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I. INTRODUCTION

1. The present investigation originated in an attempt to extend certain re-

sults of Wilder [11] concerning the imbedding of compact metric spaces in local-

ly connected spaces. The means that suggested themselves for the treatment of

the problem necessitated an analysis of the homology group of a compact space

with respect to certain sequences of direct-sum decompositions. In the earlier

part of this paper we introduce the concept of sequential decomposability of a

vector space with respect to a countable set of subspaces. An equivalence be-

tween sequential decompositions is set up with the usual properties. Decompo-

sition theorems with uniqueness properties for elements of the vector space are

noted. In terms of a nonnegative real-valued function on elements of the vector

space, a topology is introduced in which the vector space is a Hausdorff space

if and only if it is metric; the completeness of this space is also discussed.

When the vector space is a complete metric space, there exists a countable set

of elements associated with the sequential decomposition which becomes a base

for the space in the sense of infinite combinations.

Since the homology group of a compact space with coefficients over a field

is a vector space, the preceding results are applicable; conditions are discussed

under which the homology group is a metric space, and further conditions under

which it is complete. The existence problem arising here is disposed of readily

by showing that compact G§ subsets of locally compact lcΓ spaces (see 8.1

below) satisfy the requirements of the preceding abstract situation. This gives

further an intrinsic approach to the existence of a fundamental system of 0-

cycles discussed by Wilder in another setting [13, Ch. VI, §5].

In an investigation of this kind it is often desirable from many points of

view to have a specialized class of objects with a well-defined property; hence

we next occupy ourselves with determining the existence of a fundamental
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system of nontrivial 0-cycles for the sets described above. The existence of

such a fundamental system plays a mildly important role in the sequel.

With this done, the stage is set for a partial solution of the problem whence

arose the whole discussion, and a sufficient condition is given under which a

compact Hausdorff space M is imbeddable as a Gg subset of a 0-lc continuum,

which is obtained by adjoining a denumberable infinitude of disjoint arcs to

M. To improve the value of the preceding result, it is pointed out that the hy-

pothesis of the theorem is verified by a class $ of compact spaces which in-

cludes definitely nonmetric spaces. Using the same technique as was employed

in obtaining the preceding result, we show further that the class $ contains as

a proper subset the class of all compacta. Another condition is given that a

separable compact G§ subset of a space 5 be a subset of a locally compact

subset S'C S. A localization of the preceding condition gives the last appli-

cation of the abstract development.

II. SOME PROPERTIES OF VECTOR SPACES

2. Sequential decomposition. In the sequel all vector spaces will be taken

over a given field, ^ . Let H = {///<.} be a monotonic decreasing sequence of

subspaces of a vector space V such that each IIk is finite co-dimensional [4,

Ch. 2, Def. 2], then evidently [8, Cb. II, (23.1)] there always exists a countable

set of linearly independent elements g = ί gι } of V such that ( i ) g£ = ί gι | 1 <

ί £ i/c ! is a set of generators for a subspace G&, (i i) V is the direct sum of Gk

and Hk, and (ii i) { gi \ i > ί^l C Hk Similarly, if g = { gι \ is a countable linearly

independent set of elements of a vector space V then there exists a sequence H

of subspaces having the properties described above such that ( i ) , ( i i ) , and

(iii) again hold. This pair (H,g) will be called a sequential decomposition of

of V. Evidently g is not unique.

In terms of a fixed sequential decomposition we may obviously [8, Ch. Π,

(23.1)] assert that to each element v £ V there corresponds a unique infinite

linear form which we may denote by

(X) ik

Σ α'g;, where v= ]Γ a1 g. (mod #&)
ί=l i = l

for each positive integer k, α1 C ^ The Σ ι = ι

 α 'gj w iH be called the k-de-

composition (rel H,g) of v £ V. We note that at this stage of the development

it may, and at times certainly will, happen that the same linear form will cor-

respond to distinct elements of V. Evidently if to two elements vl9 v2 £ V9

there corresponds the same infinite linear form, then υι — v2 (mod H^) for each k.
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3. Topology for the vector space . We now define the positive real-valued

function p on the product space V x V, relative to a fixed sequential decompo-

sition ( H , g ) , a s follows: if vl9 v2 C V, then (1) p(vί9 v2) = 1/k for some

positive integer k <=̂=5> k is the largest index such that vx = v2 (mod H^); (2) if

there is no upper bound to the A 's such that vγ = v2 (mod //&), then p(t> 1 ? v2) = 0.

It is quite simple to prove that:

(D p(vl9 v2) = p(v2, vt)

a n d

We note, in view of an earlier comment, that p{vl9 v2) = 0 does not necessarily

imply vι = v2. Hence it is clear that the function p cannot always serve as a

metric for the vector space V. Under suitable conditions this will be possible,

however, as will be noted below. At this stage p may be called a pseudo-metric.

For each υ £ V and each positive integer k, the family of sets of the form

U(υ) = \v'\p{υ',v) < i/k)

will, by finite intersection and arbitrary union, induce a topology for V in which

the family above is a family of open sets. With this topology, V is not neces-

sarily a Hausdorff space [see, for example 8, p. 25]; however, it is readily seen

that in order that V be Hausdorff it is necessary and sufficient that it be met-

rizable by the function p. Then we may write

We shall call (H, g) and (H' ,g ' ) equivalent sequential decompositions if,

when H = {H^ \ and 11'= \ H?}, for each k there exists a / such that Hfo 3 H\ and

conversely. It is relatively easy to show that if (H,g) and (H'» g') are equiva-

lent sequential decompositions and 3 and 3 ' and p and p' are respectively

topologies and pseudo-metrics relative to (H,g) and (H', g '), then, when V is

Hausdorff in both cases, the topologies and the metrics are equivalent in the

usual sense. The proof in this instance proceeds along lines usual in such

cases.

4. A fundamental system for V. When V is a Hausdorff space in the topology

described above, then we may assert the following readily proved properties:
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(1) For any nonzero element α C %, and any v C V, we have p(<Xv, 0) = p( v, 0).

(2) / / ( H , g ) is the sequential decomposition, then lim g = 0.

(3) // (H,g) is the sequential decomposition, and

oo oo

vι = Σ α*Sj α ^ 2̂ = Σ ^ιS(9
1 = 1

χ ^ t>2 < = > &* ^ 6 ι /or some i.

(4) // furthermore V is the complete enclosure [10, p. 28] of the vector space

G spanned by g, then G is dense in V and, in addition to the preceding, to

each infinite linear form Z^O1 g., &ι £ 2 a n d S ^- S> there corresponds a

unique element of V.

When this last property is satisfied, the set g becomes a sort of base for the

space V9 and it will be called a fundamental system for V, With appropriate

particularization, this is identical with the fundamental system of r- cycles

treated by Wilder [13? Ch. VI, §5]. Later results of this paper will give a new

intrinsic approach to the problem of the existence of this system of cycles.

III. HOMOLOGY B A S E S

5. Preliminaries. The homology theory used in this paper is the usual

Cech homology theory, originally formulated in [6], augmented in the sense of

[8, p. 248]. We recall, for later clarity, that if U is a covering of a space, then

the nerve of the covering U, written /V(U), is the abstract simplicial complex

defined as follows: Every element of the covering is a vertex of the nerve, and

for each natural number k every set of k + 1 elements with a nonvacuous inter-

section forms a k-simplex of the nerve. We shall consistently use lower case

Greek or Roman letters to denote individual cycles: thus zτ is an r-cycle; capi-

tals will indicate homology classes of cycles, thus ZΓ; zΓ (U) will denote the

representative on the nerve of the covering U of the cycle zr; likewise if //£ is

a subset of Hr{S,$), then //£(U) is the corresponding subset of the homology

group //Γ(U) on the nerve of the covering U; and so on. Finally, πuv will be

the usual projection mapping. Note that here, as well as later, subscripts re-

ferring to a covering, say U, will be printed as the corresponding Roman letter;

this is done for obvious typographical reasons.

If §}r = { HΓ (U) \ is the inverse system of homology groups, with coefficients

from a field ^j, on nerve complexes for the family of all finite coverings of a

compact space 5, then the limit group is the homology group Hr(S,$) of the
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space 5. The limit group, and also the homology groups of the nerve complexes,

are vector spaces; hence all that has been noted in the preceding section is

applicable here.

In terms of the notation found in [l3> p. 147], huv will be the homomorphism

of HVJ) in //Γ(U) induced by the projection of /V(U) in TV ( U). We shall further

use hu to denote the homomorphism which associates with an element of the

homology group of the space its representative in IIr{ ιX). Evidently, if ιK > 0 > ά

then huw = huvhvw and hu = huυhv .

5.1. DEFINITION. A sequential decomposition (HΓ, ΓΓ) is compatible with

a sequence of coverings | t^. 1 if and only if IIk is the kernel of h

The existence of a sequential decomposition compatible with a given se-

quence of coverings is obvious. Concerning this notion we make the following

remarks which will be used later.

5.2. REMARK. If (HΓ, ΓΓ) and j o^ 5 are compatible, then the sequence of

representative cycles, γr has the following properties: ( i ) the subset of yΓ(L/,:)

defined by \ yΓ( c^ ) | 1 <_ i <_ ij, \ is lirh (that is, linearly independent relative

to homology) on A'( 8^) for each k; and (i i) yj( S&) ~ 0 on /V(£&) for i > i^.

5.3. REMARK. If (HΓ, Γ Γ ) and { &k \ are compatible, and Z[, Z£ C Hr{S, g ) ,

then p{Zr

ι9 Zr

2 ) = 1/k <^> k is the largest index such that z^ - zr

Ί belongs

to the kernel of the homomorphism /ιe, .

6. Metrizability. In the preceding part on vector spaces it was noted that

a necessary and sufficient condition for the vector space to be llausdorff under

the topology introduced was the metrizability by the function p. We shall formu-

late here a sufficient condition that IIr(S, g ) be metrizable in this way. As a

preliminary we introduce the following lemma.

6.1. LEMMA, ( i ) Let there exist for each covering U of S a number k(\X) and

a refinement U > U such that //J, Λ(U ) belongs to the kernel of huu'; and

( i i ) let Γ Γ £ Hr(S, g ) be such that for each k there exists a covering V (k) with

the property that

U'> \)(k) =-;> hvτ
r c V#j[ = Λ£(l)').

Then Γr = 0.

Proof. Let U be an arbitrary covering of S; we must show that huT
r = 0.

Let k{\l) be the number given by hypothesis ( i ) , and U the refinement such

that ^ z / ^ w w ) belongs to the kernel of huu'. By hypothesis ( i i ) , for k - k(\l),
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we have l)(&) such that

U ' > U(A) = > hv,T
r c hv,H

r

k.

Let ID be a common refinement of U and I) (k). Then we have

hUwhwH
r

k = huu'hu''whwH
Γ

k = huuΛu'U
τ

k = 0.

But hwT
r C hwH^. Hence we evidently have the desired result.

We may now state and prove a theorem giving a sufficient condition for the

metrizability of Hr(S, g ) .

6.2. THEOREM. // for each covering U of S the hypothesis ( i ) of the pre-

ceding lemma is satisfied, then //Γ(S, g ) is metrizable.

Proof. Evidently all we need prove is that, for Z^ Zr

2 C Hr(S, g ) , we have

p ( Z [ , Z p = 0 = > Z[ =Z^.Nowp(Z[,Z 2

r ) = 0 implies that Z[ - Z[ € H[ for
each k. But then [13, p. 147] for each covering U of S we have ΛU(Z^ — Z£ ) C

huHk, and thus hypothesis ( i i ) of the preceding lemma is more than satisfied,

so that Z^ - Zr

2 = 0 as required.

7. Completeness. Before establishing the completeness of Hr(S,%), we

introduce the following definition for convenience of reference.

7.1. DEFINITION. A compact space 5 will be said to have property Pτ (rel

HΓ, Γ Γ ) if and only if for each covering U of S there exists an index k = A(U)

such that Hfr is contained in the kernel of hu. A space S will be said to have

the property Pr (rel HΓ, Γ Γ ) with respect to a compact subset M C S, if the proper-

ty described is satisfied with respect to the homology theory of M itself.

The following lemmas are quite obvious.

7.2. LEMMA. // the compact space S has property Pr (rel H Γ ,Γ Γ ) , then hy-

pothesis ( i ) of Lemma 6.1 is satisfied.

7.3. LEMMA. // I) > U and A ' ( U ) and A ' ( U ) are respectively the least

indices greater than 1 for which //£ is contained in the kernel of hv and hu,

then A ' ( U ) > * ' ( U ) .

7 . 4 . THEOREM. // the compact space S has property Pr (rel H Γ ,Γ Γ ) , then

Hr{S, g ) is a complete metric space.

Proof. By Lemma 7.2 and Theorem 6.2, metrizability follows obviously. Let
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I ZΓ S be a Cauchy sequence of elements of Πr{S, ^ ) , and let U be a complete

family of coverings of S. For each lί C U let k(\i) be the smallest index greater

than 1 for which the defining condition of property Pr holds. Let / ( U ) be the

smallest natural number such that for all 5 we have Zr., s — ZΓ , x+ £ //Γ / y We

now let 2 Γ (U) = z Γ ( w ) ( ^ ) ^ ' e s n a l l first show that the zr thus defined by its

coordinates on a complete family of coverings is a cycle.

Suppose U, I) C U such that I) > U; we must show that πuvz
r(\J) ~ z Γ ( U ) .

As a consequence of Lemma 7.3, we need only consider the single case k( I)) >̂

A ( U ) . Under this hypothesis, we have / ( I ) ) _> ; ( U ) , and so we have 2 ; 7 ( U ) ( U ) -

( U ) r ( U ) Γ C / / £ W U ) W U ) U

^ ) . Therefore, as was required, πuvz
r ^{\i) ~ 2 , Γ ( U ) ( U ) . Hence zΓ(U) is

the coordinate on N (\1) of a cycle zΓ as defined above.

We now complete the proof by showing that limi _> 0 0 Z^ = Z Γ . Let n^ be

the smallest natural number such that p(Z^, Z Γ ) £ I/A: (Â  fixed) for all i, j >_

rifc. Let U' be a subset of U such that for l l C U ' the A (U) as defined above

in this proof is greater than or equal to k. Hence/(U) >_ n^, and thus Zr,J\i) —

ZΓ(U) C hu H^ for all ι >̂  h^. Now, in virtue of Lemma 7.3, it is evident that

TJ7 is a complete family of coverings, so that the proof of the theorem is com-

plete.

In this connection we might note the following rather obvious consequences

of the preceding result.

7.5. When the compact space S has the property Pr (rel HΓ, Γ Γ ) , then

(1) for each r-cycle zr of S there exists a unique homology relation of the form

(2) Hr{S, $) is the complete enclosure of the vector space lly (S, §) generated

byΓr;

(3) !ίr

v(S, g) is dense in Hr(S,%);

(4) HΓ(S, 2$) is equivalent to the product space P — Pr x Pr x x Pr x ,

pr _ j p Γ I p Γ

 = α p Γ

? α G ^ ! .

IV. E X I S T E N C E THEOREMS

8. Locally connected spaces. We proceed now to establish the existence of

a situation in which the preceding formal development is completely verified.
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The results of this section will, further, constitute a new intrinsic approach

to the problem of the existence of fundamental systems of r-cycles treated in

[13, Ch. VI, §5].

8.1. DEFINITION. A space S is r-lc at a point x £ S, if and only if each

open set which contains x also contains a pair of open sets, P, Q, such that

( i ) x £ Q C P, and ( i i ) the number of r-cycles on Q that are lirh on P is

finite, A space S, is r-lc if and only if it is r-lc at each x S; and finally

S is lcΓ, if and only if it is p-lc for each p such that 0 ^ p j£ r.

As an immediate consequence of the remarks made heretofore and a theorem

proved elsewhere [13, p. 186, Th. 5.1], we have the following result.

8.2. THEOREM, ( i ) Let M be a compact Gg subset of a locally compact

lcΓ space S, and ( i i) let { Uk \ be a sequence of open sets such that £/& + i C Uk

and ΠUjς — M. Then there exists a sequential decomposition (//Γ, Γ Γ ) of Hr(M9 £$)

such that: (1) φ£ £ //£ <^=> Φ[ ~ 0 on Uk\ (2) } y\ | 1 < i < 4 \ i s a h a s i s

for cycles of M with respect to homologies on Ujς

The sequential decomposition given by the preceding theorem will be called

compatible with the sequence of open sets { Ujς !•

8.3. THEOREM. Let M C S satisfy hypothesis ( i ) , and let { Όk \ and { JJf\

be two sequences of open sets satisfying hypothesis ( i i ) of Theorem 8.2. Let

(HΓ, Γ Γ ) and (H / Γ, Γ Γ ) be compatible sequential decompositions given by the

conclusion of Theorem 8.2. Then the sequential decompositions are equivalent.

Proof. For each k, there exists a / such that U^ D Uj. By hypothesis,

φ ' Γ C H'r = > φ ' Γ ~ 0 on Ό'T and so also on f/& and Hj^ is the subspace

consisting of all classes of r-cycles which have representatives homologous

to zero on U^; hence Φ Γ £ //£, so that H.Γ C H^ as required. The converse

procedure completes the proof that the sequential decompositions are equivalent.

Because it will be used frequently in the sequel, we formulate the following

hypothesis here for convenience of reference.

8.4. HYPOTHESIS. Let M be a compact G§ subset of a locally compact

lcΓ space S, and let \ Ujς} be a sequence of open sets such that U^ 3 ί//c + i an^

ΠίZ/c s= M; further let (H , Γ Γ ) be a sequential decomposition compatible with

\uk\.
We now treat the possibility of obtaining a sequence { S& ! of coverings of

S compatible with a given sequential decomposition.
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8.5. THEOREM. Let hypothesis 8.4 be satisfied. Then there exists a

sequence { £; 1 of coverings of S compatible with a sequential decomposition

(H / Γ ,Γ / Γ ) of Hr(M,%) such that ( H ' Γ , Γ ' Γ ) and (HΓ, ΓΓ) are equivalent.

Proof. Let &! be a covering of S given by a well-known lemma [8, p. 263;

or 13, p. 134, Lemma 8.7], due originally to Cecil, such that ti is a refinement

of a covering U [13, p. 167, Theorem 19.21, such that y[(U), , y\ (I)) are

lirh on /V(U) for all U > U. Let P be the open set containing M such that if

the nucleus of a cell of Λ r (c 1 ) is on / ;, then it is on /!/. There exists a k such

that a subset P* C P has the additional property that U^-γ 2) P*Ώ)l}k Since

//£ consists of classes of r-cycles of M which are homologous to zero on U^9

it is evident that //£ is contained in the kernel of he^ . Let us designate the

kernel of he by // Γ. Since C t > U, we have the following inclusions: Hr I)

kernel of hu D ll'*.

Evidently we may repeat this procedure and eventually obtain a sequence

of coverings { Sy \ of S satisfying the following: (1) only a finite number of

elements of Sy meet M for each /; (2) for each / there exists a kj such that

Hr D Hi.* a n < ^ (3) conversely, for each k there is a j^ such that //£ D // Γ .

Consequently the sequential decompositions are equivalent as required.

9. Existence of a fundamental system. This section will be devoted to

the proof of the existence of a fundamental system of r-cycles.

9.1. THEOREM. Let hypothesis 8.4 be verified. Then the space S has the

property Pr (rel H Γ ,Γ Γ ) with respect to the subset M.

Proof. There exists a complete family U of coverings of S satisfying the

following conditions: (1) if I) G D, then at most a finite number of elements

of I) meet M; (2) there exists an open set P D M such that if the nucleus of a

cell of /V(U) meets P, then it meets M [13, p. 134, Lemma 8.7]. Hence for each

1) G l , there exists a k( U ) such that the relation z Γ ( l ) ) ^ z^(l)) on Ufc implies

that z[( l ) ) ~ zr

2(\]) on M. Since φ £ ( i ; ) £ //£ ( t ; ) implies that Φr

ki<υ) ~ 0 on Uk(υ),

it follows that Φί/V\ ~ 0 on M. This means that ^ί tv\ belongs to the kernel of

hv, and hence S has the property PΓ with respect to the subset M.

9.2. COROLLARY. Under the same hypothesis, hypothesis ( i ) of Lemma

6.1 is satisfied relative to the subset M.

It is now obvious that the result given in 7.4 is applicable here, and hence

the set γΓ = 1 γΓ.\ is a fundamental system, of r-cycles as desired.

As a conclusion to this part we give a necessary and sufficient condition

that a countable lirh set, γr ~ ί y Γ i , of r-cycles of a compact Gξ subset of a
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locally compact lcΓ space S be a fundamental system of r-cycles for the subset

M; that is, Hr(M, g ) is the complete enclosure of the vector space generated by

rr.
9.3. THEOREM. Let M be a compact G% subset of a locally compact lcΓ

space S. Suppose further that γr - \ γr. } is a countable set of r-cycles of M such

that for any open set U containing M at most a finite number of elements of

γr forms a lirh set on U and the remainder are homologous to zero on U, Then a

necessary and sufficient condition that γr be a fundamental system of r-cycles

for M is that Hy(M, g ) , the vector space generated by ΓΓ, be dense in Hr(M, g ) .

Proof. Let { Uk \ be a sequence of open sets such that U^ 2) ί̂A; +1 a n ^ ^Uk ~

M; the existence of this sequence follows from the properties of M and 5. Then

by Theorem 8.2 there exists a sequential decomposition (H Γ ,Γ Γ ) of Hr{M,$)

compatible with ί U^ }.

The necessity follows as an immediate consequence of the remark which

follows Corollary 9.2.

To prove sufficiency, proceed as follows. Let Zr C HΓ(M, g) ; then for 1/k >

0 there exists a W^ G HΓ(M, g ) such that ρ(ZΓ, W^ ) <_ 1/k, which in the present

instance implies that zτ ~ wΓ, on U^. This is true for each integer k9 and hence

we obtain a sequence { Ά^ } C HΓ(M, g ) . By hypothesis, we have

where the on the ]L indicates that all but a finite number of the coefficients

α^ are zero. Now let k2 > kί; then

r r ^"* i T TT

i = ί

and

ft 2

k0 Z—i ko yi

Therefore w\ ~ wΓ

h on ΌL , and since for i > it, we have yΓ ~ 0 on U^, we

have

1 = 1

Σ (4 t - 42)y,r
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B u t t h e \ τ a r e Π r h o n UkΛ f o r i < ύ . , a n d h e n c e a ) = α ί f o r i < i k . C o n -
' I 1 — 1 rC i K 2 — 1

tinuing this argument, recalling the completeness, and applying Lemma 6.1, we

have 7/ = lirn^.^^ l̂ Γ, and the proof of the theorem is complete.

V. N O N T R I V I A L 0 - C Y C L E S

10. Special fundamental system. In this part, we ultimately establish the

existence of a fundamental system of nontrivial 0-cycles [13, p. 142, Def. 11.4]

for compact Gg subsets of a locally compact 0-lc space. It has been shown

[6, p. 168; or 13, p. 142, Th. 11.51 that if x and y are distinct points of a compact

space, then there exists a nontrivial 0-cycle carried by them. We now prove the

following lemma.

10.1. LEMMA. // S is a compact space, then for any covering U of S9 and

0-cycle 2°, there exists a refinement U > U, and a set of nontrivial 0-cycles

carried by pairs of points, γ®, y°, , γ?9 such that

Prooj. Let I) be an irreducible refinement [8, p. 247] of U. Then on /V(U),

we have

2 ° ( U ) = aUΎiι - Vi2)+ o?{\'i2 - Vh) + . . . + o.k~HVlk_x - Vik)

For each V[ C I) there exists a pi C \\ such that p̂  ^. Vh if Ϊ 7̂  ^ For each

m. let v° be a nontrivial 0-cycle carried by p U P . Obviously γ° (I)) =
' m f m *m,+ 1 •

to £ . = ι ^ Ύ° ( ̂  ) O n ^ ( U )

11. Existence theorem. The proof of the existence theorem now follows.

11.1. THEOREM. Let M be a compact G§ subset of a locally compact 0-lc

space S. Then there exists a fundamental system of nontrivial 0-cycles carried

by pairs of points oj M satisfying hypothesis 8.4 for r — 0.

Proof, Let ί 8/j. j be a sequence of coverings of S composed of connected

open sets such that the part of 8^ that meets M is finite and further Sjc + 1 > 8&

If rifc is the number of components [see 8, p. 15] of the subcollection of c/f that

meets M, then we have n/ς <^ rc/c + i Since M is a Gg subset of 5, then the se-

quence ί fcjς \ can be so selected that, with E£ denoting an element E^ £- C^
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such that Ek Π U φ 0, we have U£f D U£f+ 1 and Π(U£f) = M.

Let ί p ! (/ = 1, , riγ) be points of M such that for /L φ j 2 , p. and p. be-

long to distinct components of S t Π Λ/. Then there exist rct - 1 nontrivial 0-

cycles of M with coordinates on the coverings C1 Π M forming a lirh set on

N{Cγ Π M) and consequently on any 8 Π M, where £ > S j ; hence the cycles

themselves are lirh on M.

For C2 Π M, when n2 > ni9 we may add n2 — nx nontrivial 0-cycles to this

collection in such a way that they belong to the kernel of he^, but have coordi-

nates on £ 2 Π M which together with the previous set form a lirh set.

A continuation of this process yields a countable lirh set of nontrivial 0-

cycles, y° = { y? !, which together with a sequence H° of subsets of H° (M, g )

gives rise to a sequential decomposition (H°,Γ°) compatible with both { £& }

and ί Ufc }, where Ufa = Uiί^ . This latter follows since yj, , y? is a basis

for cycles on M with respect to homology on t/^, for the covering S^ Π M is

composed of connected open sets, and coordinates of y? (ί = 1, , i^) form

a maximum lirh set on Ejς Π M. Thus by Theorem 9.3 it remains only to show

that the vector subspace //p (/If, $ ) , generated by Γ°, is dense in H°(M,%).

If this is not true, then there exists Z° C H°(M,%) such that p(Z°,

Hγ(M9 g ) ) > 0. As in Theorem 9.3, for some k > 0 the cycles z°, yL

0, ••• ,

y? are lirh on ί/̂  Wherefore [13, p. 167, Th. 19.2] there exists a covering U of

the space such that z° (I)), y^ (I)), . . . , y ^ (I) ) are lirh on ΊJk for all I) > U.

By Lemma 10.1 we have the existence of a refinement I) > U such that

7 = 1

α/u,°(U), ( α / " G g , ^ finite),

where the tf? ( I ) ) (/ = 1, , s) are coordinates on N ( I ) ) of nontrivial 0-cycles

M;9 of M carried by pairs of points. Since the w? are homologous to a linear

combination of the y? on Ufa (i = 1, ••• , ι&), we may say the same about the

coordinates on /V(u), namely

Thus we have the homology on U^,

in contradiction to what was noted above. I fence //£ (/If, ^)» a s required.



HOMOLOGY BASES WITH APPLICATIONS TO LOCAL CONNECTEDNESS 2 0 3

VI. A P P L I C A T I O N S

12. Related results. As announced in the beginning, the origin of the pre-

ceding results lies in an attempt to investigate the problem of imbedding com-

pact spaces in locally connected spaces. Problems of a related nature have

already received the attention of various authors. References to these may be

found in Wilder [ l l ] ; in the latter paper necessary and sufficient conditions

are given under which a compact subset of a metric space may be made con-

nected and locally connected by the addition of a set of nonintersecting open

arcs with diameters which form a null sequence. Another result in this direction

was that of MacKay [9], according to which a peano continuum may be made

1-connected and locally 1-connected in the sense of homology by the addition

of a denumerable set of nonintersecting open 2-cells with diameters forming

a null sequence.

13. Preliminary remarks. By application of the formal results obtained in

the earlier parts of this paper, we are able to obtain a partial solution of the

imbedding problem which gave rise to this investigation. Before proceeding to

the first theorem we set down the following notation.

13.1. NOTATION. If y° is a set of nontrivial 0-cycles carried by pairs of

points of a space S, and V is an open set contained in 5, then by y° Π V is

meant the collection of 0-cycles of y° whose entire carriers are subsets of V,

14. A sufficient condition. A sufficient condition for the imbeddability of

a compact Hausdorff space in a 0-lc continuum is given by the following theo-

rem.

14.1. THEOREM. Let M be a compact Hausdorff space and let y° = j γ? \ be

a countable sequence of nontrivial 0-cycles carried by pairs of points of M,

respectively p. U p , such that: ( i ) H° (M, ^ ) is a Hausdorff space in a

topology induced by a sequential decomposition ( H ° , Γ °), where γ ° is a sub-

set of γ°; ( i i ) if 8 is any finite covering of M, then diam (p. U p ) < & [13,

p. 106, Def. 3.5] except for at most a finite number of i; ( i i i ) if U is any open

set of M and p €1 U, then there exists an open set V, p £ V C U, such that

H°(V, ^) satisfies hypothesis ( i ) in terms of a subset of y° Π V (in place of

y° ). Then M is imbeddable as a C§ subset of a 0-lc continuum formed by the

union of M and a countable set of arcs.

Proof, Let { aι \ be a countable collection of disjoint open arcs adjoined to

M such that the end-points of α/ are p. and p. . Let W be the set composed

of M U A, where A ~ Uα;. We shall topologize /»/' as follows: if U is to be an



204 EVERETT LARGUIER

open set of Λ/', then U = ί/* U F*, where ί/* is an open subset of M by its origi-

nal topology, and V is an open set of A, where A is topologized by the con-

vention that every open set of an αt is open in A. The set V may be empty if

and only if U C M — P, where P is the set composed of all carriers p. U p.

ί/* may be empty under any hypothesis. If ί/* Π P ^ 0, then F* mαsί contain

all but at most a finite number of entire arcs αt such that piχ U p 2 C P , and

complements of closed subsets of the remaining finite number, and it may also

contain other sets open in A, For each αt such that only one end-point, say

p ί χ , is in U , V' must contain an open subset of α"; containing p ^ .

(a) M' is a compact ilausdorff space containing M as a compact G§ subset.

In order to show that M' is Hausdorff, it seems evident that we need only verify

the separation axiom, and that only for points of P; the other possibilities have

obvious verifications. Therefore let qχ and q2 be two distinct points of P. Since

M is compact Ilausdorff and hence normal, there exist sets Uγ and U2 such that

Uγ Π U2 = 0 and <71 C C\ and <72 £ ί/2 These sets will correspond to the

ί/*'s of the open sets of Λ/'. The only difficulty in selecting suitable F 's comes

when Uγ and U2 are such that, for a carrier (p. U p ) of some cycle, we have

p. £ Ui and p. £ ί/2 Since Λί is normal, there exist open sets U[ and ί/̂

such that U{ Π £/2' = 0, Uι C £/x', ί/2 C Ό'2. Let Uζ = M - (Ux U U2); then

U• = ( ί/̂ , U29 f/3 ) is a covering of Λ/, and hence by hypothesis we have diam

(p i ]L U p ί 2 ) < W except for at most a finite number of carriers, (pix U Pl2)>

such that piχ C £/x and pi2 C ί/2. For such a carrier α* can be a closed in-

terval of αf separating p^ and p̂ . on "α/; and then Oj -"«* = OĈ  U Cί^, two dis-

joint open sets such that piγ £ Ct̂ . and p. ζ^ α ^ It should now be evident,

without further elaboration, that the disjoint open sets V and V 9 the sets

corresponding to the V* of the defining topology, may be chosen so that disjoint

open sets of W can be constructed which contain qχ and q2 respectively; and

so M' is a Hausdorff space.

The identity mapping is here also a continuous mapping, and hence M as a

subset of M' is compact. Let S be any covering of Λί'; then a finite subcollection

of 8 covers M. By the topology of the space Λί', at most a finite number of arcs

α; are not completely contained in this subcollection of S The closures of

these arcs are also compact subsets of /I/', and hence evidently there exists a

finite subcollection of 8 which covers Λί', so that M' is a compact Ilausdorff

space.

Evidently, if γ*® is the countable subset of hypothesis ( i ) , the H° of the

sequential decomposition can be chosen so that if Hjj. + G£ = Hr(M, £ξ), direct,

then Γ\° (i = 1, 2, , k) is a base for G^. This selection merely simplifies

the construction of the next paragraph.
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We proceed now to the construction of a collection of open sets j Qk \ with

which (H°,Γ' °) will be compatible; incidentally, it also shows that M is a

Gg subset of M'. Let fm be a fixed homeomorphism of the open interval 0 < x < 1

onto the open arc am. Then if [am:2 ] denotes the complement in am of the set

fm (Ux I l / 2 ί + 2 < x < 1 - l / 2 ί + ι ) , we shall denote by Ak the set defined by

U ( a m u [ a k : 2 k ] u - . - u [ α ι : 2 * ] ) .
m > k

This will be the complement in A of a subset closed in M' and contained in A,

so that we may in this way construct a countable collection { Qk = M u Ak \ of

open sets closing down on M with the property that Qk Ώ> Qk + ι By the topology

of the space M' and the construction of { Qk }, we may readily see that, with

respect to this collection of sets closing down on M9 the sequence y'° of 0-

cycles on M is such that γ'° ~ 0 on Qk for ί > k. Furthermore, from the proper-

ties of the sequential decomposition ( H ° , Γ / 0 ) , it is evident that either ίy^0!

(1 <_ i <_ k)9 or a subsequence of it, is a base for 0-cycles of M relative to

homology on Qk Hence the desired compatibility is established, and in sub-

sequent parts of the proof it will be possible to apply Theorem 9.1.

(b) W is connected. Now let z° be any 0-cycle of Af'. By Lemma 10.1, for

any covering V there exists a refinement I) > U such that

where the g? (I)) are coordinates on the covering I) of nontrivial 0-cycles carried

by pairs of points. We must show that z ° ( l ) ) ~ 0. This will amount to showing

that each g?(D) ~ 0. Consider now the nontrivial 0-cycle g? carried by the

pair of points q. u q there are three possibilities that must be taken into

account.

Case 1: q.9 q 2 C M Under this hypothesis, by Theorem 9.1 and 7.5 (1)

there exists a unique homology, g° ~ ΣT=ι al^/°* ^ ^ n c e y/° ^ 0 on 11' for

all i, then, as a consequence of Corollary 9.2, the complete hypothesis of Lemma

6.1 is satisfied, so that g? ~ 0 on M' as required for the connectedness of I/'.

Case 2: q γ9 q 2 £ A. Suppose q. C am

 a n <^ a

2 ^- an* Then evidently

#? ^ 2° , where z° is a nontrivial 0-cycle carried by a pair of points, n U

pnί (there are points of the carrier sets of 0-cycles in y°). I^ence z®ιn is a

0-cycle of /!/, and we may proceed as above with the same result.
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Case 3: q.γ £ M and q 2 £ A. If q 2 £ α., then g? - z ^ - z*χ9 where

z^. is a nontrivial 0-cycle carried by the pair q. U p , and z° is a nontrivial

0-cycle carried by the pair p. U q . Evidently z® ~ 0 on A/'; hence g? ~ z°.

on A/', where z°. is on A/ Again we may proceed as above with the same result.

Thus we have shown that in all possibilities we have g? (I)) ~ 0 on A?',

so that the space M' is connected.

(c) The space M' is 0-lc. To examine M' for 0-local connectedness, it is

evident that we need only investigate neighborhoods of M Let p £ M C A/'; and

let U be any open subset of Af containing p. Then by the topology of M'9 we have

U = U* U F*, where p £ ί/*; further, by the hypothesis, there exists a £/* C U*

such that H° (U*,$) is a Hausdorff space under a topology induced by a se-

quential decomposition based on a subset of γ° Π U^. Let K* be a set con-

tained in V such that V C {/, and containing all but a finite number of entire

arcs a( corresponding to carriers of the subset of y° Π U just above, and com-

plements of a( of closed intervals of the remaining finite number. Then Uι =

Uι U Vι C ί/ Let A; be the finite number of arcs α; such that the entire arc

fails to belong to V'. Then for any covering U (by the same process as was used

above in proving the connectedness of A/'), at most 2k 0-cycles of Uι are lirh

in {/; hence by 8.1 the space M' is 0-lc.

15. The class S. In order to improve the value of the preceding theorem,

it is desirable that the class K of compact spaces which satisfy the hypothesis

includes, in addition to all metric spaces, a definite nonmetric space. This is

partially accomplished by showing that the nonmetric compact Hausdorff space

of Alexandroff-Urysohn [used in another problem, 1, p. 76] fulfills the require-

ments of the theorem; details of this procedure are tedious, though not difficult,

and will not be given here. Using practically the same technique, we can show

that the class of all compacta is a subset of S. Of course this last result yields

immediately the conclusion that every compactum is imbeddable as a compact

G§ subset of a 0-lc continuum formed by the addition of a countable set of arcs;

this is also a corollary of the Urysohn theorem on the imbedding of such spaces

in the Hubert parallelotope.

16. A necessary condition. In giving a necessary condition, we shall

restrict ourselves to separable1 compact Gg subsets. Incidentally, we might

remark that the Alexandroff-Urysohn nonmetric space, referred to above, is

separable; this indicates that the restriction imposed does not limit the spaces

1 Because of the occasional variety that is observed in the use of this term, λve note
that in this paper a separable space λvill be one having a countable dense subset.



HOMOLOGY BASES WITH APPLICATIONS TO LOCAL CONNECTEDNESS 207

to which the theorem is applicable too sharply. As an immediate consequence

of an obvious lemma and a theorem due to Wilder [13, p. 143, Th. 11.10], we may

state the following theorem.

16.1. THEOREM. If S is a compact 0-lc space, U is an open set of S, and

p> g £ U, such that a nontrivial cycle carried by p u q bounds in U9 then p u q

lies in a connected 0-lc subset of U.

The necessary condition is given in the following theorem.

16.2. THEOREM. Let M be a separable compact Gξ subset of a locally

compact space S, If M is a subset of a 0-lc open subset of S, then there exists

a countable γ° = { γ? \ of nontrivial 0-cycles of M carried by pairs of points

such that: ( i ) if p £ M and U is any open set containing p, then there exists

a V (C U, p £ V, such that a subset γ® of γ° Π ( V Π M) gives rise to a se-

quential decomposition (H°,Γ^) which induces a Hausdorff topology in H° (V Π

M9 F); ( i i ) all but a finite number of carriers of the 0 -cycles of γ°, for any open

set P 3 V Π M9 are contained in 0-lc connected open sets of P.

Proof. Let M be a countable dense subset of M, and let y° be the collection

of all nontrivial 0-cycles carried by pairs of points of M . Let p be an arbitrary

point of M, and U any open set of S containing p. Then U = U Π M is a compact

subset of M. We may then select a set F, open in M, containing p and such that

v c u n M.
Consider now a countable family of coverings { 8/ i, relative to the 0-lc open

subset of S containing M, each consisting of connected open sets and such that

the portion on V of any 8/ is the star-closure refinement2 of all its predecessors,

and further such that if C{ is the number of components of the covering £/ Π V =

8̂ . , then Cj > Cj for i > /. We shall now select a sequence of points of V Π Λ/*

as follows: let the components of 8 be arbitrarily ordered, Cl9 C2, ••• , Cc

then the components of 8 2 are indexed CCι+l9 ••• , Ccί+c2, *n such a way that

those which are contained in Cx are indexed first; then the indexing proceeds

to those of the remainder contained in C2, and so on. A continuation of this

process gives a countable sequence of elements, C = ! Cj S. Now in each element

Cj choose a point, pj C V Π M , in such a way that (1) at most one py £ C&

(/ £ k), and (2) when a previously selected Pj £ C^ (/ < h), then the selection

of a new p^ is omitted. With pairs of p ' s as carriers, we may associate nontrivial

0-cycles y°, carried by the pair pj (J pk, where the pairing is made as follows:

if 8j is the first covering of the sequence of coverings \ 8/ !, such that pj and

2If St (I), I)) is a closure refinement [l3, p. 133, Def. 8.5] of a covering U, then I) is
called a star-closure refinement of IL
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p, belong to distinct components of Cj, then p is paired to p̂ . if and only if

they belong to the same component of E-i-i', this will give us a countable ordered

subcollection γ® of y° Π V, the elements of which have the following properties:

(1) the set γ® is lirh on V, (2) for any covering Cj, the coordinates of the first

C( — 1 of the 0-cycles are lirh on the covering C; and form a basis for homology

on the covering, and the remainder are homologous to zero. Consequently we may

show in a way similar to that used in the proof of Theorem 11,1 that this col-

lection gives rise to a sequential decomposition which induces a Hausdorff

topology in #°(F, g).

The remainder of the proof follows easily. By a theorem due to Begle [2,

p. 63] all but a finite number of 0-cycles of the collection γ® bound in P, so

that by Theorem 16.1 all but a finite number of the carriers of the 0-cycles of

this collection are contained in 0-lc connected sets of P.

Since the 0-lc property is a local characteristic of a space, we could give

an obvious localization of the preceding result with the natural satisfaction of

aesthetic completeness.
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