TRANSLATION INVARIANT MEASURE OVER SEPARABLE
HILBERT SPACE AND OTHER
TRANSLATION SPACES

F.H. BROWNELL

1. Introduction. We consider the problem of defining a nontrivial, transla-
tion-invariant Borel measure over real separable Hilbert space. As noted by
Loewner [ 4], this is not possible; but instead of relinquishing as he does the
real number system for a non-Archimedean ordered field for the values of a
““measure,”” we shall consider several topological subspaces of Hilbert space
arising frequently in analysis. These are locally compact; and using either the
Kolmogoroff stochastic processes construction [2], or else following the Haar
measure construction [ 1]orl 5], we can get a nontrivial, essentially translation-
invariant Borel measure. However, since the special subspaces considered are
not groups under translation, and do not even contain a group germ, the usual
Haar measure construction must be modified in a special fashion, and the pre-
cise translation invariance obtained is somewhat restrictive. Actually we carry
through this modified Haar measure construction for the more general situation
of a locally compact translation space, which is defined as an appropriate sub-
space of an Abelian topological group. The results are collected in a summary
at the end.

2. Formulation of the problem. I.et

Ly ={x =txy} | Y (%)% < +0, %, real},
n=1

the square summable real sequences and thus the real separable Hilbert space
prototype. Since 4, is a subset of R, the countably infinite Cartesian product
of the real line (-, ), we have available on 4, as well as the 4, norm metric
topology also the product topology defined relatively from Re.. Under these two

topologies we shall consider the {,-subsets
X=1{x €4, | [%a] < h(n) forall n},

Received August 4, 1951,
Pacific J. Math. 3 (1953), 531-553
531



532 F. H. BROWNELL

Y =i{x € 4, l z ]xj]2_<_ f(n) forall n},

j=n

where f(n) and h(n) are specified functions defined over the integers n > 1
with values real or + o having A(n) > 0 and f(n) > f(r+1) > 0.

Let Z = X or Y; we want to define the Borel class of subsets of Z. The open
intervals of Z are defined relatively from the elementary open intervals of R,
and so we can define 3 as the o-algebra of subsets of Z generated by the open
intervals, 3, as that generated by the product-topology open sets, 3, by the
metric spheres, and B, by the metricly open sets. Actually B, = B, = B; = B,,
and will be denoted by B and called the class of Borel subsets of Z. To see
this we note first by using the rationals that R and hence Z has a countable
basis of open intervals, so B, = B,. Similarly B, = B,, since 4, and hence Z is
a separable metric space and thus has a countable basis of spheres. Since any
product-topology open set is clearly open metricly, B, C B,. Now it is easy to

see that any closed sphere
S=1x €2 [ [lx-yll < ol

is actually closed in the product topology. Since any open sphere is a countable
union of closed ones, B, C B,. Thus B, = B, makes B, =B, =8B, =8,, as
desired.

Define

[A+u] ={x € Ry l (x—u) € 4}

for u € R, and for any subset 4 of Ry. We note that » € Z and 4 C Z do not
always make [A +ul C Z if Z # 4,. However, if A € B and u € R then
[A+ulnZ € B. For

S=1{4|[4+ulnzZ € B}

is easily seen to be a g-algebra containing the intervals of Z, so B =18, C &,

which gives the result.

Our problem is to find a Borel measure ¢, that is, a nonnegative extended
real set function defined and countably additive over B, which is nontrivial
(Condition I) and translation-invariant (Condition II or I1”) according to a speci-

fied topology.

CoNDITION I. ¢(Z) > 0 and (V) < +w for some nonempty I open in
the specified topology;
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ConpITION II. ¢ ([4+u)) = p(A)if AEB, u € 4,, and [4+u] C Z;

ConpiTioN 11, a) ¢([4+u]) = ¢p(A)if 4 €8, u €4,, 4 C V, where
V and [V + u] are both open subsets of Z.

b) ¢([4+ulnZ) < d(A)if u € 4, and both 4 and

[4 +u] nZ are open subsets of Z.
Condition II clearly implies II’, and hence is a stronger requirement.

3. Negative results. We shall start with a few preliminary lemmas. First

define
S(Z, %, p) = {yC Z ‘ lx =y [l <pl,
the p-radius open Z-sphere about x.

LEMMA 1. For any real r > 0 there exists no nonnegative, finitely additive

set function ¢ over the Borel subsets of
Z=Y=5(4,,0,0),
satisfying 11’, (or thus 11 also), under the metric topology such that
0 < ¢(S(4y,0,p)) <+ for 0 <p < 1.
Proof. Let
px = lpxj} €5(4,,0,r)

by defining px;j = 0 if j # p and pxp = r/2 for integer p > 1. Let
1
Vp= S /ﬂz,px’ Zr ’

so that V, C S(4,, 0, r); and Vpnly= ¢ for p # q follows from

V2-1
2

r>0

y =311 2 1l px = gl _z(ir)z

fory € Vp and y* € V,. But 11" under the metric topology makes

d(Vp) = ¢(S<Jd2, 0, %r)) =b
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with 0 < b < +w. Thus

N
S(4y,0,7)> U V,,
p=1

and finite additivity of ¢ yields the contradiction

N
0<Nb= 3 ¢(Vp) < ¢(S(4;,0,1) <+
p=1

for arbitrary integer N. Thus such ¢ cannot exist.

LEmMMA 2. If

0 < inf h(n) for Z=X,

n>1
or if

0< inf f(n) for Z=Y,

no>t

then for any x € Z and p > O there exists some z € Z and p’ > 0 such that
S(/€’2’ 2, P') g_ S(Z’ X, P)-

Proof. For the given x € Z choose some N > 1 so that

) 2
Z (x])2 S.('I'P) ’
JEN+1 3

possible since x € £,. Define

¥ = (yp sy = PO EE,

as the projection of 4, onto Euclidean N space Ey. Clearly P(Z) is a convex
set with a nonvoid interior in £y including the origin; so we can find an interior

oint z’ on the line-segment from x°= P (x) to the origin so that
P gm 8

N 1 2
> (zn~xn)2<(—p) .
n=1 3

Define z € 4, so that z”= P (z) by taking z, =0 for n > N + 1. Thus
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n=1 n=N+1

N o 1/2 Pl
l\x—z|\=[z (zp %)%+ Y x:] vz

Let

by = inf h(n) > 0 for Z = X,

n>t
or

1/2
b = [ inf f(n) >0 for Y.

ny1
Now if Z = X, by choosing p”* > 0 so that p** < b, and
S(Ey, 2%, p”) C P(2),
as we may since z’ € int P (Z), we get
S(Ayz,p") C Z.

If Z=Y, then z° € int P(Z) makes

(2))? < f(n)

™M=

]
Q2

]

for 1 <n < N, so here we choose 0 < p”* < b, and

N /2
p” < minN ([f(n)]ln—lz (z]')2 .
j=n

1< n<

Thus

%) 1/2
> (yj)Z] <y =zl +{
j=n

N 1/2
Z(z}.)zl < f(n)forl <n<N,
j=n

and

o0 1/2
> (yj)z] <|ly-zl| <by < f(n) forn >N + 1,
j=n
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makes S(4,, z, p**) cY=2.
Thus

’ L ( tdd 3_v7)
p’=min| p”, 3 pl >0

yields
S(’FQ, z,p’)C Z nS(/fQ, x,p) = S(Z, x, p)
as desired, since

3-v2

Hy-zl| <

makes
Hx-yll < Hly=zll + [lx=z[] <p
because ||x— z|| < (2/3)p.
THEOREM 3. If

0 < lim inf A(n) with Z =X,

n-— oo
or if

0 < liminf f(n) with Z=Y,

n— oo

then there exists no Borel measure ¢ on such Z which is nontrivial (1) and

translation-invariant (I1’) under the norm-metric topology.
Proof. Set

by = inf A(n) if Z=1X,

n>t
or

by = [inf f(n) V2 5t Z2=Y;

n st

thus clearly b, > 0 is required by hypothesis. Obviously
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S(Z,0,p) =S(4, 0, p)
for 0 < p < by, so the metricly open set
S(Zyx, p) = [S(4,0,p) + x10Z=[5(Z,0,p) + x] nZ

for such p. Hence if ¢ exists, then ¢ (S(Z, x, p)) < $(S(Z, 0, p)) by Con-
dition II’b) for x € 4,, 0 < p < b,.

Now set
b, = infiall p > 0 such that $(S(Z, 0, p)) > 0},

so ¢(S(Z,0,p)) > 0 for p> by, and =0 for 0 < p < by if b; > 0. Actually
1 = 0. For if not set § = (min by, b,/2); then Z, being separable, is a count-

able union of spheres of radius p < 8. But such spheres have

(;b(S(Z’ X, P)) _<_ ¢(S(Z’ 0, P)) = 0’

implying ¢(Z)=0 by countable additivity, which contradicts Condition I
Thus b; = 0 and ¢(S(Z, 0, p)) > O forall p > 0.

We want to show that ¢(S(Z, 0,r)) < + for some r > 0. By Condition I

under the metric topology and Lemma 2 it is clear that there exists some r > 0

and z € Z such that

S4,, z,7) C Z and é(S(Ayy 2, 1)) < +00.

Since S(4,, z, r) C Z, it is easily seen for either X =Z or ¥ = Z that we must

have r < b,, and hence
Z 2 S(4,0,1) = S(Z,0,r).

Thus [S(Z, 0,r)+ z] = S(4,, z, r), an open subset of Z, so Condition II’a)

makes

#(S(Z,0,r)) = $(S(Ay, 2, 1)) < +00.

Thus

0 < ¢(S(Z,0,p)) <+

with S(Z, 0, p)=S(A,, 0, p) for 0 < p < r for some r, 0 < r < by, which is

impossible by Lemma 1. Thus the stated ¢ cannot exist.
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We also easily get the following considerably weaker result for the product
topology.

THEOREM 4. If {n | h(n)=+w} is an infinite set, then there exists no
Borel measure ¢ on X which is nontrivial (1) and translation-invariant (I1°)

under the product topology.

Proof. Let V be any nonempty open interval of X. It is clear that by trans-
lating along each of the finite set of coordinates given in the definition of the

interval ¥, we can find a finite or countable set of px € £, such that

(v + px] C X and X= U [V+px].
p=t

Also Condition II1”a) makes ¢(V + px) = (V) if ¢ exists. Thus ¢(X) > 0
for nontriviality yields by countable additivity ¢(¥) > 0 for any open intervall
V 94 ¢-

Now Condition I under the product topology implies that some open interval
Vo # has ¢(Vy) < +aw, so 0 < ¢(V,) < +w. Since V, is defined in terms
of only a finite number of coordinates, and {n ‘ h(n)=+ow} is infinite, there

must exist some p so that x € V,, imposes no restriction on the pth coordinate
of x. Let

Wo={}’€Vo“)’p|<1}-

a nonvoid open X interval, so ¢(Wy) > 0. Let 0zj = 0 if J#ps 02p=1, so0
clearly {[Wy + m¢z]} form a disjoint union of sets C V, for different integer

m, with
d([Wy +moz]) = (W)

by Condition II“a). Thus

m=1 m=1

+oo= 2 (W) = qs( U [W + mOZ]) < ¢(Vy) < +00,

which is a contradiction. Thus ¢ cannot exist.

We remark that 4, = X by taking A(n) = +w, so Theorems 3 and 4 show that
there exists no Borel measure ¢ on 4, which is nontrivial and translation-

invariant under either the norm metric or product topologies.
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4. Positive results via Kolmogoroff. We want to give conditions under which
an invariant measure does exist on X or Y, getting a converse of Theorem 3. For
X we shall use the construction of Kolmogoroff [2, p.27] of a probability mea-
sure P over real product spaces, in our case R.. Here we need a family Q of
real set functions, each member (p ..., n, being nonnegative and countably
additive over the intervals of Ej, with coordinates indexed n;, «-., n,, and
having Op, ..., 0, (£,) = 1. The family @ is assumed to satisfy Kolmogoroff’s
two consistency conditions:

in’..,’ n, (-'(X), +o3 (12, bZ; cee s ay, bk)=()n2"..’nk(a2, bZ; cee s ay, bk)’

H . = ’ eese ! ’ ’
Qn "’,nk(al’ bl""yak’ bk)_in’,-o-, k’(a b ,ak,bk),

where n/ i=np ‘=a., b =b. for n’ ---,nk a reordering of CAPRERIN The

1 ?
resultmg P has P ()= Q(l) if the interval / is the cylinder set by n,eee, m of
the interval I of Ek’ P being the Borel-Hopf extension [1, p.54] of Q from the

intervals to the Borel sets.

THEOREM 5. If

Z [A(r)]? < +00

n=N+1

for some finite N, then for X the product and metric topologies coincide, X being
locally compact; there exists a Borel measure ¢ which is nontrivial (1) and
translation-invariant (1) on X; and such a measure is unique up to constant

factors.

Proof. The stated condition on h(n) makes the equivalence of the topo-
logies over X obvious, as well as local compactness. Let X’ A,, and RS be
defined like X, 4,, and Ry, except only with coordinates of n > N+ 1, so
clearly

X =4, xX,

where Ay is an interval of E,. Construct the Borel measure P* on R by the

Kolmogoroff construction from
k 1

Qu v (g s ee s b)) = 1

— E(n;, aj, b)),
T » My 17 71 k o Zh(n ) Ny ajs
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where E(n, a, b) is the length, possibly zero, of the interval of intersection of
[-A(n), A(n)] and [a, b]. This Q-function family has in,...’ nk(Ek y=1,
has Q countably additive since it is a multiple of k¥ dimensional Lebesque mea-

sure, and satisfies Kolmogoroff’s consistency conditions as needed.

Let

Vo= ix € RL | |xp| > A(p)}

open in RS ; clearly

P*(Vp)=Q(Vp) = (E(p, ~, ~h(p)) + E(p, h(p), + ®)] = 0.

2h(p)
Now
X' =(x€ 45 | || < b(n) for n> N+1};

and the given condition on k(n) makes it possible to replace £, by R, in this
formula, so that

X”:Ro’o"' u I/py
p=N+1

which is in the Borel family B* of RZ. Thus P*(X") = P*(R.) =1 follows
from P'*(VP)= 0, and X’ is thick in RS (see [1, p.741). Hence P (4 nX’)=
P*(A) defines P uniquely over sets A nX’, A € B*, which form the Borel

family B of X’ so P is a Borel probability measure on X’ with P (I nX’) =
Q.

Of pp is N-dimensional Lebesque measure, ¢ = p, x P is a Borel measure
on 4y x X =X Also

$X) =y (4,) > 0,
and we obtain
$(B x X*) = py (B) < +w

for open bounded £, intervals B C A, by using P(X")=1, and thus ¢ is non-
trivial (/) on X.
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We want to show ¢ to be translation-invariant (II) on X. If W is any X-
interval, then W = X n I with I an Rec-interval, and if u € 4,, set
B, = {x € Re | | %] < h(p)},

p =

=1

n
Cn=ln( ﬂ[BP-—u])nX,
P

and
D, =ll+ulnXnl N [B,+ul],
p=1
so that
d(WnlX-ul)=p(Un[X-ulnX)= lim ¢(C,;)
and

H([W+ulnX)=d([I+ulnXnlX+ul)= lim (D).

n— oo

Now the first n coordinate edges of D, are those of C, translated by the cor-
responding u coordinates. Thus taking n > the greatest of the finite number of
coordinate indices involved in /, from ¢ = p, x P and P(X’n J) = Q(J) we get
#(C,) = ¢(D,), both being the product of a normalization factor and the first
n coordinate edge lengths. Thus we have

d(WalX-ul)= lim $(C) = lim ¢(Dy) = $([W+ulnX),

n—oo n— oo

as desired.

Now let [4 + u] C X be given for some Borel subset 4 of X. If {W;} is a
countable disjoint X-interval family covering 4, then also

ACUalX=-ul)C UW.
12 1

Since

¢(A) = inf [X; ()]
ACu W

i
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as the unique Borel-Hopf extension [1, p.54] of ¢ from the intervals to the

Borel sets, we have

¢(4)

il

inf  (Z;6(W; n[X=1ul))
A_C_U v;

ian(Ei¢([Wi+u] nX)) > H([4+ ul)
Cuw

AC
i

from
(W nlX-ul) = ¢([W; + ulnX).

Thus ¢(A4) > ¢([4+ul), and symmetrically 4([4 +u]) > ¢(A4), so that
¢(4) = ¢(L4 + u]) for Condition II of translation-invariance.

Finally for the uniqueness of ¢ it is easy to see by division of intervals
into large numbers of equal subintervals that any nontrivial, translation-invari-
ant ¢y will have ¢ (I), I being an interval of X, proportional to the length of each
of the edges of /. By our definition of x, and Q, this makes ¥(I) = K¢ (I),
with 0 < K < +c and K independent of I. The extension to all Borel sets
thus gives ¥(4)=K¢(4), A € BB, as desired.

5. Haar measure and translation spaces. For the space Y our positive
result is a complete converse of Theorem 3. We shall get the result by con-
sidering a considerably more general situation. Let the Hausdorff space R be

an Abelian topological group, and as before define

[A+u]l ={xE R I (x-u) € A4}

under R-group addition for A C R and u € R. Consider a fixed closed subset
Z of R, which becomes a Hausdorff space under the relative topology from R,
but not in general a group under R-group addition. Such a space containing the
zero of R is said to be a translation space if it satisfies the following con-

dition:

i) If V is any open subset of Z containing zero, then Z is covered by the
open interiors in Z of the sets of the collection { Z n[V + ] | u € RY.

LEMMA 6. X is a translation space for R =4, under the metric topology.

Proof. Let V be the given neighborhood of zero, so that we have some
small p > 0 with S(Z, 0, p) C V. Then for any given z € Z = X we will find
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u € Z and p’ > 0 so that

S(Z,z, p") CZn[5(2,0,p) +ul CZnalV+ul,

which makes z € int (Z n[V +u]) for Condition i). First since the given
z € 4,, we can find finite N so that

i ,\1/2 1
zn <_2-p’

and then define u € Z =X by u, =2z, for1 <n < Nand u, =0 forn > N. Then

set
1
p'=min(-§p, h(n) for n=1, 2,---,N)> 0,
) anyxCS(Z, z, p’) has
, 1
x—ull < llx~z[l + [lz-ull <p” + SP <P
Any such x also has
%0 = tn| = |2 = 2a| < p" < h(n)
for 1 <n <N, and

lxn_unl = [xn{ < h(n)

for n > N, sothat x € [S(Z, 0, p) + ul. Thus
S(Z, z,p%) C ZnlS(Z,0,p) + ul,

as desired.
LEMMA 7. Y is a translation space for R =4, under the metric topology.

Proof. 1f V is the given neighborhood of zero in Z =Y, we can find p > 0
with p2 < f(1) and S(Z, 0, p) C V. Now either p? < f(n) for all n, or else
by the definition of Y there is a unique finite N with

f(N) > p2 > f(N+1).
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In the first case for the given z € Z we take u = z, and since now S(Y, 0, p) =
S(43, 0, p) by p? < f(n), we have

S(Z, z,p) = Z n[S(4,, 0,p)+ul C ZalV+ul

for z € int (Z alV + u]) as desired for Condition i).

In the second case for the given z € Z = Y we define u € Z by u, = z, for

1<n<N,andu,=0forn > N. In this case also we have
S(Z, u,p) =ZnlS(Z,0,p) + ul.

For the left side clearly includes the right side, while if y € S(Z, u, p), then

forl1 < n < N we have
> (y] - u].)2 <Y (}’]- - uj)2 < p? < f(n).
j=n j=1
For n > N we have
2z (y]' - u].)2 =2 }’,'2 < f(n),
j:n j:n
so that
y € ZnlS(Z,0,p) + ul,
and hence
S(Z,u,p) C ZalS(Z,0,p) + ul
for equality. Finally since z € S(Z, u p) by
00 1/2
lz-ull=| Z | <VIN+1) <p,
j=N+1
we have
z € S(Z,u,p) CZnalV+ul,

so that
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z € int(Z alV+ul),
S(Z, u, p) being open, for Condition i).

Thus X and Y are special translation spaces, so the result we shall obtain
for translation spaces applies to them. For the general translation space Z we
define the Borel class B as the o-algebra generated by the open subsets of Z,
given by the relative topology from R. For a Borel measure ¢ defined over B we
note that Condition I of nontriviality and II” of translation-invariance still make
perfect sense in this more general context, if u € 4, in II” is replaced by
u € R. We shall now establish that a locally compact translation space does
possess something like a Haar measure, that is a nontrivial, translation-in-

variant, regular Borel measure. First we need a few more lemmas.

LEMMA 8. If V C W are both open subsets of the translation space Z and
if (W +ulnZ is open in Z for some u € R, then so also is [V +ulnZ.

Proof. Since Z is a translation space, it is closed in R, so Z-W and Z -~V
are both closed in R as well as in Z. Since open and closed subsets of the
topological group R remain such under translation, B=[(Z~W)+ulnZ and
C=[(Z-V)+ulnZ are both closed in R, and hence in Z. Defining 4 =
(R-1{Z +ul]) nZ, we have

AvB=Z-({W+ulnZ),

known closed in Z, so that 4 — 4 C B must follow. We obtain B C C from V C W,
and this makes A —4 C C; thus Z - ([V+u)lnZ)=4uC is closed in Z, or
[V +ulnZ is open, as desired.

Let [B+Cl=f{x+y | x €Bandy €Cland B" = {x l ~x € B} for the

following lemma.

LEMMA 9. If the translation space Z has compact subsets B and C with
B nC = ¢, then there exists some Z-neighborhood V of zero so that

[B+ V- 1nlC+V]=o.

Moreover, both [V + z] nB # Cb and [V +z]1nC #£ Cb are not simultaneously
possible for any z € R.

Proof. Since B and C are compact subsets of Z, they are also such of the

topological group R. Thus there exists an R-neighborhood W of zero so that
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[B+W1lalC+Ww1=09.

Hence V=27 nW, so V° C W, gives the first result. If [V + z] nB # ¢ and
[V+2z1nC #3, then zE€ [B+V1n[C+V1=¢, a contradiction, which

gives the last.

Following Halmos [1, p.252], if B and C are subsets of the translation

space Z, we let (C:B) denote the least cardinal (thus No or an integer > 0)
of sets P of z € R such that

Cc U [B+z]
zZEP

LEMmA 10. If C is a compact subset of the translation space Z and V is

an open Z-subset containing zero, then (C:V) < +c.

Proof. By Condition i) we have

CcC U int (ZnlV+ul),
u€ER

an open covering of compact C. Thus there exists a finite set 4 of such u with

Cc U im(ZalV+ullc U [V+ul,
u€A u€A

and hence
(C:V) < (card 4) < + 0.

This lemma is the only place where Condition i) is used to get our following

main result on the existence of a Ilaar measure.

THEOREM 11. If Z is a locally compact translation space, then there exists

a regular Borel measure ¢ on Z which is nontrivial (1) and translation-invariant

().

Proof. Since Z is locally compact, it possesses a neighborhood V; of zero
such that 7, is compact, so 0 < (¥,:¥) < +w for any other Z-neighborhood
V of zero, by Lemma 10. Also clearly

(C:V) < (C: W) (V:V) < (C:Vy) (Vy:V),

so we may define
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A (C) = (Vy: VYL (C:V)
and have
0< A (C) < (C:V)) < +o0

for any compact subset C of Z and any Z-neighborhood V of zero. Following
Halmos [1, pp.254-2561, we construct a content A from A, Let Q be the
Cartesian product of the bounded closed intervals [0, (C: V)] over all com-
pact subsets C of Z; Q is compact by Tychonoff’s theorem, and each A, € Q.
Setting

AV) = {Xy, | WcCV, W a Z-neighborhood of zero},

we see that () contains by compactness some \ € N, A(V), the intersection
being over all Z-neighborhoods V of zero. As in [1], this function A(C) de-
fined over compact Z-subsets C is a content; that is, for sibsets B, C, and D

compact we have

0< A (C)<A(B) <+
if C C B, and

A(CuD) < A(C) + A(D)

with equality if C nD =& by use of Lemma 9. Also A(V;) =1 since M (7)) =1
for any V. For translation invariance we note that if [C + z] C Z for a compact
Z-subset C and z € R, then [C + z] is also compact, since translation by z
is a homeomorphism of R onto R; ([C+z]:V)=(C:V), obviously; and thus
M ([C+2]1)=Xx,(C) for any neighborhood ¥ makes A([C + z1) = A(C).

Let W be any subset of Z, define the inner content
A (W) = sup A(C)
over compact C C W, and for any subset E define
¢(E) = inf A (W)

over open Z subsets W D E. Restricting ¢ to 13, we see that ¢ is a regular

Borel measure on Z; ¢ is nontrivial (1) by

H(Z) > ¢(Vy) > AM(Vy) =1 and ¢(V)) < (V) = 1,
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(see [1, 53 C and E, p. 2341).

It remains only to show that ¢ is translation-invariant (II”). First
A (LW + z]) = A (W)

for z € R and any Z-subset W having [W + z] C Z. For then compact C C W
has [C + z] C Z and compact, so A([C +z]) = A(C) and thus A ([W + z]) >
M (W). The opposite inequality follows symmetrically to give the result, since
any compact C* C [W +2z] has C=[C = z] compact with

CCWcZand A(C) = A(C?).

Now if V is an open Z-subset then ¢ (V)= A« (V) since A« is monotone.
Thus If V and [V +ulnZ are both open in Z, and u € R, then W C V and
(W+ul=[V+ulnZ, where W=[(1V +ulnZ)=u] so that

¢([V+u]nZ) = )\*([W+u] = Ay (W) S_/\*(V) = ¢(V)

for part b) of Condition II”,

For part a), assume A € B, u € R, and 4 C V,, where V, and [V, + u]
are both open Z-subsets. Then for any open Z-subset V D 4, Lemma 8 with
V'=VnV, and W =V, both open makes [¥ n¥, + u] open also, and we note
that

[A+u] C [VaVo+ul C [Vo+ul CZ.

Hence
M([VaVy+ul) = M(Valy)
makes
¢;(A)= inf M (V) = inf Ae (V V)
open V2 A4 open VDA
= inf )\*([VnV0+u])2_ inf MW= (L4 +ul).
open V2D A4 open W_D_[A+u]

Symmetrically, ¢([4 +u]) > ¢(4) gives ¢([A4+ul])=¢(A4) for our result.

Presumably results similar to Theorem 11 are true for similar subspaces of
non-Abelian topological groups. We have considered only the Abelian case for

simplicity and because the interesting examples in analysis are Abelian.
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COROLLARY 12. If

lim inf f(n) = 0,

n— 0o

then the space Y is locally compact under coincident metric and product to-
pologies, and Y possesses a regular Borel measure nontrivial (1) and translation

invariant (11”7) under this topology.

Proof. The coincidence of the topologies and local compactness of Y is

trivial from f(n) J0; and Lemma 7 and Theorem 11 give the rest.

6. Another translation space example. In addition to X and Y, we want to

give another example of a translation space, still with R = 4,. Let
Zl={x€/ﬂ2 l > o (%)% < M]
n=1

for some fixed real r > 0 and M > 0, so that clearly Z, is actually compact.
Such a space would arise by using Fourier analysis on L,-function-spaces in
which the rth derivative was subjected to a fixed bound in norm. We shall now
show that Z, is a ftranslation space, though our proof seems unnecessarily

long.
LEMMA 13, Ifu € Z, has u, =0 for n > N for some finite N, and

1/2
1

N
er S_ - Z n2r (un)2

n=1

Do

for some p > 0, then
ZinlS(Z,0,p)+ul =S(Z,u p)
open in Z,.
Proof. We only need to show that
S(Z,,u,p) CZyalS(Z,0,p) + ul,

the opposite inclusion being obvious. Consider any z € S(Z,, u, p); we need

only show (z—u) € Z,. Here ||z~u || < p, so

N
> n2 (z, —u,)? < N*" p?,

n=1
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and thus from
1 N 1/2
er < _{ Z nzr(un)z}
217
n=1
we obtain, by Minkowski’s inequality,
N 172 N 1/2
0<l2n2'(un)2 —pN’<[Zn2r(zn)zl .
n=1 n=1i

Thus u, =0 forn > N and z € Z, yields

) N )
S (zp—u)? = Y 2P (zp-u)? + Y n? (z,)?
n=1 n=1 n=N+1

e N
<p2 N2T z nzr(zn)z_ z n2r(zn)2

n=1 n=1

A

1/2 2
p2 N2r+ M__(l z n2r(un)2] _ er)

n=

N 1/2 N 1/2
lz nzr(un)zl —Zer\)[z nzr(un)zl < M.

n=1 n=1i

-

M-

Il

Thus we have shown that

Z n? (zp —ug)? < M,

n=1
so (z—-u) € Z, as desired.

THEOREM 14. Z, satisfies Condition i), and hence is a compact transla-

tion space possessing a Haar measure in the sense of Theorem 11.

Proof. We merely need to verify Condition i) for Z;. Thus given any open
Z,-subset V containing zero and any z € Z;, we shall find some u € Z, and
p > 0sothat S(Z,,0,p) C V and



TRANSLATION INVARIANT MEASURE OVER SEPARABLE HILBERT SPACE 551

2 € Z,nlS(Z,,0,p) +ul =S(Zy, u,p)
open in Z,, which makes z € int (Z, n[V +u]), as desired. Here we need

consider only z # 0, since u =0 makes O € V=int (Z,nlV + ul) for the

result if z = 0. Since z # 0, we may choose N sufficiently large so that

n=1 n=N+1

00 -1 %)
B’—‘(Z n2r(zn)2) ( 2 nzr(zn)2)
has 0 < 8 < 1/5, and so that

\//_M—

< Py
2N"

for some p, such that S(Z, 0, pl) C V. Let

N
pe— | 3 N (e2]
R

SO

VM ,
p < 2_1\7 <p, and S(Z,0,p)C V.

Define u € Z, by u, =z, for 1 < n < N and u, =0 for n > N. By Lemma 13,

we have
Z,alS(Z,,0,p) + ul =S(Z,,u,p)

open in Z,. Finally to complete the proof we have z € S(Z,, u, p), for

[oo) 1 o0
Hz—u||2 = Z (zn)2 < — z nzr(zn)z)
n=N+1 NZ \n=n+1
B 3 n¥(z,)? PO Rt T ¥ (z,)?
N2r n=1 N2r 4 n=1

1 N
- S ) - ot
(2N")?% \n=1
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or ||z ~-ul|| < p, as desired, since 8 < (1~ 3)/4 from 0 < B < 1/5.
7. Summary of results. We have discussed here the translation spaces
X = {x€/€2 ‘ x| < A(n)}

and

Y={x€ 4, ‘ > x].zg f(n)i,
j=n

and also

Z, ={x €A, \ > 0 (%) < M}

n=1

in $6, all being subspaces of real separable Ililbert space. For X under the
metric topology we have found (Theorem 3) that there exists no nontrivial,
translation-invariant (Il or II”) Borel measure if

liminf A(n) > 0;

n — oo

under the product topology we have the same conclusion if 2 (n) =+ infinitely

often (Theorem 4). If

Y [h(n)]? < 4+,

which is equivalent to local compactness, then under the metric topology X has
a nontrivial, translation-invariant (1I) Borel measure which is unique up to

constant factors ( Theorem 5). For Y under the metric topology

lim inf f(n) = 0,

n —oo

or thus f(n) {0, is equivalent to local compactness, and necessary and suf-
ficient for the existence of a nontrivial, translation-invariant (II’) Borel mea-
sure (Theorem 3 and Corollary 12). Also we found (Theorem 12) that any
locally compact translation space possesses a nontrivial, translation-invariant
(II) Borel measure; thus so does Z, (Theorem 14).

It is clear from the foregoing results that local compactness is in general
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the crucial condition for the existence of a nontrivial, translation-invariant
Borel measure. This is well known for topological groups [5, p.144], and con-
jectured for spaces with a group germ (a neighborhood of zero in which group
addition is always possible). llowever, it is to be noted that neither X nor Y,
when locally compact, nor Z; has a group germ. Thus our results seem to be
new, and the concept of a translation-space a fruitful one. In fact the idea of a
group germ cannot lead to anything here; for it is not difficult to see that any
convex metric subspace of 4,, which is locally compact and contains a group
germ under {,-vector-addition, must be finite dimensional, hence a subspace of
L, and thus trivial. In connection with local compactness it should be noted
that our results are not complete for X; here if 2. [A(n)]? = + « the space is
not locally compact under the metric topology and presumably no nontrivial,

invariant Borel measure exists. We could only show this if

lim inf A(n) > 0,

n-— oo

which assumes more.

The construction of an invariant measure on subspaces of real separable
Hilbert space suggests an attempt to carry over vector analysis from Kpy. In
particular, in a later paper the author investigates the relationship between
4,-vector-differentiation [ 6, p.72] and Fourier transforms over X. Here X is a
modification of Jessen’s torus space [3] and can be made into a group, so

standard Fourier theory applies [ 7 or S1.
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