
ON A THEOREM OF PLANCHEREL AND POLYA

R. M. R E D H E F F E R

1. Introduction. Paley and Wiener [β] have shown that the following classes

of entire functions are equivalent:

(A) those which are o{ea\z\) in the whole plane and belong to L2 on the

real axis;

(B) those which can be represented in the form

F{z) = f e i z t f(t)dt,

with f(t) G L2 on [-α, a],

A simple proof was given later by Plancherel and Polya [ 7 ] , and they showed

how the condition o ( e α l z ) could be weakened in the passage from ( A ) to ( B ) .

Their result leads at once to the following, which is the form to be used in the

present discussion:

THEOREM A (Planchere l and P ό l y a ) . Let F(z) be an entire function of

order 1, type α. If F(x) G L2 on (-00, 00) then F(z) can be represented in the

form

F(z) = fa eizt f(t)dt,
J-a

with f{t) G L2 on [-α, α ] .

The hypothesis concerning order and type means

( 1 ) lim sup log | F ( z ) | / | z | < α, | z | —> en.

Theorem A implies a nontrivial result about entire functions; namely, if F(z)

sat is f ies ( 1 ) and is in L2 on the real axis, then [ 7 ]
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(2) F(z) = o ( e a Γ \ s i a θ \ ) , re
i θ

We shall show here how Theorem A can be used to give very simple proofs of

other results, some of which seem accessible only with more difficulty to purely

complex-variable methods.

2. The growth of F(z). The Plancherel-Pόlya result determines the growth

of F(z) in the whole plane from the growth on the real axis:

T H E OR EM 1. Let F (z) be an entire function satisfying ( 1 ) , such that

F(χ) = 0(\x\n)

for some positive or negative integer n> as x —> oo on the real axis. Then

F(reiθ) = 0(rn e α r l s i n θ\)

uniformly in θ, as r -—» oo.

THEOREM 2. Let F(z) be an entire function satisfying ( 1 ) , such that

\F(x)\ < A

for all real x. Then

\F(x + iy)\ < Aea\y\

in the whole plane. If λ = p + iq is a zero of F(z)9 then

\F(z)\ <Ae"\y\ \z -y\/\q\.

These results (which are probably well known) can be obtained at once by

[ 8 ] ; for example, applying [8] to F(iz) e~az/(Azn + B) gives Theorem 1 when

n > 0. Since our primary purpose here is to illustrate a method, however, we de-

duce them from Theorem A. Assume that F(z) in Theorem 2 has a complex zero

λ = p + iqf q £ 0. (In the contrary case consider F( z) ( z — λ — iq)/( z - λ), where

λ is a real zero, and let q—>0.) We have

(1) G(z) = [F(z)ΓAz-λ) = -pLr fma fit) eiztdt, f{t) e h\
\2π J-ma

where m is an integer. (A similar use of the m power of a function is made in

[5] and [7] . ) By a short calculation, we get
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Γ ma f°o

( 2 ) / \ f ( t ) \ 2 d t = / \ G ( t ) \ 2 d x < A m

 n / \ q \ ,
J -m a J - oo

so that, by the Schwartz inequality in (1) ,

(3) | C U ) | 2 < - i = r If""* eiM'dt) (A2mπ/\q\), z = x + iy.
V2ττ \J-ma I

Hence

\ F ( t ) \ 2 m < \z - λ | 2

where C is constant. Taking the ml root and letting m—»oo completes the proof.

The proof of Theorem 1 is similar, if we define

G(z) = (z-λΓ1 [F(z)/p(z)]m,

where p(z) is a polynomial of degree n formed from the zeros, other than λ, of

F{z).

The second part of Theorem 2 results when we apply the first part to F{z)/

{z - λ ) ; it could be sharpened by including more zeros. As it stands, however,

this second part already gives the following:

COROLLARY. Let F(Z) satisfy the hypothesis of Theorem % and suppose

F{reiθ) - A e α Γ i s i n * l

for a particular θ, as r —*oo. Then at most a finite number of zeros λ satisfy

π + θ - δ > 2 arg λ > θ + δ for any positive δ.

3. Complex roots. A consequence of Theorem 1 is:

THEOREM 3. Let F{z) satisfy the hypothesis of Theorem 1, and let n(x)

denote the number of real roots of the equation F (z) = 0 which lie in the circle

\z\<x.lf

fr
(4) lim sup I n(x) dx/x - 2ar/π + b log r > -oo,

then the equation F( z) — 0 has at most b + n complex roots in the whole plane.

The proof is practically contained in a discussion of Levinson [ 5 ] . If N(x)

denotes the number of roots of F( z) = 0 in the circle \ z\ <x9 Jensen's theorem
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combines with the conclusion of Theorem 1 to give

(5) Γ N(x) dx/x - A = f2π log \F(reiβ)\dθ
Ji 2π Jo

< \ (n l o g r + a r I s i n θ\) dθ + B

2π Jo

- n log r + 2 ar/π + B,

where A and B are constants. Hence the number of complex zeros,

c(x) = N(x) - n(x),

satisfies

(6) I c ( x ) dx/x < (n + b) log r + C
J i

for some arbitrarily large r ' s , where C i s constant. It follows that c(x) <n + b9

a s was to be shown.

By means of the following result, Duffin and Schaeffer have given simple

proofs, and improvements, of some theorems due to Szegό, Bernstein and Boas

( s e e below):

THEOREM 4 (Duffin and Schaeffer). Let F{z) be an entire function such

that

F(z) = O(eαM).

If F(x) is real for all real x and satisfies \ F{x) \ <A9 then the equation

F(z) = A cos (az + B)

has no complex roots.

Theorem 3 contains Theorem 4, and in fact gives a slight generalization of it:

THEOREM 5. Let F(z) be an entire function satisfying ( 1 ) . If F(x) is real

for real x and satisfies

\F(x)\ < \P(x)\,
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where P(x) is a real polynomial of degree n, then the equation

F{z) = P(z) cos(αz + B)

has at most n + 1 complex roots.

A linear change of variable enables us to assume a = π, B = 0. Since F(z) -

P (z) cos πz is nonpositive when cos πz = 1, and nonnegative when cos πz = - 1 ,

the equation

F(z) = P(z) cos πz

has a root in every interval m < z < m + 1, where m is an integer (cf. [3 ] ) . Any

root occurring at the ends of these intervals is multiple. Hence if n(x) is the

number of real zeros λ satisfying | λ | < x, then n(x) is at least equal to the

function nι(x)9 defined as 0 for 0 < x < 1, as 2 for 1 < n < 2, and so on. A short

calculation gives

f" n(x)dx/x > I* nx(x)dx/x = 2 log(nn/nl) ~ In - log n,

so that Theorem 5 follows from Theorem 3 with b = 1. Since complex zeros occur

in pairs, Theorem 5 contains Theorem 4.

According to Paley and Wiener [ 6 ] , a set of functions {e \ has deficiency

d on a given closed interval if it becomes complete in L2 when d but not fewer

functions j e } are adjoined to the set. Similarly, the set has excess e if it re-

mains complete when e terms, but not more, are removed. Here we adopt the con-

vention that a negative deficiency d means an excess —d. That the deficiency d

is well defined follows from a theorem of Levinson [ 5 ] :

T H E O R E M 6 ( L e v i n s o n ) . If the set \eι n X \ is complete LP on a finite in-

terval, it remains complete when any λn is changed to another number.

The result remains true even when several λ's are equal, if we agree to re-

quire a zero of the corresponding multiplicity in the entire function

F(z) = ίa eizt f(t)dt,
J-a

which vanishes at the λ π ' s . In this setting, the previous theorems concerning

zeros appear as special cases of the following:

THEOREM 7. Let F(z) be an entire function satisfying (1) , and suppose
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F(x) =0(\x\n)

i λ, x
on the real axis. If F(z) = 0 at a set \ λn \ such that \ e n \ has deficiency d

on an interval of length 2πa9 then F(z) has at most d + n zeros other than the

λn's.

The truth of the assertion is evident from

Q ( z ) F ( z ) / P ( z ) = f f i t ) eiztdt, f ( t ) £ L 2 ,
J-a

where Q(z) is any polynomial of degree d, and P(x) i s a polynomial of degree

d + n + 1 formed from the ( supposed) extra zeros of F(z). That the result con-

tains Theorem 5 and hence Theorem 6 follows from a theorem of Levinson [ 5 ]

to the effect that ί eι n% \ has deficiency at most d on [ 0 , 27r] if

\\\ < \n\ + d/2 + 1/4;, ~oo < n < oo

(cf. also [ 6 ] ) .

4. Completeness. Pursuing the subject of completeness in more detail, we

find that some of Paley and Wiener's work can be simplified and generalized by

use of Theorem A ( cf. Theorems XXIX and XXX of [ 6 ] ) .

THEOREM 8. Let{\n\ be a set of complex numbers such that the set {e n \

has finite (positive, zero or negative) deficiency on some finite interval. Then

the deficiency is d if and only if

(7) ί ° ° x 2 d ' 2 \Fix)\2 dx < oo, f ° ° x 2 d \Fix)\2 dx = c o ,

where

Fiz) = Π ( l - zaΛ2).

We confine our attention to the case d = 1, since the general case is reduced

to that by considering P(z) F(z) or F(z)/P (z) a s heretofore. Suppose, then,

that the set has deficiency d = 1 on an interval of length la. Since the set is not

complete, there is a function G( z),

( 8 ) Giz) = f" fit) eiztdt, fit) e L2,
J-a

such that G(λn) ~ 0. By the Hadamard factorization theorem (cf. also [ 5 ] ) we
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have

(9) G{z) = F(z) e
bz
 P(z),

where P{z) is a polynomial. Now actually P{z) is constant, s ince otherwise

G(z) would have an extra zero, and the deficiency of the original se t would be

greater than 1. Hence ( 9 ) gives

( 1 0 ) F(z) = e'bz G(z)C,

where C is constant. If b has positive real part, then (10) shows that F(x) de-

creases exponentially as x —> oo. Since F is even, the same is true as x —> —oo,

and hence F(z) = 0 by a well-known result of Carlson. Similarly if b has nega-

tive real part. It follows that b is pure imaginary, so that

(11) F{x) = [ a f(t) ei(x+c)t dt, c r e a l ,
J-a

and hence Fix) £ L2 by the Plancherel theorem.

On the other hand, \ί xFix) G L2 then Theorem A yields the representation

zF{z) = f f(t)eizt dt,
J-a

since (11) ensures (1); and hence the deficiency exceeds 1.

Suppose next that the deficiency is an unknown but finite number, and that

(12) f°° \ F ( x ) \ 2 dx < oo, ί°° x2 \F(x)\2 dx = c o .

With la a s t h e i n t e r v a l o f c o m p l e t e n e s s , t h e r e i s a f u n c t i o n G(z),

G(z) = I" fit) eizt dt, f(t) G L2,
J-a

such that G( z) - 0 at all but a finite number, say n, of the λ's, and has no other

zeros. (Otherwise the set would have infinite negative deficiency). The Hada-

mard theorem gives

F(z) = e b z P(z) G(z),

where P (z) is a polynomial. If the imaginary part of b = p + iq is positive, then
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lim sup log I F ( iy )/y \ < a - q a s y —> oo,

and hence the same is true a s y —»~oo. Similarly if the imaginary part is nega-

tive. In either case, then, F(z) sat is f ies ( 1 ) . Equation ( 1 2 ) now combines with

Theorem A to show that

F(z) = f° g ( t ) eizt dt, g(
J-a

t)

so that the set \e \ is not complete. Thus the deficiency is at least 1.

On the other hand, if the deficiency is n > 1 then the Hadamard theorem, as

before, gives

bz = fa f { t ) eizt
P{z) F(z) ebz = / f(t) eιzt dt, f(t) G L2

J-a

where P ( z ) is a polynomial of degree n — 1. As before, the presence of b causes

no difficulty, so that P(x) F(x) G L2. This contradicts (12).

Theorem 8 contains Theorem 6 for the case L 2 , although Levinson's general

case LP seems somewhat deeper. We give an application:

T H E O R E M 9. Let

F(z) = Π ( l - *2/λ2

n),

where the λn are complex numbers, and let the equation F(x) -A have roots λn,

where A is a complex nonzero constant. If { eι^x \ has finite deficiency d and

I e \ has finite deficiency d\ then d < 0 implies d'' « d> and d > 0 implies

d' = 0. // d = 0 then d' > 0.

It should be observed that d/ is restricted to be finite in the hypothesis of

the theorem, and only then can we evaluate d'move exactly. With regard to this

assumption, the following may be said. First, the set exp (iλ^x) cannot have in-

finite excess; that is, d' 4 -oo. In the other direction, the set is complete on

every interval of length less than the interval for \λn\ (which does not mean,

however, that d' is finite). For the case of real λn, an elementary but long argu-

ment shows that in fact d' is finite, so that we can then dispense with this extra

hypothesis. These matters lie to one side of the present discussion, since their

proof does not involve Theorem A, and we omit them.
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A second remark may be in order. It is well known that all the /4-points of a

canonical product have the same exponent of convergence, and in Theorem 9 one

can prove the stronger result that lim A(u)/u and lim K'{u)/u both exist and

are equal. Even this statement is less precise than the conclusion of the theo-

rem, however. It is easy to construct sets with equal density, such that one set

has infinite excess and the other has infinite deficiency on a given interval. We

conjecture, incidentally, that one can make d = 0, c?'= m, where m is any posi-

tive integer, so that the nebulous case d = 0 cannot be improved.

To establish Theorem 9, write

Γ F(x)-A\2x2d~2

which is finite if d < 0, by Theorem 8 and the Schwartz inequality applied to the

second integral. Hence, by Theorem 8 again,

(13) d'> d if d < 0 .

Writing

F ( z ) = [ F ( z ) - a ] + a ,

and turning the argument about, gives

(14) d > d' if d' < 0 .

Suppose now d > 0, so that, by Theorem 8,

1 dx < co.

This implies F{x)—*0, as is well known, so that F(x) - A is dominated by A.

Hence by Theorem 8 the zeros form an exact set:

(15) <Γ= 0 if d > 0.

Similarly,

(16) d = 0 if d'> 0.

Equations (13) and (16) show that d < 0 implies 0 > d'> d. But then (14) gives

d > d\ since d' < 0; and thus d < 0 implies d' = d.
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5. An inequality for entire functions. In a series of interesting papers [ 2 ] ,

[ 3 ] , [ 4 ] , Duffin and Schaeffer establish some inequalities for entire functions of

exponential type bounded on the.real axis. From these they obtain, sometimes in

sharpened form, the classical inequalities of Bernstein and others for bounded

polynomials. The main results are as follows:

THEOREM 10 (Duffin and Schaeffer). Let F{z) be an entire function, real

on the real axis, which satisfies

F(z) = 0{ea\z\)

in the whole plane and \ F (x) \ < 1 for -oo < x < oo. Then, with z = x + iy, we

have

\F(z)\ < coshay, | i ^ ( ^ ) ( 2 + \F'{z)\2/a2 < c o s h 2 α y .

If there is equality at any point except points on the real axis where F(x) = + 1 ,

then F ( x ) = cos ( bx + c).

Our Theorem 1 shows that the hypothesis O(aa\z\) can be replaced by ( 1 ) .

The procedure in [ 2 ] i s to deduce the result for y = 0 first, by means of Theorem

4. In this form the statement seems due chiefly to Boas [ 1 ]:

THEOREM 11 (Duffin, Schaeffer, and B o a s ) . Let F(z) be an entire function

satisfying ( 1 ) and real on the real axis. If \ F{x)\ < 1 for all real x then

\F(x)\2 + \F\x)\2/a2 < 1

for all real x.

A modification of Duffin and Schaeffer's argument1 enables us to deduce

Theorem 11 from Theorem A. Suppose the hypothesis fulfilled, but let the con-

clusion be violated at a particular point x - b. By considering ±F(±z/a)9 we may

assume

F{b) > 0, F\b) < 0, and a = 1,

besides

(17) \ F ( b ) \ 2 + \ F ' ( b ) \ 2 > 1 .

T h e equat ion F(b) - c o s z h a s a root z - r, 0 < r < 77/2, s i n c e 1 > F(a) > 0.

1The author regrets having presented this discussion to the American Mathematical
Society without knowing of Duffin and Schaeffer's work.
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Now, in fact r > 0 . For if r = 0 then F( b) = 1, and ( 2 ) yields F'(b)<0. Hence

F(x) is strictly decreasing at x - b9 so that F(x) > 1 for some x < b.

If we define

(13) G ( z ) = F ( z + ό - r ) - c o s z ,

then

( 1 9 ) G(r) = 0, G ( 0 ) < 0 , G(ττ) > 0 .

Moreover,

G\r) = F ' ( 6 ) + s i n r = F'{b) + [ 1 - F 2 ( 6 ) ] 1 / 2 < 0 ,

the last inequality being a consequence of F'(b) < 0 and ( 1 7 ) . Combined with

( 1 9 ) , the condition G ' ( r ) < 0 shows readily that G ( z ) = 0 has three roots r <

r < r i in the interval 0 < z < 77; and if r 0 = 0 or rι - π the corresponding root is

multiple, since | F ( % ) | < 1. Besides these roots, G(z) = 0 has roots rn in each

interval [nπ, (n + 1) 77], n = + 1, + 2 , . Thus, the function

(20) C U ) / U - r ) = Γ 1 e ι ' 2 ί h ( t ) d t 9 h ( t ) G L 2 ,

has roots at r 0 and rπ, n = + 1 , +2, , where the enumeration can be so man-

aged that

(21) \rn\ < \n\ π.

By Levinson's theorem cited above, the set \ e n \ is complete L2 on

[-1, 1], and therefore h(t) = 0 almost everywhere. If the inequality of Theorem

11 becomes an equality at a point where F(x) ^ ±19 then the corresponding root

of G(z) is easily seen to be triple, so that the same discussion holds

6. Differences and derivatives. We conclude with a theorem of different type,

concerning classes of functions:

THEOREM 12. Let C denote the class of entire functions which satisfy ( 1 )

and belong to L2 on the real axis. Let h be any complex or real nonzero number,

except that \ h\ < 2π/a if h is real. Then the class of functions F'(z), where F

ranges over C, is identical with the class of functions G(z + h) - G(z), where

G ranges over C. But if h is real and \ h \ > 2π/a9 the latter class is always a

proper subset of the former.
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Results of the same sort without L2 condition are well known; for example,

Carmichael has shown that the equation

F ( z + 1 ) - F ( z ) = G ( z )

has a unique solution of type a on the real axis and c on the imaginary axis, if

G ( z ) is of this same type, G ( 0 ) = 1, and c < π. To prove Theorem 12, let F(z)

be in C, so that by Theorem A we have

F ( z + h ) - F ( z ) = I " e i z t ( e i h t - l ) f ( t ) d t , f G L 2

J

e i z t [ ( e / Λ ί - l ) / i ί ] f(t)itdt

= fa e i z t it g{t)dt, g e L 2 .
J-a

Hence, every function of the form F{z + h) - F(z), with F G C, i s representable

as G ' ( ί ) with G £ C. Similarly, let G G C, so that

G'(z) = fα ίί eI2t g(t)dt,

= fa

 e

iz

e

i z t

eiht _ λ

J-a

Thus G'{z) is representable a s F ( z + h) - F ( z ) with F e C, provided ht^2nπ

for ~ # < £ < o The latter condition is fulfilled unless h i s real, and h = 0 or

I A I > 2 ττ/α.

Suppose now that h is real and>| Λ | > 2π/a. If

(22) [ a i t e i z t d t = fa e i z t ( e i h t ~ l ) f(t) dt

J-a J-a

for f(t) G L 2 , then uniqueness of Fourier transforms in L2 ensures that

f(t) = it/{eiht~l)

almost everywhere; but f(t) is not in L 2 with the assumed condition on h. Thus

the function on the left of ( 2 2 ) is representable as G ' ( z ) but not as F(z + h) —

F(z).
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