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REGULAR SEQUENCES AND LIFTING PROPERTY

M. HERRMANN AND R. SCHMIDT

Let A be a commutative noetherian ring, E a finite
A-module and let M be an arbitrary A-module. Let
(p: E —> M be a homomorphisn of A -modules.

In this note we prove in an elementary way that an
M-sequence x = (x,, • • •, xn) being taken to lie in the (Jacobson-)
radical rad(A) of A, is also an E- sequence if xE is the
contraction <p~\xM) of xM in E.

As a corollary of this lifting property we obtain very easily the
so-called delocalization-lemma for regular sequences (also [2], Cor. 1 for
local rings A and [4] Chap. I, §4). Then we exemplify that the condition
<p~l(xM) = xE is not necessary for the statement of our theorem (see
Example 3); otherwise it is easily seen that generally the theorem
(especially Corollary 2) becomes false without any additional condition
(see Examples 1 and 2).

Recall that a sequence xu-',xn of elements of A is said to be
(M-regular or) an M-sequence if, for each 0 ^ i ^ n - 1, al+l is a non-
zerodivisor on M/(xu- • •, x,)M and M/ (xu- • •, xn)M.

2. First we consider the case n = 1.

LEMMA. The notations being as above. Let x be a M-regular
element in the radical rad(A) of A and suppose that
(1) kercpCxE1.
Then x is an E-regular element too and cp is injective.

Proof. We put F = ker<p. Clearly x is £/F-regular, hence xE D
F = xF, hence F = xF by (1). Therefore we get F = 0 by Nakayama's
lemma, hence cp is injective and x is £-regular.

THEOREM. Let E be a finite A-module, M an arbitrary A-module
and <p:E->M a module-homomorphism. Let x = (jtl5- • -,jcn) be an
M-sequence in rad (A) and suppose that

1 We denote by xE or xE the product (x)E or (x)E respectively, where (x) or (x) is the ideal
generated by x or xx,- • ,xn respectively.
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(2) cP
1(xM) = xE\

Then x is an E-sequence and cp is injective.

Proof. (By induction on n): Note that ker<p C cp~\xM), hence the
case n = 1 results from the lemma.

For n>\ we put x' = (xu- • -,*„_!),£' = E/x'E,M' = M/x'M and
<P'=<P®1A/X>A'. E'->M'. Then we have

ker <p' = (p \x fM)/x 'EHcp ~\x fM) = cp '\x 'M)/x 'EQcp ~\xM)/x '£,

hence we get by (2):

ker<p'CxE/x'E = xn -E'.

Since xn is M'-regular we are in the situation of the lemma with xn and
<pf: E'^>M' instead of x and cp. Therefore cp' is injective, i.e.

(3) <p-\x'M) = x'E,

and xn is an E'-regular element. The sequence x' is M-regular by
assumption, hence by (3) and by induction on n,xf is E -regular and <p is
injective. This concludes the proof.

COROLLARY 1.1 (Delocalization Lemma, 1. form): Let A be a
noetherian ring, E a finite A-module and xu- • -,xn Erad(A). LetU CA
be the set of nonzerodivisors modulo x for E. Suppose that x is an
Eu-sequence. Then x is an E-sequence.

Proof Let <p: E-> Ev be the natural homomorphism. No ele-
ment of U is zerodivisor for E/xE, hence cp~1(xEu) = xE, proving the
corollary.

It results from the following Corollary 1.2 that the conditions for x in
the two Corrollaries 1.1 and 1.2 are equivalent.

COROLLARY 1.2 (Delocalization Lemma, 2. form): Let E be a
finitely generated module over a noetherian ring A and JCi,---,JcrE
rad(A). If x is an E^-sequence for all T)EiAss(E/xE), then x is an
E-sequence.

Proof. Let M = © £ 9 for t)G Ass(E/xE), and cp the homomor-
phism E —> M defined by u —> ^cp^u), where cp^ denotes the natural map
£—>£,. [Note that Ass (E/xE) is a finite set.]
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Since x is an £9-sequence for all gE Ass(E/xE), it must be an
M-sequence too. We want to apply our theorem to finish the
proof. For that we show that (p~l{xM) = xE:

Since E is finitely generated, the submodule xE has an irredundant
primary decomposition xE = Qi n • • • PI Qr corresponding to the ideals
t), E Ass(EIxE). Localizing xE by any ideal g E Ass (E/xE) we obtain
[5]:

>, if 0, C t)

hence fl ^cp ^(xEJ = xE.
On the other hand we have xM = © , j £ , , hence

<p~1(xM)= (1 rjcp'^xE^). This concludes the proof of the corollary.

3 . Now let / : A-^B be a ring-homomorphism. If a and b are
ideals in A and B respectively we define as usual ae to be the extension
f(a)B of a and bc to be the contraction

COROLLARY 2. Lef f: A-+B be a homomorphism of noetherian
rings. Let a be an ideal generated by elements jti,•••,*„ E
rad(A). Suppose that f(xi),- • -,/(*„) form a B-sequence and suppose
that aec = a. Then xu- - -,xn is an A-sequence.

Proof. Regard B as an A -module relatively to /. We consider the
module-homomorphism <p:A->B given by cp(a) = f(a) for all
a E A. Then, by assumption all conditions of the theorem are fulfilled,
proving the corollary.

REMARKS, (i) The proof of Corollary 2 shows that the delocaliza-
tion Lemma 1.1 or 1.2 respectively can be formulated for rings too.

(ii) If / : A-+B is faithfully flat then any sequence jcb-• •, jcn E
rad(A) is A-regular <^ f(xi),m' m,f(xn) is B-regular. This well-known
statement {s. [4] or [3]) is an easy consequence of Corollary 2: / is
faithfully flat says that / is flat and the induced map af\ Spec B —> Spec A
is surjective. But if / is flat then the last condition is equivalent to
aec = a (s. [1], p. 45), where a is generated by xu- • •, xn. Hence Corollary
2 works for <=; the other direction is trivial.

(iii) Let B be a surjectively-free A-algebra [i.e. A = 2 ^ ( 5 ) , where
ifr runs over HomA (J5, A)]. Then for any ideal a of A one has

aec = aB n A = a,

and the induced map Spec B -» Spec A is surjective; see [5], (5, E), p. 37.
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4. We are indebted to L. Badescu for pointing to the following

EXAMPLE 1. Consider the ring

where k denotes say the field of complex numbers. Then R is the
finitely generated subring k[x - x3,x2,xy, y] of k[x, y]; clearly k[x, y] is
integrally dependent on R and with the same quotient field. Therefore
Y: = Specl? is not normal. Write X for the normal affine variety
Spec (fc[JC, y]) = k2. Let the inclusion of JR in k[x, y] define the proper
morphism

Then if xl9x2 are the points (1,0) and (- l ,0)Efc 2 , we have TT(XI) =

TT(X2)= : y0, and

is an isomorphism. In particular, Y is normal at all points except y0 [this
is also clear by the connectedness theorem, because 7r~l{y^ is not
connected]. To be more in detail, take

vx = 1 - x2, v2 = xy, v3 = y, v4 = x - x\

Then

R =

k[vu v2, v3, v4]/(v4v3- v2vu v2
2-v\+ vtvl; vl+v*- v2; vtv2- v2v4~ v\v3).

So Y can be regarded as an affine surface in fc4, which is nonsingular in
codimension 1, but not normal in the origin (corresponds to the point
y0 E Spec R = Y). Therefore 0Yjyo is not a Cohen Macaulay-ring by the
criterion of normality, [3], 5.8.6.

We fix the notations:

A = 0y,yo = i?, with t) = (x - 1, y) n R = (x + 1, y) n R;

B = Ox,*, = k[x,y], with X) = (x - 1; y);

/ : A - » B the corresponding local homomorphism; ax -
(x - l)(x + 1), a2 = y in A and f{ax) = (x - l)(x + 1), f{a2) = y
regarded as being in B. Then B is a regular local ring, and
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f(cii), f(a2) generate its maximal ideal mB. Since depth
A g dim A = 2 the sequence au a2 *will not be A -regular. And
indeed we have ae = mB and aecmA/ a.

EXAMPLE 2. Let (A, m) be a one-dimensional local noetherian ring
which is not a Cohen Macaulay-ring. Let x E m be a parameter of A
and t) a minimal prime over-ideal of zero in A. Take B = A/x). Then
by assumptions f(x) is B -regular, but x is not A-regular. And we have
aec^ a (otherwise X) would be zero).

EXAMPLE 3. Let (A, m) be a local Cohen Macaulay-ring of dimen-
sion 1 which is not regular. Then the maximal ideal m can be generated
in this way:

m = xA + mxA 4- • • • + mrA,

where x denotes an A-regular element.
Let a be the ideal generated by x and B = A [m, /x ] C Ax. Since x is

A-regular the natural homomorphism / : A —> B is injective, and clearly
x is B -regular.

But now we have ae = xB = mB, hence aec = mB n A = m, hence
aec ̂  a because A is not regular.

This example shows that condition (2) is not necessary for the
statement of the theorem.
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