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1. Introduction* Given a real symmetric linear operator A on a vector space 8,

we wish to describe a procedure for finding a "minimum" characteristic vector

of A, that is, a characteristic vector with least characteristic value, supposing

such to exist. The method to be used is, in a general way, the following. Select

an initial vector x° and a positive integer s > 1. Imbed x° in an s-dimensional

linear subspace 8° (appropriately selected). Determine the next approximation xι

as the minimum characteristic vector relative to this subspace (to be defined

later). Next, imbed Λ;1 in an s-dimensional subspace 8 and determine x2 as the

minimum characteristic vector relative to this subspace. Proceeding in this manner,

construct a sequence of subspaces S°, S 1 , of fixed dimension s, with a

corresponding sequence of vectors xι,x2, . It is to be expected that under

appropriate hypotheses the sequence of vectors will converge to a minimum char-

acteristic vector of A.

We shall treat the case when 8 is of finite dimension n, and 8 ι is chosen as

the subspace spanned by the vectors χι, Ax1, A2xι, , As~ιxι We shall es-

tablish the desired convergence under these circumstances, the sequence {x1}

satisfying at the same time a relation xι + i = xι + Ύ]1 with (xι, Tjι) = 0. The main

result is formulated in Theorem 2 of §6. An analogous result holds for a "maximum "

characteristic vector.

It is of interest to compare the present iteration method with what might be

called Rayleigh-Ritz procedures. In the latter, one fills out the space 8 by a

judiciously chosen monotone sequence of subspaces

8! C 8 2 C S 3 C . . . (dim 8; = i)

of increasing dimension. One then obtains successive approximations to a mini-

mum vector of A by determining minimum characteristic vectors of the successive
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subspaces. This procedure has the serious computational drawback that to obtain

an improved approximation a problem of increased complexity, that is, of higher

dimension, must be solved. This restriction is important even in the finite dimen-

sional case where the iteration, in theory, terminates in a finite number of steps.

The method of the present paper, however, requires only the solution of a problem

of fixed dimension s at each step, the dimension s being chosen from the outset

as any desired value. The 8* form a chain of subspaces in which successive sub-

spaces 8* and 8 ι + 1 overlap in xi+ι in general this chain will be infinite even

when 8 is finite-dimensional. Thus the method is useful where it is desired to fix

beforehand the degree of complexity for all steps; and yet a great many iterations

may readily be performed. This is the case with high speed computing machines.

The present procedure may be interpreted as a gradient method; cf [ l ] . For

s = 2, in the equation xι+ι = xι + rj1, η* is a multiple of the gradient at x = xι

of the function Gc, Ax)/(x, x) For 5 > 2, the vector r] contains higher order terms.

The applicability of the present procedure with s = 2 to quadratic functionals in

infinite-dimensional spaces has been pointed out to the author by M.R.Hestenes

in conversation, and has been outlined by L. V.Kantorovitch [2] .

2 Subspaces. Before describing in detail the iteration procedure to be used,

and proving its convergence, we find it convenient to formulate some preliminary

results. In this section we construct an orthogonal basis for the space spanned

by the powers of A operating on a fixed vector x; in the next section we describe

the characteristic roots and vectors relative to certain subspaces of this space.

We shall encounter polynomials py(λ) of central importance. In these two sections

we shall be treating, essentially, only one level of the iteration. Accordingly, the

superscript i denoting the various steps of the iteration will not appear until §4,

where we are concerned with the progression from one level to the next.

Let S denote the ^-dimensional space of π-tuples of real numbers; by vector

we understand always an element of 8. We consider a linear operator A on 8 which

is real and symmetric; that is, one for which Ax is a real vector and

(Ax, z) = (x,Az)

for arbitrary real vectors x, z. A characteristic number (root, value) of A is a

number λ for which there exists a non-null vector y such that

Ay = λy .

There are n (real) characteristic numbers (counting multiplicities).
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With a non-null vector x we associate the number

( . (x,Ax)

(pc,x)

and the vector

ξ{x) =Aχ- μ{x)x .

Let λ m j n ( λ m a x ) be the least (greatest) characteristic root, of A. It is well known

that

(1) λ m i n = min μ(x) , λ m a x = max μ(x) , (x £ £ ) .
xέo xέo

For a non-null vector x we define the subspaces

< l j ( * ) = (x,Ax, ~>,A>-ιx) (j = 1,2,3, • • • ) ,

α ( x ) = (x,Ax,A2x, •••) ,

where, in each case, the right side of the equation denotes the space spanned by

the designated vectors. The space U (x) is the smallest invariant subspace con-

taining x denote its dimension by r = r(x) Clearly dι C fl2 C C flr = fl,

where " C " denotes strict inclusion. The space CL contains r independent char-

acteristic vectors of A. We now construct an orthogonal basis for Gy .

LEMMA 1. Let the vectors ξj (j — 0,1, , r) be defined by

(2) £o=x, £i=Aξo- ( ())

ξ Aξj-μjξj- tj

ti = TT^T U = 1,2, ••-, r - 1) .
I b l

/or /, A = 0,1, , r ~ 1, zi e Aαve ζj φ 0,

(3) Gj + iGO = (̂ o , ^ i , * '* , ξj) , (ξj , ξk) = 0 ,

The lemma may be verified directly by induction. We remark that ξΓ — 0.
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LEMMA 2. Let the polynomials py(λ) (/ = 0 , 1 , , r) be defined by

Po(λ)=l, pi(λ) = ( λ - μ 0 ) , PaOO = (λ-μo)(λ-/*i) ~ *? .

PJ + ι(λ)=P J-(λ)(λ-^.)-t/p J..1(λ) 0 = 1,2, — , r - 1 ) .

Suppose B is an invariant subspace containing x; write

(4) x = myi + a 2 y 2 + ••• + aι yι

in terms of a basis of characteristic vectors of B Then

(5) £ ; = a ^ y C λ J y ! + a 2 p ; ( λ 2 ) y 2 + ••• + aιpj(λι)yι ( j = 0,1, •••, r ) ,

where λ k is the characteristic number of yk

The lemma follows immediately from the definitions (2).

The polynomials py(λ) have also been used by C. Lanczos [3]

3 Characteristic values relative to subspaces Let B be an arbitrary (linear)

subspace of S; let 7Γ be the operator on S which carries any vector into its pro-

jection on B. We define a linear operator 4 (B) on B to B as follows:

Then A(Q) is a symmetric operator on B, since 4(B) = πAπ. By the characteristic

roots and vectors of A relative to the subspace B, we mean the corresponding

quantities of 4(6). If B is invariant, then these quantities are characteristic for A

itself. We shall use the following easily verified fact: y is a characteristic vector

relative to B with characteristic value λ if and only if y φ 0, y G B, and (Ay, z)

= λ(y, z) for z C B. By a minimum characteristic vector of B we shall mean a

characteristic vector relative to B with least characteristic value. When no con-

fusion can arise we shall omit the qualifying term "relative/*

LEMMA 3. The j characteristic roots relative to the subspace dj(x) are dis-

tinct and are given by the solutions of

p7 ( λ ) = o .

Each characteristic vector (relative to fly) has a non-null projection on x.

To prove the last statement, suppose that γ is a characteristic vector with

characteristic value λ . If (y, x) = 0, then (y, Ax) ~ (Ay, x) = \(y, x) = 0, and
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(y, A2x) = (Ay, Ax) = λ (y, Ax) = 0, , and (y, A^"ιx) = O From the definition

of Gy it follows that y is orthogonal to this space. But y belongs to this space;

hence y = 0, a contradiction.

The distinctness of the roots now follows. For if two independent characteristic

vectors belong to λ then there is a non-null linear combination orthogonal to x

belonging to λ.

To complete the proof we use the basis (3) of Uy . The matrix representation,

call it Ajy of A(&j) relative to this basis has as element in the (k + l)st row and

(Z + l)st column;

(Aξk,ξι)
, - i)

Using (2) and the second line of (3) we find that

Ai =

Mo

* 1

0

•

•

* 2

0

o
* 2

μ-2

• •

•

0

•
•
• tj-i

Thus, the characteristic roots are the roots of the polynomial

qj(λ)= \\Ij-Aj\ ,

where /y is the /-rowed square identity matrix. Let q$0\) = 1. Direct calculation

shows that qι (λ) = pί (λ), and that the ^y(λ) satisfy the same recursion relation

as the pj(\). Hence the two sets of polynomials are identical. This completes

the proof.

LEMMA 4. Let Vj be the minimum characteristic root relative to &y; that is,

Vj = min. root of pj (λ) (j = 1, 2, ••• , r) .

Then

(6) = vr
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where \χ is the minimum characteristic root of the invariant subspace uΓ . Further,

each root cr of each polynomial pj(\) satisfies

( 7 ) Kin < σ < λin < σ < λ m a x

The last statement follows at once from Lemma 3 and (1) when we notice that

each characteristic root σ is a value of μ(z) = (z, Az)/(z, z); namely, σ is that

value obtained by replacing z by the corresponding characteristic vector.

To prove (6) we apply (1) to the operator A(dj). Using the fact that (Az, z)

= [A (&j)z, z ] for z in Gy, we find that

= min μ(z) , (z in CL ) .
J

From U. d U.-+! we infer that the roots are non-increasing. Suppose that v^

= v\t\\ . Denote the common value by v. From the recursion formula for the poly-

nomials it follows that

contrary to the definition p 0 (λ) = 1.

LEMMA 5. The minimum characteristic vector relative to Uy is given by

where

More generally, the characteristic vector belonging to an arbitrary root σ is

obtained by replacing vy by σ on the right in (8). To prove this, let z denote the

vector obtained by this substitution. It is sufficient to show that η = Az — σz

is orthogonal to Cίy; to this end we use the basis in (3). Using the definition of

z and the relations (2) and (3), we find that

-(σ- μo)]\x\2=O,
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τί-i Tl

for

obtain

= — V [PI + I M - ίPiWCσ -Mz) - P H W * ! 2 ! ] =0

Z = 1,2, , j — %. For I — j — 1, the term in p/+t does not appear, and we

ain

I 2

- pj(σ) = 0 .

This completes the argument.

4 The iteration procedure. We shall henceforth be dealing with a sequence

\x } of vectors; with each vector we associate the quantities described previ-

ously for an arbitrary vector x. To indicate dependence upon xι we shall adjoin

the superscript i to the symbols denoting these quantities.

Consider an initial vector x° φ 0. By definition r° [= r{x0)] is the dimension

of u [= d(x )] , the smallest invariant subspace containing #°. Since U =

dr0 (x°), according to Lemma 3 there are r° distinct characteristic roots

λ
0

relative to Q°; and the corresponding characteristic vectors can be normalized

so that

X = Y i + Yo + •••-!- y r o

All vectors considered below will lie in the invariant space G° Henceforth the

symbols λy and yj will denote the characteristic quantities of this subspace.

To specify the iteration procedure at hand we require, besides x°,the selection

of a fixed dimension s > 1. We remark at this point that the significant case is

that for which the dimension of the invariant space &(xι) at every stage exceeds

s; that is,
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(9) (i = 0,1,2, •••) .

To simplify presentation, unless otherwise stated it will be assumed that this

condition holds. The trivial case in which (9) fails will be treated at the end of

this section.

Consider now the s-dimensional subspace Q^ = Us (x°) Relative to this sub-

space there is, by Lemma 3, a unique minimum characteristic vector x° -f rj° with

(x°, τ}°) = 0; call it xι. Now form &\ = ds (xι) and select x2 as the unique mini-

mum characteristic vector relative to this space of the form xι + η ι , (χι

9 rjι) = 0.

In general we define # ι + ι as the minimum characteristic vector xι + Tjι, (xι, Ύ]1)

= 0, relative to the subspace CL£. Notice that these subspaces form a chain in

which successive subspaces of index i and i + 1 overlap in xι ι .

LEMMA 6. The sequence \x \ is given by

(τ,')2 4 l h i ,) 1 ί s ' '

where vι is the least root of p | (λ). Further,

(ID v* = μ ( * i + i) .

i4Zso {v } is decreasing; in fact

(12) λj < vi = v/ < z^-x < ••• < vί = μ{xl)9

where v\ is the minimum zero of ρι. (λ).

By Lemma 3 the minimum characteristic root relative to &ι

s is Vs\ It follows

by the definition of # l + l that the equality (11) holds. The relations (12) follow

from Lemma 4, condition (9), and definition. The formula (10) is (8) of Lemma 5

interpreted for x = xι and / = s.

LEMMA 7. /rc ierms of the characteristic basis of Q° we have

(13) * i = oίy, + ( 4 y 2 + + α ^ y r 0 ,

(14) ξj = a\ pfiλjyi + 4pj(λ2)y2 + ~ + a*op/(\.o)yro

( ί = 0 , 1 , 2 , •••; j = 0 r l , *•• , r l ) .



CHARACTERISTIC VECTORS OF A SYMMETRIC MATRIX 241

where

(15) 1 +
pjj(λfc)

+ +

Furthermore, α^ = 1

(16) 1 = α j < αf < α? < ••• .

Formula (14) follows from (13) by Lemma 2; (15) is a consequence of (13), (14)

and (10) of Lemma 6. To prove (16) we notice that pι. (λ) (j = 1,2, , s — 1)

is not zero, and has the same sign, at Xi and at vι [since by (12) the least root

of the polynomial exceeds these values] . Hence each term in braces in (15) is

positive; this completes the proof.

We conclude the present section with a consideration of the possible failure

of (9). Suppose that for some first value m of i this inequality fails. Then Cί™ is

an invariant subspace, and the minimum characteristic vector xm ι relative to

this subspace is a characteristic vector of A. Thus Gj?1"1"1 is a one-dimensional

invariant subspace containing only multiples of xm ι . It follows that xι = xm ι

for i > m + l But the argument used in establishing (16) shows that xι — Lyχ9
ft

L > 0, for i > m + 1. The theorems to be proved in the next two sections now hold

trivially. We are thereby justified in the assumption of (9).

5 Convergence in direction. We shall first prove that the sequence \xι\

converges in direction; in §6 we shall establish the more troublesome property

of convergence in length.

THEOREM 1. Starting with an initial vector x° ^ 0, and a fixed dimension

s > 1, construct the sequence \x } described above. Then

l i m
\yi

Proof. From (12), the sequence \vι\ is a strictly decreasing sequence bounded

from below by λx . Hence there is a number v such that
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lim V1 = V >

By (12) the smaller root v\ of the polynomial pι

2 (λ ) is not less than vι. Hence

pi{vi) = (vi - μ * ) (Vi - μi) - (t\f>0,

(t})a < (^"'-v'KM-v*),

since μι

0 = μ ( x ι ) = V1""1 [see (2) and (11)] . By (1) there is a constant M, inde-

pendent of i, such that

(17) (ίi) 2 < M(vi"1-vi) .

In particular,

ί ι —> 0 as i —> oo.

Recalling (13), put

Thus

Γ, - Σ 6JτΛ

From (14) and the definition of t\, we have

(*ϊ) 2 = ΓTTi = ( M ) a [ « ( λ i ) ] a + ••• + (bjo)2 [ p i ( λ r o ) l 2 .

Since the sum of squares on the right tends to 0, each term must do the same. But

Pi(λy) = (λy — μ^) - (λj — v1"1) —> (λy — ? ) . From the second equation of

(18), it follows that for some index / we have

v = , | 6 } | — » 1 , 6 } — > 0 for j• £ I .

(The last two conditions follow from the distinctness of the λy.)

We propose to show that I = 1. Suppose I ̂  l Then
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Jnl.JiίL . WL ^ o
IJ-,1 I'll Ml

Using (12), we have

\ < λj < vi < ή 0 = 1 , 2 , •••, s - l ) .

It follows that p*. ( λ ) has the same sign at λ = λ j , λ l f v ι . Furthermore, s ince

by Lemma 3 this polynomial has only real roots , we have

\P}(\)\ > |pj(λ,)|.

Thus in formula (15) each term in braces for the coefficients a\ and αj is positive,

and each term for a\ is not smaller than the corresponding term for α j . Hence,

for all i, we have

| α l 1 | \a\\

By assumption, α£ = 1, k = 1,2, , r ° . We now have a contradiction to (19).

Thus I = 1.

Since a\ > 0 by (16), we have b\ > 0. Hence

6 j — > 1 , 6 j — > 0 f o r j φ \ .

The theorem now follows from the first equation of (18).

6. The main theorem. Before proving the principal result, Theorem 2, we

establish two lemmas.

LEMMA 8. Let 13 be an invariant subspace with lowest characteristic value

\χ having multiplicity one. Then for x ^ 0 in B, we have

( \ X <r 1 l£(*) l 2 , , s^ X
μ{x) ~ λi < T-T- * —:—~— whenever μ{x) < Λ.2 .\χ

Proof. (An alternative proof, applicable to normal matrices, is given by H.

Wielandt [4] .) Write x in the form (4) where y , y 9 , yι is a complete set of

orthonormal characteristic vectors in B. We let

* =x - , μ* = μ(x*) ,
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and

ξ=i(x) ~Ax ~ μx , ξ* =ξ(x*) =Ax* - μ*x*

From (#*, yx) = 0, we obtain

(r,yi)=o.

From this and {ξ , x*) = 0, we obtain

From the definition of ζ , we have

£* = Λ* - αxλiyx ~μ*x

= ^ - (/i* ~μ)x + (/x* - λ ^ α i y ! .

Hence

0 = (^ , x) =~(μ* -μ)\x\2 + (/*• - λ i ) β ?

Also

0<(ξ*. ξ*) = {ξ\ ξ)= | ^ | 2 + ( / x * - λ 1 ) ( λ 1 - A t ) α ?

from the definition of ξ. Eliminating a\ from the preceding equation, we obtain

Since x* £ B and x* is orthogonal to yj, we have

μ* > k2 .

Hence, whenever μ < λ 2 , the inequality of Lemma 8 follows from the second

inequality above.

We shall eventually show that the sequence of lengths \xι\ converges. To do

this we shall require a bound on the ratio |p ι . (vι) | / τ * . . This is obtained in the

next lemma.

LEMMA 9. Suppose that for all i wte have s < rι\ Then there exists a constant

K, independent of i and /, such that for i sufficiently large we have
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|pj(^)l <K(τ/)2 0 = 1 , 2 , •", s-1) .

Proof. By Theorem 1, we have μ(xι) — V1 —* λ1# Hence we may confine

ourselves to is so large that, say,

v ^ - λ , < ( l / 2 ) ( λ 2 - λ x ) .

Consider first / = 1. Apply the inequality of Lemma 8 with x = xι, B = (x°. We

find that

By (11), we have

and

Hence

(20)

as desired.

Let

D

1

λ.2 ~"" μ \xι)

Ip ί i

1
λ2 - vι~

2
<c — •••• ••

λ 2 — kx

t\)2,

( v -

The inequality (20) may be written R\ < K. We propose to show that for some

constant Kι , independent of i and , we have

(21) R) < K^RJ.J2 0 = 2 , 3 , •", s - 1 ) .

This, together with (20), will establish the lemma.

For the remainder of the proof we omit the superscript i. Writing py(λ) as a

product of linear factors, we obtain from (12) and (7) the result that

(22) \p. (y) \<K2\V-Vj\< K2{Vj ~ λj) .
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In order to estimate the last difference we make use of the minimum characteristic

vector z relative to the subspace fly = (xi

9 Ax1, , A}~1 xι).

We have

μ(z) = Vj .

By (12) we may apply the inequality of Lemma 8 with x = z and B = fl°. Thus

where

ξ{z) =AZ~VJZ.

The vector ξ{z) is orthogonal to fly and lies in βy+i By (3) the vector is a scalar

multiple of ξj. To determine the scalar we use (8) and (2). We find that

Since (v* =) v < Vj < Vj-ι, the above coefficient of ξj does not exceed Rj-χ

(= i?l._j) in absolute value, Vj-ι being the least root of the polynomial. Also

U l 2 > I* I 2 , by (8). Thus

( 2 4 )

The combination of (22), (23), and (24) yields the desired inequality (21).

We turn to the main theorem. The theorem has an obvious counterpart for the

maximum characteristic vector.

THEOREM 2. Let A be a real symmetric operator on a real vector space of

dimension n. Given an initial vector x ψ 0 and a fixed dimension s (1 < s < n),

construct a sequence of vectors {x } as follows: let x1*1 be the unique minimum

characteristic vector relative to the subspace &s(xι) of the form xι + Ύ)1, with

(x\ T)1) = 0. Then xι converges to the minimum characteristic vector in flU°),
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the smallest invariant subspace containing x°. Furthery the vector xι ι is given

by (10), and the least root of ps(M converges to λ t , provided (9) holds. (In the

event that condition (9) fails, the sequence \xl\ is eventually constant, as re-

marked in the last paragraph of §4.)

Proof, By Theorem 1, it is sufficient to show that the increasing sequence

\xι | 2 converges. It is an easy consequence of (10) that

l*i+T=UT Π

where

* » • ; .;.,

By a well-known theorem on infinite products, to prove the desired convergence it

is sufficient to verify that Σ ^ = o c converges. By Lemma 9, this requirement is

reduced to showing that each of the ser ies Σ^°=o ( τ . ) 2 converges. For j = 1,

this ser ies converges by (17). There is, a constant X t such that \AX\ < Kι \x\

Using this inequality and (2), we obtain

\η+1\<
Hence we have

< K2+ ή

It follows that for all i we have

ή < 0 = 2 , 3 , ••', s-1) .

The convergence of the remaining series now follows from the convergence for

; = 1. This completes the proof.
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