PLANE GEOMETRIES FROM CONVEX PLATES

MARLOW SHOLANDER

1. Introduction, It is shown below that to each member of a general class of
two-dimensional convex bodies there corresponds an affine geometry in the sense

of Artin [1] and an S. L. space in the sense of Busemann [4].

A two-dimensional convex body is called a convex plate. For the few ele-
mentary properties of such plates assumed here, see [3].

Let K be a convex plate, and let K° denote its boundary curve. All construc-
tions are to be made in the plane £ of K. Consider an arbitrary direction ¢ in £
and the two lines of support to K in this direction. Let ¢, be the line of support
whose associated half-plane in the direction ¢ + /2 contains K. Let ¢, be the
other line of support. For 0 <i <1, let ¢; be the line parallel to ¢, which divides
line segments extending from ¢, to ¢, in the ratio of i to 1 —i. Let ¢; cut K° at
points R; and T; so that the directed segment R; T; has direction ¢.

For 0 <i<land 0<j<1, let S;; be the point which divides R; T; in the
ratio of j to 1 — j. The set s; = U; S;; is an open Jordan arc whose endpoints are
points of contact of ¢, and ¢, with K. A set s; is called a strut. Other struts may
be obtained by varying ¢. When the direction needs emphasis, the above nota-
tions are modified by affixing the angle in parentheses, for example, R;(¢) or
sj(¢). Two struts with no common points or all points in common are called

parallel. Clearly s].(¢>) and s, (¢) are parallel.

Under the name Durchlinien, Zindler [ 6] studied struts of the form s, ,, ().
It is easy to see that s, ,, () halves the area of K, and that the centroid of X
is contained in the convex hull of this strut.

2. A preliminary theorem. This section is. devoted to a proof of the following
theorem. An edge of K is defined as a (maximal) line segment in K°.

THEOREM. If for distinct directions ¢ and s, struts s;(¢) and s;j(y)) meet
at distinct points P and Q, they meet at all points of the segment PQ. Such seg-
ments of intersection occur if and only if K has at least two edges.
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Proof. Leti=1/(1+a) and j=1/(1 + b). From the affine invariant nature
of the problem, we may assume ¢ and i are respectively the positive x- and
positive y-directions in £, where P has been chosen as the origin. We may as-
sume the chords passing through P along the axes are P; P, and P, P,, where
P,, P,, P;, and P, have respectively the coordinates (a, 0), (0, 4), (-1, 0),
and (0, -1). If P, P, is parallel to P;P,, let n be the line parallel to these lines
which passes through P. Otherwise let n be the line on P ard the point of inter-
section of these lines. Finally, we may assume that Q lies in the first quadrant

on or above the line n. Let ¢ have coordinates (r, s).

Let the chords through () parallel to the axes be Q;(, and ¢, ,. Coordin-
ates of (J;, J,, (!5, and ¢, have respectively the form (r + ap, s), (1, s + bg),
(r-p, s), and (r, s —q). We note that P, P, n, and P, P, have respectively

the equations
ay =x —a, a(b+1)y = b(a+1)x, and y = bx + b.
Since ) is on or above n,
(1) b(a+1)r <a(b+1)s.
Because K is convex, (), cannot be above P, P ; that is,
(2) s+ bg < b(r+1).
Multiply (2) by a and add to (1). This gives
(3) r—ag a(s-q);

that is, ¢, is on or above P P,. Moreover, equality in (3) implies equality in
(1) and (2).

Consider first the case r < a. Here, since (J, cannot be above P P,, it lies
on P, P,. Thus equality holds in (2), and @, lies on P, P;. Since P,, ¢,, and
P, are distinct and collinear, they are on an edge of K. Similarly, ¢,, P,,and

P, lie on an edge.

In the caser > a,
slope P, P, < slope Q,Q,, 1/a < g/ap, and p < g.
If s < b, Q; cannot be below P, P;; that is,
(4) b(r+1) < s + bp.

Together with (2) this yields ¢ < p. Hence p = ¢, and equality holds in both (2)
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and (4). This shows that Q,, P,, ¢, P, are collinear, and hence on an edge of
K. Furthermore, slope P, P, = slope ¢,Q,, and P,, P, ¢,, Q, are on an edge.
If s > b, ¢; cannot be above P,P;, slope Q;3¢, < slope P3P,, bg/p < b, and
g <p. Again p = g, slope P, P, = slope (,(,, and slope P, P, = slope (;0Q,.
An edge of K contains P,, P,, Q,, and Q,, and another edge contains (,, (3,
P, and P,.

3. Affine geometries. Consider a convex plate K with the properties:

(i) K has at most one edge;

(ii) K has no corners.

Let I be the set of inner points of K. Consider distinct points P and Q in I
Assume, for a given ¢, that P is on s;j(¢) and ( is on s, (¢), j < k. Clearly P
ison s, i(¢+n),and Jis ons; (¢ +n). From considerations of continuity,
there exists a direction 1) such that P and-Q are on a strut s;(¢). From this and

from the previous section we have the following result.
ProPERTY I. Two distinct points in / lie on one and only one strut.

Consider now a strut s;(¢) and a point P in /. The strut sj(¢) which passes
through P is parallel to s;(¢). On the other hand, let s, (), ¢ # &, pass through
P. Since s;(¢) and s, () have endpoints which separate one another on K°,
these struts have some point of / in common, and the following holds.

PROPERTY II. Given a strut s and a point P in I, there is one and only one
strut through P and parallel to s.

PROPERTY IIl. There are three points of / not on a strut.

These three properties are Axioms I, II, and III of Artin [1]. Listed in Lattice
theory [2, p.110] as APG1, APG2, and APG3, they classify I as a plane affine
geometry.

It would be of interest to know what sets I satisfy Artin’s Axiom IV (see
Appendix ), or even what sets have nontrivial dilatations. An ellipse K yields an
I with all the desired properties. To show this it is sufficient to consider the
case where K is the circle

Consider the sphere
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resting on the origin of the xy-plane £. The line
x cos¢ +y sing =R

in E projects from the center of S into a great half-circle on S. This half-circle
projects perpendicularly on £ into a half-ellipse, the strut s;(¢), where

2i =1+ R/\/R? +a2.

Thus the mapping which takes (r, ) in / into the point (R, 0) of E, where

Ry/a?-r? = ar,

places the struts in one-to-one correspondence with straight lines. In this ex-

ample, we have a finite model for Euclidean geometry.

4. Other geometries. In general we may obtain a plane projective geometry
from a plane affine geometry by adjoining an ideal line (see [2, p.110]). In this
case K° serves as the ideal line. The affine and projective geometries associ-

ated with K are examples of matroid lattices.

In §3 we mapped an elliptical ! onto the Euclidean plane E. A similar map-
ping may be defined for any / so that struts map on curves in E which satisfy the
hypotheses of [ 4, p.89, Th.1]. It follows that a metric may be introduced (in E
and hence) in / which makes of / an S. L. Space of Busemann: / will be finitely
compact, convex in the sense of Menger, externally convex in the sense of
Busemann, and the struts will be geodesics under this metric. This S. L. space
also satisfies the Euclidean Parallel Axiom. In fact, all Hilbert’s (plane) Axioms
[5] are satisfied except the congruence axioms. The determination of the condi-

tions under which the latter hold is an open problem.

5. Appendix. Artin’s Axiom IV, not readily available to all readers, is given
below after necessary introductory material. Using Axioms I-1V, we may assign

coordinates (&, ) to points so that the equation of a “‘strut’ is linear.

The set of points considered is called a plane. A mapping o associates with
every point P a point P "= g (P). A mapping is called a dilatation if to each pair
of points P, Q correspond parallel struts s and s” such that P and ¢ lie on s,
and P" and Q” lie on s”. The identity mapping of the plane is denoted by 1. A
translation is a dilatation which is either 1 or else has no fixed points. A trace
of a dilatation o is a strut which contains a point P and its image P ", (If P # P’
there is a unique trace on P.) A homomorphism is a correspondence from trans-

lation Tto translation T% such that each trace of T is a trace of T® and such that
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(1, T,)%= 1812,
Ax10oM IVa. Given P and Q, there exists a translation carrying P into (.

Ax1om IVb. Given translations T, and T, (neither equal to 1) with the same

traces, there exists a homomorphism T%such that 1§ = T,.
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