A NOTE ON THE DIMENSION THEORY OF RINGS

A. SEIDENBERG

1. Introduction. Let O be an integral domain. If in O there is a proper chain
(O)CPlcP2c---anc(1)
of prime ideals, but no such chain

(O)CPIC...cP'

nt+1

c (1),

then O will be said to be n-dimensional. Let O be of dimension n: the question
is whether the polynomial ring O[ x] is necessarily (n + 1)-dimensional. Here,

as throughout, x is an indeterminate.

By an F-ring we shall mean a 1-dimensional ring O such that O[x] is not 2-
dimensional (i. e., the proposed assertion that O[ x] is necessarily 2-dimensional
fails). Given an F-ring, we try by definite constructions to pass to a larger F-
ring having the same quotient field: this restricts the class of rings in which to
look for an F-ring—a priori we do not know they exist. In this way we also come
(in Theorem 8 below) to a complete characterization of F-rings: if O is 1-di-
mensional, then O[x] is 2-dimensional if and only if every quotient ring of 5,
the integral closure of O, is a valuation ring. The rings O thus coincide (for di-

mension 1) with Krull’s Multiplikationsringe [ 5; p.554].

2. Preliminary results. The first five theorems are of a preparatory character,
and the proofs offer no difficulties.

THEOREM 1. Let O be an arbitrary commutative ring with 1, P, P,, P, dis-
tinct ideals in O[x]. If P, C P, C P;, and P, and P, are prime ideals, then P,,

P,, P; cannot have the same contraction to O.

Proof. Let
Pl nO=P2 nO=p,
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and consider
Olx1/P, = 0[%],

where x is the residue of x and 0~ O/p. Since

O[x].pg_P1 CP2,

x is algebraic over the integral domain O. Let _P-s be the image of P;; then ?3 #
(0); but also P; n O # (0). In fact, let y [ P4, y # 0. Then

<, Yyt o+ clyn—1 +eset+c =0
for some ¢; € O, ¢p # 0; and ¢, € ?3 n O. Hence also Py n O £ p,

CorROLLARY. If Ois 1-dimensional, and P, P,, P; are distinct prime ideals
in O x] different from (0) with P, C P, C Ps, then Pyn O = (0), P, is the ex-

tension of its contraction to O, and P is maximal.

Proof. If P, n O # (0), then P,, P,, P, would all have to contract to the

same maximal ideal in O. So
P1n0=(0) and P2n0=P74(0).

Were O[x] - p C P, properly, then, since O[x] - p is prime,

O[x] - pn0O=(0),
whereas

Olx] - pnO =p.
SoO[x]. p=P,. Were P; not maximal, we would have P, n O = (0).

For the foregoing theorem, see also [ 4; Th. 10, p.375].

TuEOREM 2. If O is n-dimensional, then O[x]is at least (n + 1)-dimensional

and at most (2n + 1) - dimensional.
Proof. Let
(0)cP cP,Cc...CP C(1)
be a proper chain of prime ideals in 0. Then

(0) C O[x] - P, C O[x]+ P, Cev-COlx]- P, (1)



A NOTE ON THE DIMENSION THEORY OF RINGS 507

is also a proper chain of prime ideals in O[x]; and O[x] . P, is not maximal,

since, for example,
O(x] . P, Cc(O[x].P,, x)C(1).

(Here, as throughout, we use the symbol C for proper inclusion.) Hence O[x] is

at least (n + 1)-dimensional. Let now O be n-dimensional, and consider a chain
(0) C P/ C v Pl c(1)
of prime ideals in O[ x]. Let there be s distinct ideals among the contractions

(0)n0, P a0,--, P aO.

m

Then
m+1<2s<2(n+1), so m< 2n+1.

THEOREM 3. If O is n-dimensional but O[x] is not (n+ 1)-dimensional,
then for at least one minimal prime ideal p of O either the quotient ring Oy is an
F-ring or O/p is m-dimensional and O/p[«x] is not (m + 1)-dimensional, and

m < m.

Proof. Suppose that for some minimal prime ideal p of O, O[x] - p is not
minimal in O[ x]; that is, there exists a prime ideal P such that
(0) Cc P CcO[x] . p.
Then
(0) C Oplx] « P C Oplx] - p
is also a chain of prime ideals in Op[x], as one easily verifies. Since Oplx] - p

is not maximal, this shows that O, is an F-ring. We pass then to the case that

O[] - p is minimal for every minimal prime ideal p of O. Let

(0) C P Cueu C P

n+2

c (1)
be a chain of prime ideals in Of x]. If
P a0 =p#(0),

then O/p is at most (n —1)-dimensional, and O[x]/O[x] - p is a polynomial
ring in one variable over O/p and is at least (n + 1)-dimensional. So we must

suppose
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P: nO0 =(0);
but then
P;n0=p29é(0);

let p be a minimal prime ideal contained in p,~such exists since O is finite di-
mensional; then O[ x] - p C P;, properly, since G[ x] - p is minimal but P; is not.
Replacing P: by O[x]. p, we come back to a previous case, and the proof is

complete.
CoROLLARY. [fOis an F-ring, then so is some quotient ring of ().

The foregoing theorem shows that if for some n there exists a ring O which is
n-dimensional, while O[ x] is not (n + 1)-dimensional, then there exist F-rings.

Thus we may provisionally confine our attention to 1-dimensiona! rings O.

THEOREM 4. If O is 1-dimensional, and O is a valuation ring, then O[x] is

2-dimensional.
Proof. l.et p be a proper prime ideal of O, and let
(0) C P CO[x] . p,
where P is prime. Let
flx) € P, f(x)#0.
Then one can factor out from f(x) a coefficient of least value, that is, write
f(x) = e v gl),

where ¢ € p, and g(x) has at least one coefficient equal to 1; in particular,

then g(x) ¢ Olx] « p; hence ¢ € P.So P n O # (0), whence
PnO=p and P = O0[x]. p.

This proves that O[ x] is 2-dimensional (see Corollary to Theorem 1).

Theorem 4 restricts the size of an F-ring, since a maximal ring is a valua-
tion ring. The following theorem reduces the considerations to integrally closed

rings.

THEOREM 5. Let O be the integral closure of the integral domain O. Then O

is an F-ring if and only if O is an F-ring.
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Proof. Let R be an integral domain integrally dependent on O; a basic theo-
em of Krull (see, for example, [2; Th. 4, p.254]) says that if P, C P, are prime
ideals in R, then they contract to distinct prime ideals in O; hence dim 2 < dim O.
Another theorem (loc. cit., p.254) says that if p; < p, are prime ideals in O, and
p, is a prime ideal in 1! contracting to p,, then there exists a prime ideal P,,
P,> P, contracting to p,. Hence dim R > dim O, and so dim R = dim 0. lience O
is 1-dimensional if and only if O is 1-dimensional, and a[x] is 2-dimensional if

and only if O[ x]is 2-dimensional.

Thus if there exist /'-rings, then there exist integrally closed F-rings, and,
taking an appropriate quotient ring, we see that there would exist an integrally
closed f-ring O having just one proper prime ideal. In view of Theorem 4 (and
the close association of integrally closed rings with valuation rings) one may
ask whether an integrally closed ring with only one proper prime ideal is neces-
sarily a valuation ring. Were it so, there would be no F-rings, but it is not so:
Krull has an example [G; p. 670f]. i’or convenience, we may mention the example:
let K be an algebraically closed field, x and y indeterminates; O consists of the
rational functions r(x,y ) which, when written in lowest terms, have denominators

not divisible by x, and which are such that r(0, y) € K.
3. Principal results. We now establish:

TuEOREM 6. If O is integrally closed with only one maximal ideal p, « an
element of the quotient field of O, and 1/ ¢ O, then C[ G|+ p is prime. If also
o O, then O[ &1+ p is not maximal.

Proof. We first observe that
(Olai -« p,a) # (1),

as an equation

]_=co+cla+...+csas (Coep, CiCO),

leads to an equation of integral dependence for 1/u over O. Let now g(x) €
O[x] be a monic polynomial of positive degree. We may assume, trivially, that
& ¢ O; then g(w)=c € O is impossible, as g(®) — ¢ =0 would be an equa-
tion of integral dependence for & over O; in particular, g(«) # 0. Also 1/g(«) 6,7:

O, for if it were in O, it would be a nonunit in O, and hence would be in p, so that
1 € g(a) - pc Olal - p,

and this is not so. By the result on a,
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(0fg(w)] « p, g()) # (1).

Since o satisfies g(x) - g(«) =0, O[ «] is integral over O[ g(®)]; over any
prime ideal in O[g(«)] containing (O[g(&)] « p, g(a)), there lies a prime
ideal in O[ ], hence

(Ofa] « p, g()) #(1).

Since 1 + g(x) is monic of positive degree, also

(Ofal «p, 1+ g(w)) #(1).

This shows that g( &) ¢ O[] - p, a conclusion that also holds if g(x) is of
degree zero; that is, g(x) = 1.

We now prove that under the homomorphism g(x) — g(c&)of O[x] onto O[ «l,
the inverse image of O[ «] « p is O[x] . p; this will complete the proof, as

O[] - p is prime but not maximal. Let, then,

g(x) € 0lx], g(x) € O[x] - p.
We write
g(x) = g (x) + g,(x),

where gz(x) € O[x] + p and no coefficient of g, (x) is in p; in particular, this
is so for the leading coefficient c. Then gl( a)/c ¢ O[a] - p, since 8, (x)/c
is monic. A fortiori, gl(o{) q_‘ O[ a] « p, whence also g( o) ¢ Ol «] - p.

COROLLARY. In the case & Gt O, if g(x) € O[x] and g(a) € O[«] - p,
then g(x) € O[«x] « p.

TuEOREM 7. Let O be an integrally closed integral domain, p a proper ideal
therein, a an element in the quotient-field of O, but a ¢ Op, 1l/a €t OP' Then

Ol a] - p is prime but not maximal; in fact,
Ofal -« pnO=p and O[al/O[a] - p ~ O/p[x].
Proof. We know that O,[ «] - p is prime, and
Oplal « pnOf[al = O[]l = O[a] - p

by the last corollary (and the fact that OP -pnO=p). Hence O[«] . p is prime.
Also here, as in the corollary, we have that if g(x) € O[x] and g(«) € O[] -
p, then g(x) € O[x] - p; the required isomorphism follows at once.
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Theorem 7 is known in the case that O is a finite discrete principal order [ 3,
$ 49, p.134-136]. The class of rings dealt with in the theorem includes this
class properly; for example, the ring O of the example of Krull is not a finite

discrete principal order, as xy” € O for all p, but y ¢ 0.

THEOREM 8. If O is 1-dimensional, then O[ x] is 2-dimensional if and only

if every quotient ring of the integral closure of O is a valuation ring.

Proof. By Theorem 5, we may assume O to be integrally closed. If O is an
F-ring, then so is one of its quotient rings ( Theorem 3, Corollary). This quotient
ring is not a valuation ring (Theorem 4). Conversely, suppose some quotient
ring O, = Op is not a valuation ring. Let ¢ be an element of the quotient field of
O, such that o Gt 0, and «! ¢ O,. Then O,[ o] is at least 2-dimensional, by
Theorem 6, and O, [x] is at least 3-dimensional, as one sees by considering the
homomorphism of O,[x] onto O,[ «] determined by mapping x into &. So O, is
an F-ring. Thus OP[x] « p is not minimal in OP[x], and it follows at once that

O[x] .« p is not minimal in O[ x], whence O is an F-ring.

Let O be the ring of Krull’s example above, and let X be an indeterminate.
The single prime ideal p in O is constituted by the rational fractions r(x, y)
which, when written in lowest terms, have numerator divisible by x, i.e., are
of the form x g(x, y), where g(x, y) € K[=x, yl. The polynomials in O [ X]
which vanish for X =y form a prime ideal, different from (0) since xX — xy is in

it, properly contained in O[ X] - p.
The following theorem is well known [ 4, Th. 13, p.3761.

THEOREM 9. If O is o Noetherian ring of dimension n, then O[x] is(n + 1)-
dimensional.

Proof. Taking a quotient ring or residue class does not destroy the Noether-
ian character of O, so by Theorem 3 we may suppose O is 1-dimensional. Let
then p be a proper prime ideal in 0. Then O[x] - p is minimal for every principal
ideal O[x] . (a), where a € p, a # 0, so by the Principal Ideal Theorem [3,
p-37]1, Olx] -+ p is minimal in O[x], and O[x] is 2-dimensional by Theorem 1,
Corollary. ~ Instead of the Principal Ideal Theorem, one could use instead that
the integral closure O is also Noetherian ( see, for example, [ 1, Th. 3, p.29]; see
also [3, $39, p.108]). Neither proof makes use of the full force of the quoted
theorems, so it might be of some interest to find a direct proof using less techni-

cal means.

NoTE. In a forthcoming paper we will show that if O is a 1-dimensional ring
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such that O[x] is 2-dimensional, then O[x,, -++, x;] is (n + 1)-dimensional.
Theorem 2, above, will also be completed by examples showing that for any m, n

with n+ 1< m< 2n + 1, there exist n-dimensional rings such that O[x] is m-
dimensional.
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