2Bi

|∇f |q(x)m(x)

≤ C′λqV (Bi).

Thus (1.19) is proved.
Set g = f − ∑

i∈I

bi. Since the sum is locally finite on Ω, g is defined

everywhere on Γ and g = f on F .
It remains to prove (1.18). Since

∑
i∈I

χi(x) = 1 for all x ∈ Ω, one has

g = fχF +
∑

i∈I

fBi
χi

where χF denotes the characteristic function of F . We will need the
following lemma:

Lemma 5.1. There exists C > 0 such that, for all j ∈ I, all u ∈ F ∩4Bj

and all v ∈ Bj,

|g(u) − g(v)| ≤ Cλd(u, v).
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Proof: Since
∑
i∈I

χi = 1 on Γ, one has

g(u) − g(v) = f(u) −
∑

i∈I

fBi
χi(v)

=
∑

i∈I

(f(u) − fBi
)χi(v).

(5.3)

For all i ∈ I such that v ∈ Bi,

|f(u) − fBi
| ≤

+∞∑

k=0

∣∣fB(u,2−kri) − fB(u,2−k−1ri)

∣∣+
∣∣fB(u,ri) − fBi

∣∣ .

For all k ≥ 0, (Pq) yields
∣∣fB(u,2−kri) − fB(u,2−k−1ri)

∣∣

=
1

V (u, 2−k−1ri)

∣∣∣∣∣∣

∑

z∈B(u,2−k−1ri)

(
f(z)− fB(u,2−kri)

)
m(z)

∣∣∣∣∣∣

≤ C

V (u, 2−kri)

∑

z∈B(u,2−kri)

∣∣f(z) − fB(u,2−kri)

∣∣m(z)

≤


 C

V (u, 2−kri)

∑

z∈B(u,2−kri)

∣∣f(z) − fB(u,2−kri)

∣∣q m(z)




1
q

≤ C2−kri


 1

V (u, 2−kri)

∑

z∈B(u,2−kri)

|∇f(z)|q m(z)




1
q

≤ C2−kri (M (∇f)q)
1
q (u)

≤ C2−kλri ≤ C2−kλrj ,

(5.4)

where the penultimate inequality relies on the fact that u ∈ F and the
last one from the fact that Bi ∩ Bj 6= ∅ and ri ≈ rj . Moreover, since
u ∈ 4Bj,

B(u, ri) ⊂ B(xj , ri + d(u, xj))

⊂ B(xj , ri + 4rj) ⊂ 7Bj.
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Since one also has Bi ⊂ 7Bj , one obtains, arguing as before,
∣∣fB(u,ri) − fBi

∣∣ ≤
∣∣fB(u,ri) − f7Bj

∣∣+
∣∣f7Bj

− fBi

∣∣

≤ C

V (7Bj)

∑

z∈7Bj

∣∣f(z)− f7Bj

∣∣m(z)

≤ Cλrj .

(5.5)

It follows from (5.4) and (5.5) that

|f(u) − fBi
| ≤ Cλrj ≤ Cλd(u, v),

since

rj =
1

2
d(xj , F ) ≤ 1

2
d(xj , u) ≤

1

2
d(xj , v) +

1

2
d(v, u)

≤ 1

2
rj +

1

2
d(v, u).

This ends the proof of Lemma 5.1 because of (5.3).

To prove (1.18), it is clearly enough to check that |g(x) − g(y)| ≤ Cλ
for all x ∼ y ∈ Γ. Let us now prove this fact, distinguishing between
three cases:

(1) Assume that x, y ∈ Ω. Then, χF (x) = χF (y) = 0. It follows that

g(y) − g(x) =
∑

i∈I

(
fBi

− fBj

)
(χi(y) − χi(x)),

so that |g(y) − g(x)| ≤ C
∑

i∈I

∣∣fBi
− fBj

∣∣∇χi(x) := h(x). We
claim that |h(x)| ≤ Cλ. To see this, note that, for all i ∈ I such
that ∇χi(x) 6= 0, we have |fBi

−fBj
| ≤ Crjλ. Indeed, d(x,Bi) ≤ 1,

which easily implies that ri ≤ 3rj + 1 ≤ 4rj , hence Bi ⊂ 10Bj. As
a consequence, we have, arguing as before again,

|fBi
− f10Bj

| ≤ 1

V (Bi)

∑

y∈Bi

|f(y) − f10Bj
|m(y)

≤ C

V (Bj)

∑

y∈10Bj

|f(y) − f10Bj
|m(y)

≤ Crj



 1

V (10Bj)

∑

y∈10Bj

|∇f |q(y)m(y)





1
q

≤ Crjλ

(5.6)
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where we used Hölder inequality, (D), (Pq) and the fact that

(|∇f |q)10Bj
≤ M(|∇f |)q(z) for some z ∈ F ∩ Bj . Analogously

|f10Bj
− fBj

| ≤ Crjλ. Hence

|h(x)| =

∣∣∣∣∣∣

∑

i∈I; x∈2Bi

(fBi
− fBj

)∇χi(x)

∣∣∣∣∣∣

≤ C
∑

i∈I; x∈2Bi

|fBi
− fBj

|r−1
i

≤ CNλ.

(2) Assume now that x ∈ F \ ∂F (recall that ∂F was defined in Sec-
tion 1.1) and y ∈ Γ, so that y ∈ F . In this case |g(y) − g(x)| =
|f(y) − f(x)| ≤ Cλ by the definition of F .

(3) Assume finally that x ∈ ∂F .
(i) If y ∈ F , we have |g(y)−g(x)| = |f(x)−f(y)| ≤ C∇f(x) ≤ Cλ.

(ii) Consider now the case when y ∈ Ω. There exists j ∈ I such
that y ∈ Bj . Since x ∼ y, one has x ∈ 4Bj, Lemma 5.1
therefore yields

|g(x) − g(y)| ≤ Cλd(x, y) ≤ Cλ.

Note that the case when x ∈ Ω and y ∈ F is contained in Case (3)(ii)
by symmetry, since y ∈ ∂F . Thus the proof of Proposition 1.15 is
complete.

Remark 5.2. It is easy to get the following estimate for the bi’s: for
all i ∈ I,

1

V (Bi)
‖bi‖1 ≤ 1

V (Bi)1/q
‖bi‖q ≤ Cλri.

Indeed, the first inequality follows from Hölder and the fact that bi is
supported in Bi. Moreover, by (Pq) and (5.2),

1

V (Bi)1/q
‖bi‖q =

1

V (Bi)1/q
‖f − fBi

‖Lq(Bi)

≤ Cri
1

V (Bi)1/q
‖∇f‖Lq(Bi)

≤ Cλri.

6. An interpolation result for Sobolev spaces

To prove Theorem 1.18, we will characterize the K functional of inter-
polation for homogeneous Sobolev spaces in the following theorem (see
for instance [14] for a general reference on the K functional).
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Theorem 6.1. Under the same hypotheses as Theorem 1.18 we have
that

(1) there exists C1 such that for every f ∈ Ẇ 1,q(Γ) + Ẇ 1,∞(Γ) and
all t > 0

K(f, t
1
q , Ẇ 1,q, Ẇ 1,∞) ≥ C1t

1
q (|∇f |q∗∗) 1

q (t);

(2) for q ≤ p < ∞, there exists C2 such that for every f ∈ Ẇ 1,p(Γ)
and every t > 0

K(f, t
1
q , Ẇ 1,q, Ẇ 1,∞) ≤ C2t

1
q (|∇f |q∗∗) 1

q (t).

Proof: We first prove item (1). Assume that f = h + g with h ∈ Ẇ 1,q,

g ∈ Ẇ 1,∞, we then have

‖h‖Ẇ 1,q + t
1
q ‖g‖Ẇ 1,∞ ≥ ‖∇h‖q + t

1
q ‖∇g‖∞

≥ K(∇f, t 1
q , Lq, L∞)

≥ Ct
1
q (|∇f |q∗∗) 1

q (t).

Hence we conclude that K(f, t
1
q , Ẇ 1,q, Ẇ 1,∞) ≥ C1t

1
q (|∇f |q∗∗) 1

q (t).

We prove now item (2). Let f ∈ Ẇ 1,p, q ≤ p < ∞. Let t > 0,
we consider the Calderón-Zygmund decomposition of f given by Propo-

sition 1.15 with λ = λ(t) =
(
M(|∇f |)q

)∗ 1
q

(t). Thus we have f =
∑
i∈I

bi + g = b + g where (bi)i∈I , g satisfy the properties of the proposi-

tion. We have the estimate

‖∇b‖q
q ≤

∑

x∈Γ

(
∑

i∈I

|∇bi|
)q

(x)m(x)

≤ CN
∑

i∈I

∑

x∈2Bi

|∇bi|q(x)m(x)

≤ Cλq(t)
∑

i∈I

V (Bi)

≤ Cλq(t)m(Ω),

where the Bi’s are given by Proposition 1.15 and Ω is defined as in the
proof of Proposition 1.15. The last inequality follows from the fact that∑
i∈I

χBi
≤ N and Ω =

⋃
i

Bi. Hence ‖∇b‖q ≤ Cλ(t)m(Ω)
1
q . Moreover,
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since (Mf)∗ ∼ f∗∗ (see [13, Chapter 3, Theorem 3.8]), we obtain

λ(t) = (M(|∇f |)q)
∗ 1

q (t) ≤ C (|∇f |q∗∗)
1
q (t).

Hence, also noting that m(Ω) ≤ t (see [13, Chapter 2, Proposition 1.7]),

we get K(f, t
1
q , Ẇ 1,q, Ẇ 1,∞) ≤ Ct

1
q |∇f |q∗∗ 1

q (t) for all t > 0 and obtain
the desired inequality.

Proof of Theorem 1.18: The proof follows directly from Theorem 6.1.
Indeed, item (1) of Theorem 6.1 gives us that (Ẇ 1,q, Ẇ 1,∞)1− q

p
,p ⊂

Ẇ 1,p and ‖f‖Ẇ 1,p ≤ C‖f‖1− q
p

,p, while item (2) gives us that Ẇ 1,p ⊂
(Ẇ 1,q, Ẇ 1,∞)1− q

p
,p and ‖f‖1− q

p
,p ≤ C‖f‖Ẇ 1,p . Hence

Ẇ 1,p = (Ẇ 1,q, Ẇ 1,∞)1− q

p
,p with equivalent norms.

7. The proof of (RRp) for p < 2

In view of Theorem 1.18 and since (RR2) holds, it is enough, for the
proof of Theorem 1.11, to establish (1.11).

Proof of (1.11): We follow the proof of (1.9) in [3]. Consider such an f
and fix λ > 0. Perform the Calderón-Zygmund decomposition of f given
by Proposition 1.15. We also use the following expansion of (I − P )1/2:

(7.1) (I − P )1/2 =

+∞∑

k=0

ak(I − P )P k

where the (ak)’s were already considered in Section 4. For each i ∈ I,
pick the integer k ∈ Z such that 2k ≤ r(Bi) < 2k+1 and define ri = 2k.
We split the expansion (7.1) into two parts:

(I − P )1/2 =

r2
i∑

k=0

ak(I − P )P k +

+∞∑

k=r2
i
+1

ak(I − P )P k := Ti + Ui.

We first claim that

(7.2) m
({
x ∈ Γ;

∣∣∣(I − P )1/2g(x)
∣∣∣ > λ

})
≤ C

λq
‖∇f‖q

q .

Indeed, one has

m
({
x ∈ Γ;

∣∣∣(I − P )1/2g(x)
∣∣∣ > λ

})
≤ C

λ2

∥∥∥(I − P )1/2g
∥∥∥

2

2

=
C

λ2
‖∇g‖2

2 ,
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and since ∇g ≤ Cλ on Γ and ‖∇g‖q ≤ C ‖∇f‖q, we obtain

‖∇g‖2
2 ≤ Cλ2−q ‖∇g‖q

q ≤ Cλ2−q ‖∇f‖q
q ,

which ends the proof of (7.2) (we have used the fact that ‖∇g‖q ≤
C ‖∇f‖q, which follows from the fact that ‖∇b‖q ≤ C ‖∇f‖q, which

follows itself from (1.19)).
We now claim that, for some constant C > 0,

(7.3) m

({
x ∈ Γ;

∣∣∣∣∣
∑

i∈I

Tibi(x)

∣∣∣∣∣ > λ

})
≤ C

λq
‖∇f‖q

q .

To prove (7.3), write

(7.4) m

({
x ∈ Γ;

∣∣∣∣∣
∑

i∈I

Tibi(x)

∣∣∣∣∣ > λ

})

≤ m

(
⋃

i

4Bi

)
+m

({
x /∈

⋃

i

4Bi;

∣∣∣∣∣
∑

i∈I

Tibi(x)

∣∣∣∣∣ > λ

})
.

Observe first that, by (D) and Proposition 1.15,

m

(
⋃

i

4Bi

)
≤ C

∑

i∈I

V (4Bi) ≤
C

λq
‖∇f‖q

q .

As far as the second term in the right-hand side of (7.4) is concerned,
we follow ideas from [7], and estimate it by

m

({
x /∈
⋃

i

4Bi;

∣∣∣∣∣
∑

i∈I

Tibi(x)

∣∣∣∣∣>λ
})

≤ 1

λ

∑

i∈I

∑

x/∈4Bi

|Tibi(x)|m(x)

≤ 1

λ

∑

i∈I

+∞∑

j=2

‖Tibi‖L1(2j+1Bi\2jBi)
.

If i, j are fixed, since (I − P )bi is supported in 2Bi,

‖Tibi‖L1(2j+1Bi\2jBi)
≤

r2
i∑

k=0

|ak|
∥∥(I − P )P kbi

∥∥
L1(2j+1Bi\2jBi)

=

r2
i∑

k=1

|ak|
∥∥(I − P )P kbi

∥∥
L1(2j+1Bi\2jBi)

.
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Given 1 ≤ k ≤ r2i , one has, for all x ∈ 2j+1Bi \ 2jBi, using (2.1),

∣∣(I − P )P kbi(x)
∣∣ ≤

∑

y∈Bi

|pk(x, y) − pk+1(x, y)| |bi(y)|

≤
∑

y∈Bi

C

kV (y,
√
k)
e−c d2(x,y)

k |bi(y)|m(y).

Using (1.8) and arguing as in [3] (relying, in particular, on Remark 5.2),
we obtain

∥∥(I − P )P kbi
∥∥

L1(2j+1Bi\2jBi)
≤ C

ri
k

(
ri√
k

)D

e−c
4jr2

i
k V (2j+1Bi)λ.

Since

ak ∼ 1√
kπ

(see Appendix A), it follows that

‖Tibi‖L1(2j+1Bi\2jBi)
≤ Cλe−c4j

V (2j+1Bi) ≤ Cλe−c4j

2jDV (Bi).

One concludes, using (1.20), that

A ≤ C
∑

i∈I

∑

j≥2

e−c4j

2jDV (Bi) ≤
C

λq
‖∇f‖q

q ,

which shows that (7.3) holds.
What remains to be proved is that

(7.5) m

({
x ∈ Γ;

∣∣∣∣∣
∑

i∈I

Uibi(x)

∣∣∣∣∣ > λ

})
≤ C

λq
‖∇f‖q

q .

Define, for all j ∈ Z,

βj =
∑

i∈I; ri=2j

bi
ri
,

so that, for all j ∈ Z,
∑

i∈I; ri=2j

bi = 2jβj .
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One has ∑

i∈I

Uibi =
∑

i∈I

∑

k>r2
i

ak(I − P )P kbi

=
∑

k>0

ak(I − P )P k
∑

i∈I; r2
i
<k

bi

=
∑

k>0

ak(I − P )P k
∑

i∈I; r2
i
=22j<k

bi

=
∑

k>0

ak(I − P )P k
∑

j; 4j<k

2jβj .

For all k > 0, define

fk =
∑

j; 4j<k

2j

√
k
βj .

It follows from the previous computation and Theorem 1.16 that
∥∥∥∥∥
∑

i∈I

Uibi

∥∥∥∥∥
q

≤ C

∥∥∥∥∥∥

(
+∞∑

k=1

1

k
|fk|2

)1/2
∥∥∥∥∥∥

q

.

To see this, we estimate the left-hand side of this inequality by duality,

as in [3] and use the fact that |ak| ≤ C√
k

for all k ≥ 1. Since, by

Cauchy-Schwarz,

|fk|2 ≤ 2
∑

j; 4j<k

2j

√
k
|βj |2 ,

one obtains ∥∥∥∥∥∥

(
+∞∑

k=1

1

k
|fk|2

)1/2
∥∥∥∥∥∥

q

≤

∥∥∥∥∥∥

(
∑

k∈Z

|βk|2
)1/2

∥∥∥∥∥∥
q

.

By the bounded overlap property,
∥∥∥∥∥∥

(
∑

k∈Z

|βk|2
)1/2

∥∥∥∥∥∥

q

q

≤ C
∑

x∈Γ

∑

i∈I

|bi(x)|q
rq
i

m(x),

so that, using Remark 5.2, one obtains

∑

x∈Γ

∑

i∈I

|bi(x)|q
rq
i

m(x) ≤ Cλq
∑

i∈I

V (Bi).
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As a conclusion,

m

({
x ∈ Γ;

∣∣∣∣∣
∑

i∈I

Uibi(x)

∣∣∣∣∣ > λ

})
≤ C

∑

i∈I

V (Bi) ≤
C

λq
‖∇f‖q

q ,

which is exactly (7.5). The proof of (1.11) is therefore complete.

8. Riesz transforms and harmonic functions

Let us now prove Theorem 1.7. The proof goes through a property
analogous to (Πp) in [3], the statement of which requires a notion of
discrete differential.

8.1. The discrete differential and its adjoint.

To begin with, for any γ = (x, y), γ′ = (x′, y′) ∈ E (recall that
E denotes the set of edges in Γ), set

d(γ, γ′) = max(d(x, x′), d(y, y′)).

It is straightforward to check that d is a distance on E. We also define
a measure on subsets on E. For any A ⊂ E, set

µ(A) =
∑

(x,y)∈A

µxy.

We claim that E, equipped with the metric d and the measure µ, is
a space of homogeneous type. Indeed, let γ = (a, b) ∈ E and r > 0.
Assume first that r ≥ 5. Then, by (D),

µ(B(γ, 2r)) =
∑

d(x,a)<2r, d(y,b)<2r

µxy

≤
∑

d(x,a)<2r

∑

y∈Γ

µxy = V (a, 2r) ≤ CV
(
a,

r

100

)
.

But

V
(
a,

r

100

)
=

∑

d(x,a)< r
100

∑

d(y,x)≤1

µxy

≤
∑

d(x,a)< r
2

∑

d(y,b)< r
2

µxy = µ
(
B
(
γ,
r

2

))
,

since, when d(x, a) < r
100 and d(y, x) ≤ 1, then d(y, b) < 2 + r

100 ≤ r
2 .
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Assume now that r < 5. One has, using (D) again,

µ(B(γ, 2r)) ≤ V (a, 2r) ≤ V (a, 10) ≤ CV

(
a,

1

2

)

= Cm(a) ≤ C′µab ≤ C′µ(B(γ, r)),

since, whenever x ∼ y, one has αm(x) ≤ µxy by (∆(α)). The claim is
therefore proved.

We can then define Lp spaces on E in the following way. For 1 ≤ p <
+∞, say that a function F on E belongs to Lp(E) if and only if F is
antisymmetric (which means that F (x, y) = −F (y, x) for all (x, y) ∈ E)
and

‖F‖p
Lp(E) :=

1

2

∑

(x,y)∈E

|F (x, y)|p µxy < +∞.

Observe that the L2(E)-norm derives from the scalar product

〈F,G〉L2(E) =
1

2

∑

x,y∈Γ

F (x, y)G(x, y)µxy .

Finally, say that F ∈ L∞(E) if and only if F is antisymmetric and

‖F‖L∞(E) :=
1

2
sup

(x,y)∈E

|F (x, y)| < +∞.

Our notion of discrete differential is the following one: for any function f
on Γ and any γ = (x, y) ∈ E, define

df(γ) = f(y) − f(x).

The function df is clearly antisymmetric on E and is related to the
length of the gradient of f . More precisely, it is not hard to check that,
if (∆(α)) holds, then for all p ∈ [1,+∞] and all function f on Γ,

‖df‖Lp(E) ∼ ‖∇f‖Lp(Γ) .

Indeed, if 1 ≤ p < +∞, for all function f and all x ∈ Γ,

|∇f(x)|p ∼
(
∑

y∼x

p(x, y) |f(y) − f(x)|
)p

∼
∑

y∼x

pp(x, y) |f(y) − f(x)|p

∼
∑

y∼x

p(x, y) |f(y) − f(x)|p
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where the last line is due to (∆(α)). As a consequence,

‖∇f‖p
Lp(Γ) ∼

∑

x∈Γ

∑

y∼x

p(x, y) |f(y) − f(x)|pm(x)

∼
∑

x,y∈Γ

|df(x, y)|p µxy

= ‖df‖p
Lp(E) .

The case when p = +∞ is analogous and even easier. We could therefore
reformulate properties (Rp) and (RRp) replacing ‖∇f‖Lp(Γ) by ‖df‖Lp(E).

Besides d, we also consider its adjoint in L2. If df ∈ L2(E) and
G is any (antisymmetric) function in L2(E) such that the function x 7→∑

y p(x, y)G(x, y) belongs to L2(Γ), one has

〈df,G〉L2(E) =
1

2

∑

x,y∈Γ

df(x, y)G(x, y)µxy

=
1

2

∑

x,y∈Γ

f(y)G(x, y)µxy − 1

2

∑

x,y∈Γ

f(x)G(x, y)µxy

= −
∑

x,y∈Γ

f(x)G(x, y)µxy

= −
∑

x∈Γ

f(x)



∑

y∈Γ

p(x, y)G(x, y)


m(x).

Thus, if we define

δG(x) =
∑

y

p(x, y)G(x, y)

for all x ∈ Γ, it follows that

〈df,G〉L2(E) = −〈f, δG〉L2(Γ)

whenever f ∈ L2(Γ), df ∈ L2(E), G ∈ L2(E) and δG ∈ L2(Γ). Notice
also that I − P = −δd.

The following lemma, very similar to Lemma 4.2 in [4], holds:
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Lemma 8.1. Assume that (D), (∆(α)) and (DUE ) hold. There exists
C > 0 such that, for all ball B and all function f ∈ L2(Γ) supported

in B, there exists a unique function h ∈W 1,2
0 (B) such that

(8.1) (I − P )h = f in Γ

and h satisfies

‖h‖W 1,2(Γ) ≤ C ‖f‖L2(Γ) .

Proof: This proof relies on a Sobolev inequality, which will be used again
in the proof of Theorem 1.7 and reads as follows: there exist ν ∈ (0, 1)
and C > 0 such that, for all ball B with radius r > 1

2 and all function f
supported in B,

(8.2) ‖f‖q ≤ CrV (B)−
ν
2 ‖∇f‖2

with q = 2
1−ν . This inequality is actually equivalent to a relative Faber-

Krahn inequality, which is itself equivalent to the conjunction of (D)
and (DUE ), see [26], [38], [18], [23], [12], [29]. It follows in particular

from (8.2) that, for all function f ∈ W 1,2
0 (B),

(8.3) ‖f‖2 ≤ Cr ‖∇f‖2 .

Let B and f as in the statement of Lemma 8.1. Since I − P = −δd,
(8.1) is equivalent to

〈dh, dv〉L2(E) = 〈f, v〉L2(Γ)

for all v ∈ W 1,2
0 (B). For all u, v ∈ W 1,2

0 (B), set B(u, v) = 〈du, dv〉L2(E).

It is obvious that B is a continuous bilinear form on W 1,2
0 (B). Moreover,

for all u ∈W 1,2
0 (B),

B(u, u) = ‖du‖2
L2(E) ≥ c ‖u‖2

W 1,2
0 (B) ,

by (8.3) (see also Lemma 4.1 in [4]). The conclusion of Lemma 8.1
follows then from the Lax-Milgram theorem.

Let F ∈ L2(E). It is easy to check that δF ∈ L2(Γ) and

(8.4) ‖δF‖L2(Γ) ≤ ‖F‖L2(E) .
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Indeed, for all g ∈ L2(Γ),

∣∣〈δF, g〉L2(Γ)

∣∣ =

∣∣∣∣∣∣

∑

x,y∈Γ

p(x, y)F (x, y)g(x)m(x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

x,y∈Γ

F (x, y)g(x)µxy

∣∣∣∣∣∣

≤



∑

x,y∈Γ

|F (x, y)|2 µx,y




1/2(
∑

x∈Γ

|g(x)|2m(x)

)1/2

.

As a consequence of Lemma 8.1, for all F ∈ L2(E) with bounded sup-
port, there exists a unique function f ∈ W 1,2(Γ) such that (I−P )f = δF .
Since functions in L2(E) with bounded support are dense in L2(E), we
can therefore extend the operator d(I − P )−1δ to an L2(E)-bounded
operator.

8.2. The proof of Theorem 1.7.

For all 1 ≤ p < +∞, say that (Πp) holds if and only if there exists
Cp > 0 such that, for all F ∈ Lp(E) ∩ L2(E),

(Πp)
∥∥d(I − P )−1δF

∥∥
Lp(E)

≤ Cp ‖F‖Lp(E) .

Since L2(E)∩Lp(E) is dense in Lp(E), if (Πp) holds, the operator d(I−
P )−1δ extends to a bounded operator from Lp(E) to itself.

Let us now turn to the proof of Theorem 1.7. Let p0 > 2 and q ∈
(2, p0). Denote by (b′) the following property:

(b′) for all p ∈ (2, q), (Πp) holds.

We show that, for some p0 > 2, if q ∈ (2, p0), then (b) ⇒ (b′) ⇒ (a) ⇒
(b).

Proof of (b) ⇒ (b′): In order to apply Theorem 2.3 in [3], observe first
that E, equipped with the metric d and the measure µ, is a space of
homogeneous type. Let 2 < p < p̃ < q. Consider F ∈ L2(E) ∩ Lp(E)
with bounded support included in E\64B where B is a ball in E centered
at γ = (a, b) and with radius r. Lemma 8.1 and (8.4) therefore yield a
function h ∈ W 1,2(Γ) such that (I − P )h = δF with ‖h‖W 1,2(Γ) ≤
C ‖δF‖L2(Γ) ≤ C ‖F‖L2(E).
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If r ≥ 1
16 , then the function h is harmonic in B(a, 32r). Indeed, if

x ∈ B(a, 32r) \ ∂B(a, 32r),

(I − P )h(x) = δF (x) =
∑

y∼x

p(x, y)F (x, y).

When x ∈ B(a, 32r) and y ∼ x, d(y, b) ≤ d(x, a) + 2 ≤ 64r, so that
F (x, y) = 0. It follows from (RHep) that

(
1

V (B)

∑

x∈B

|∇h(x)|epm(x)

) 1
ep

≤ C

(
1

V (16B)

∑

x∈16B

|∇h(x)|2m(x)

) 1
2

.

If r < 1
16 , B = 16B and the same inequality holds since there is only

one term in the sum. This shows that the operator T defined by TF =
∇(I −P )−1δF for all F with bounded support in E, clearly satisfies the
assumptions of Theorem 2.3 in [3], and this theorem therefore yields

(8.5) ‖TF‖Lp(E) ≤ Cp ‖F‖Lp(E)

for all F with bounded support in E. Since the space of antisymmetric
functions on E with bounded support is dense in Lp(E), (8.5) holds for
all F ∈ Lp(E), which exactly means that (Πp) holds.

Proof of (b′) ⇒ (a): By Theorem 1.11 and Proposition 1.10, there exists
ε > 0 such that (RRq) holds for all q ∈ (2 − ε, 2). It is therefore enough
to check that the conjunction of (Πp) and (RRp′) implies (Rp), with
1
p + 1

p′
= 1. But, if f ∈ Lp(Γ) ∩ L2(Γ) and G ∈ Lp′

(E) ∩ L2(E),
∣∣∣〈d(I − P )−1/2f,G〉L2(E)〉

∣∣∣ =
∣∣∣〈(I − P )−1/2f, δG〉L2(Γ)

∣∣∣

=
∣∣∣〈f, (I − P )−1/2δG〉L2(Γ)

∣∣∣

≤ ‖f‖Lp(Γ)

∥∥∥(I − P )−1/2δG
∥∥∥

Lp′(Γ)

= ‖f‖Lp(Γ)

∥∥∥(I − P )1/2(I − P )−1δG
∥∥∥

Lp′(Γ)

≤ ‖f‖Lp(Γ)

∥∥d(I − P )−1δG
∥∥

Lp′(E)

≤ C ‖f‖Lp(Γ) ‖G‖Lp′(E) ,

which ends the proof.

Proof of (a) ⇒ (b): Assume now that (Rp) holds for all p ∈ (2, q). Let
B be a ball with center x0 and radius k and u a function harmonic
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in 32B, and fix a function ϕ supported in 3B, equal to 1 in 2B and
satisfying 0 ≤ ϕ ≤ 1 and ‖∇ϕ‖∞ ≤ C

k . Up to an additive constant, one
may assume that the mean value of u in 16B is 0. In order to control the
left-hand side of (RHp), it suffices to estimate

∑
x∈B |∇(uϕ)(x)|pm(x).

As in [9, p. 35] and [3, Section 2.4], write

uϕ = P 2k2

(uϕ) +

2k2−1∑

l=0

P l(I − P )(uϕ),

so that

(8.6) ∇(uϕ) ≤ ∇
(
P 2k2

(uϕ)
)

+

2k2−1∑

l=0

∇
(
P l(I − P )(uϕ)

)
.

To treat the first term in the right-hand side of (8.6), fix ρ ∈ (p, q) and
notice that, since (Rρ) holds by assumption, it follows from Theorem 1.4

that l
∣∣∣∇P l2

∣∣∣ is Lρ(Γ)-bounded uniformly in l. Then, arguing as in

Lemma 4.2, one obtains that

(8.7)

(
1

V (B)

∑

x∈B

∣∣∇P lf(x)
∣∣pm(x)

)1/p

≤ Ce−
c4j k2

l√
l


 1

V (2jB)

∑

x∈Cj(B)

|f(x)|2m(x)




1/2

for all j ≥ 1, all l ∈
{
2, . . . , 2k2

}
and all function f supported in Cj(B).

It follows at once from (8.7) applied with f = uϕ, the fact that u has
zero integral on 16B and the Poincaré inequality (P2) that

(
1

V (B)

∑

x∈B

∣∣∣∇P 2k2

(uϕ)(x)
∣∣∣
p

m(x)

)1/p

≤ C

k

(
1

V (4B)

∑

x∈4B

|u(x)|2m(x)

)1/2

≤ C

(
1

V (16B)

∑

x∈16B

|∇u(x)|2m(x)

)1/2

.

(8.8)
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Let us now turn to the second term in (8.6). A calculation shows that,
for all x ∈ Γ,

(I − P )(uϕ)(x) =
∑

y∈Γ

p(x, y)((uϕ)(x) − (uϕ)(y))

=
∑

y∈Γ

p(x, y)u(x)(ϕ(x) − ϕ(y))

+
∑

y∈Γ

p(x, y)(u(x) − u(y))(ϕ(y) − ϕ(x))

+
∑

y∈Γ

p(x, y)(u(x) − u(y))ϕ(x)

:= v1(x) + v2(x) + v3(x).

(8.9)

For all x ∈ Γ, v3(x) = 0 since, for all x ∈ Γ,
∑

y∈Γ

p(x, y)(u(x) − u(y)) = (I − P )u(x) = 0

and u is harmonic in 32B. Because of the support condition on ϕ,
for l ≥ 2, one may apply (8.7) to v2, and since ‖∇ϕ‖∞ ≤ C/k, one
obtains
(8.10)(

1

V (B)

∑

x∈B

∣∣∇P lv2(x)
∣∣pm(x)

)1/p

≤ C

k
√
l

(
1

V (4B)

∑

x∈4B

|∇u(x)|2m(x)

)1/2

for all 2 ≤ l ≤ 2k2 − 1.
For v1, write

2v1(x) =
∑

y

p2(x, y)(u(x) + u(y))(ϕ(x) − ϕ(y))

+
∑

y

p2(x, y)(u(x) − u(y))(ϕ(x) − ϕ(y))

= δF (x) − v2(x),

where, for all (x, y) ∈ E,

F (x, y) = (u(x) + u(y))(ϕ(x) − ϕ(y))

is antisymmetric, belongs to L2(E) and is supported in B((x0, x0), 4k) \
B((x0, x0), 2k). It is therefore enough to show that, for all 2 ≤ l ≤
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2k2 − 1,

(8.11)

(
∑

x∈B

∣∣∇P lδF (x)
∣∣pm(x)

)1
p

≤ Ce−c k2

l

l



 1

V(B(x0, x0), 4k)

∑

(x,y)∈B((x0,x0),4k)\B((x0,x0),2k)

|F (x, y)|2µxy





1
2

.

To prove this inequality, write, if l = 2m, ∇P lδF = ∇PmPmδF . We
establish (8.11) by arguments similar to the proof of Lemma 4.2, com-
bining (2.4) and an inequality analogous to (2.4) and derived by duality
(see the proof of (2.6) in [3]). We finally obtain

(8.12)

(
1

V (B)

∑

x∈B

∣∣∇P lv1(x)
∣∣pm(x)

)1/p

≤ C

k
√
l

(
1

V (4B)

∑

x∈4B

|∇u(x)|2m(x)

)1/2

for all 2 ≤ l ≤ 2k2−1. Summing up (8.10) and (8.12) for 2 ≤ l ≤ 2k2−1,
we obtain

(8.13)


 1

V (B)

∑

x∈B

∇




2k2−1∑

l=2

(
P l(I − P )(uϕ)

)

 (x)pm(x)




1/p

≤ C

(
1

V (16B)

∑

x∈16B

|∇u(x)|2m(x)

)1/2

.

What remains to be treated in (8.6) is the term ∇(I−P )(uϕ)+∇P (I−
P )(uϕ). Let us first deal with ∇(I − P )(uϕ). By (8.9),

(8.14)
1

V (B)1/p
‖∇(I − P )(uϕ)‖Lp(B) ≤

1

V (B)1/p
‖∇v1‖Lp(B)

+
1

V (B)1/p
‖∇v2‖Lp(B) .

Let us first deal with v1. By (Rp),

‖∇v1‖Lp(Γ) ≤ C
∥∥∥(I − P )1/2v1

∥∥∥
Lp(Γ)

≤ C ‖v1‖Lp(Γ) ,
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where the last inequality follows from the Lp-boundedness of (I −P )1/2

(see [28, p. 423] and also [22]). But v1 is supported in 4B and, for
all x ∈ 4B,

|v1(x)| ≤
C

k
|u(x)| .

As a consequence,

‖v1‖Lp(Γ) ≤
C

k
‖u‖Lp(4B) ≤

C

k
‖uψ‖Lp(8B) ,

where ψ is a nonnegative function equal to 1 on 4B, supported in 8B
and satisfying ‖∇ψ‖∞ ≤ C

k . Now, (8.2) shows that, if q0 = 2
1−ν and

p ∈ (2, q0),

1

V (B)1/p
‖uψ‖Lp(8B) ≤

1

V (8B)1/q0
‖uψ‖Lq0 (8B)

≤ C

V (8B)1/q0
kV (8B)−ν/2 ‖∇(uψ)‖L2(8B) .

Using now the fact that ν
2 = 1

2 − 1
q0

, we finally conclude

1

V (B)1/p
‖v1‖Lp(Γ) ≤

C

V (8B)1/2
‖∇(uψ)‖L2(8B)

≤ C

V (16B)1/2
‖∇u‖L2(16B) ,

(8.15)

where the last inequality is due (P2). All these computations yield

(8.16)
1

V (B)1/p
‖∇v1‖Lp(Γ) ≤

C

V (16B)1/2
‖∇u‖L2(16B) .

We argue similarly for v2. We just have to notice that, for all x ∈ 4B,

|v2(x)|p ≤ C

kp

∑

y∼x

(|u(y)|p + |u(x)|p) ,

hence
∑

x∈4B

|v2(x)|p m(x)≤ C

kp

∑

x∈4B

∑

y∼x

|u(y)|pm(x)+
C

kp

∑

x∈4B

∑

y∼x

|u(x)|pm(x).

Since m(x) ≤ Cm(y) whenever x ∼ y (this is a straightforward conse-
quence of (D) and was noticed in [26, Section 4.2]) and ♯ {y∈Γ; y ∼ x} ≤
N , we finally obtain that

∑

x∈4B

|v2(x)|pm(x) ≤ C

kp

∑

x∈8B

|u(x)|pm(x),
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and we conclude as for v1 that

(8.17)
1

V (B)1/p
‖∇v2‖Lp(Γ) ≤

C

V (16B)1/2
‖∇u‖L2(16B) .

As far as ∇P (I−P )(uϕ) is concerned, we argue similarly, using the fact
that

‖∇Pv1‖Lp(Γ) ≤ C
∥∥∥(I − P )1/2Pv1

∥∥∥
Lp(Γ)

≤C ‖Pv1‖Lp(Γ) ≤ C ‖v1‖Lp(Γ) ,

and the similar inequality for v2. Summing up (8.8), (8.13), (8.16)
and (8.17) (and the analogous inequalities for ∇Pv1 and ∇Pv2), we
obtain that (RHp) holds.

Recall finally, as explained in Section 1.5, that the proof of Proposi-
tion 1.8 is entirely similar to the one of Proposition 2.2 in [3].

Appendix A

We prove Lemma 4.1. The proof will make use of the following in-
equality: for any positive integer n, any Cn function ϕ on (0,+∞), any
positive integer k and any t > (2n+ 1)k2:

(A.1)

∣∣∣∣∣

n∑

p=0

Cp
n(−1)pϕ(t− 2pk2)

∣∣∣∣∣ ≤ C sup
u≥ t

2n+1

∣∣∣ϕ(n)(u)
∣∣∣ k2n,

where C > 0 only depends on n (see [33, problem 16, p. 65]).

For all l ≥ 0, al =
(2l)!

4l(l!)2
, and, as already used in Section 7, the

Stirling formula shows al ∼ 1√
πl

. Therefore, there exists C > 0 such

that, for all l ≥ 1,

0 < al ≤
C√
l
.

Assume first that mk2 < l < (m + 1)k2 for some integer 0 ≤ m ≤ 2n.
For each integer j ≥ 0 such that 2jk2 ≤ l, one has l − 2jk2 > 0 and
2j ≤ m, so that

∣∣al−2jk2

∣∣ ≤ C√
l−2jk2

≤ C√
l−mk2

. It follows at once that

|dl| ≤
C√

l −mk2

for some C > 0 only depending on n.
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Assume now that l = (m+1)k2 for some 0 ≤ m ≤ 2n. For each j ≥ 0
such that 2jk2 ≤ l and l − 2jk2 > 0, one has 2j ≤ m again, so that∣∣al−2jk2

∣∣ ≤ C√
l−mk2 = C

k ≤ C. Moreover, a0 = 1. One therefore has

|dl| ≤ C + Cm+1
n ≤ C,

where, again, C only depends on n.
Finally, assume that l > (2n + 1)k2. The classical computation of

Wallis integrals shows that

al =
2

π

∫ π
2

0

(sin t)2l dt = ϕ(l)

where, for all x > 0, ϕ(x) =
2

π

∫ π
2

0

(sin t)
2x
dt. We can then invoke (A.1)

and are therefore left with the task of estimating ϕ(n). But, for all x > 0,

∣∣∣ϕ(n)(x)
∣∣∣ =

2

π

∣∣∣∣∣

∫ π
2

0

(2 log sin t)
n
e2x log sin t dt

∣∣∣∣∣

≤ 2

π

∫ π
2

0

|2 log sin t|n e2x log sin t dt :=
2

π
In(x).

We now argue as in the “Laplace” method. For all δ ∈
(
0, π

2

)
, one clearly

has, for all x > 1,

0≤In(x) ≤
∫ π

2 −δ

0

|2 log sin t|n e2x log sin t dt

+

∫ π
2

π
2 −δ

|2 log sin t|n e2x log sin t dt

≤
(
sin
(π

2
− δ
))2x−2

In(1)+Jn(x) = Cn,δα
2x−2+Jn(x)

(A.2)

where Cn,δ > 0 only depends on n and δ, 0 < α = sin
(

π
2 − δ

)
< 1 and

Jn(x) :=

∫ π
2

π
2 −δ

|2 log sin t|n e2x log sin t dt.

Observe now that Jn(x) =

∫ δ

0

|2 log cosu|n e2x log cos u du. Since

log(cosu) ∼ −u2

2 when u→ 0, we fix δ > 0 such that, for all 0 < u < δ,
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− 3
4u

2 ≤ log(cosu) ≤ − 1
4u

2, which implies

lllJn(x) ≤ C

∫ δ

0

u2ne−
1
2xu2

du

≤ C

(
1√
x

)2n+1 ∫ +∞

0

v2ne−v2

dv ≤ Cx−n− 1
2 .

(A.3)

It follows from (A.2) and (A.3) that, for all x > 1,
∣∣∣ϕ(n)(x)

∣∣∣ ≤ Cx−n− 1
2 ,

which, joined with (A.1), yields assertion (iii) in Lemma 4.1, the proof
of which is now complete.

Appendix B

Let us establish Lemma 1.13. That E is dense in L2(Γ) was proved
in [46, Lemma 1]. By (1.7), (1.14) is equivalent to

(B.1) (I − P )1/2

(
n∑

k=0

akP
kf

)
→ f in L2(Γ),

for all f ∈ E. Take now f = (I − P )1/2g ∈ E and let us check that
(B.1) holds. One has

(I − P )1/2

(
n∑

k=0

akP
kf

)
=

n∑

k=0

ak(I − P )P kg

= g +

n∑

k=1

(ak − ak−1)P
kg − anP

n+1g.

Since
+∞∑

k=1

(ak − ak−1)x
k = (1 − x)1/2 − 1

and the convergence is uniform on [−1, 1] (because |ak−ak−1| ≤ Ck−3/2)
and since |an| ≤ Cn−1/2 and Pn is a contraction on L2(Γ), it follows
that

(I − P )1/2

(
n∑

k=0

akP
kf

)
→ g +

+∞∑

k=1

(ak − ak−1)P
kg = (I − P )1/2g,

which ends the proof.
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[18] G. Carron, Inégalités isopérimétriques de Faber-Krahn et consé-
quences, in: “Actes de la Table Ronde de Géométrie Différentielle”
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