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1. Introduction. Let A be an algebra over the field F and let F [xi9 , # π ]

be a free algebra over F generated by indeterminates xl9 , xn; then

f ( x ί 9 ••• 9 x n ) £ F[xu 9 x n ]

is a polynomial identity for ^ if / ^ 0 and / ( α l 5 , an) = 0 for all αj. E A,

Some of the recent investigations [2; 3] of polynomial identities have been con-

cerned with those that are linear in each indeterminate, and for certain algebras

all such polynomial identities are known.

In the following we obtain other information on polynomial identities by in-

vestigating those in a single indeterminate. Our results provide a generaliza-

tion of the Fermat theorem when this is formulated as: xp - % is a polynomial

identity for the field of ρn elements. Other generalizations have been given [4]

that determine the least common multiple of the orders of the nonsingular ele-

ments of a total matrix algebra over a finite field.

2. An ideal of polynomial identities. If A is an algebra over F9 and x an

i n d e t e r m i n a t e , l e t &(A) b e t h e s e t o f a l l f ( x ) i n F [ x ] s u c h t h a t f ( a ) = 0 f o r

a l l a G A . W e t h e n c l e a r l y h a v e :

LEMMA 1. &(A ) is a principal ideal in F[x].

THEOREM 1. If A is a total matrix algebra of order m2 over GF(pn), then

&(A ) is the principal ideal generated by f (m, pn, x)$ the monic least common

multiple of all polynomials of degree m in GF(pn) [%].

Proof. f{m9p
n

9x) £&(A) s ince it is divisible by the minimal polynomial

of every element of A. If g (x) G &(A ) then it is a multiple of f {m9p
n

9x), for

if h(x) is any monic polynomial of degree m in GF (pn)[x] there exis t s a £ A

so that h{x) is the minimal polynomial of a over GF{pn) [ 5 , p. 148] .

To extend this result we use :
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LEMMA 2. If A is a subalgebra of B then &(A )

LEMMA 3. / / A i 9 A2 are algebras over F then

X θ A2)

Proof. Lemma 2 is trivial, and this implies

If a eAi ®A2 then

a — aγ + a2

where axa2 = 0 and OJ G ,4/, so that

for all integers k. Thus

for a l l/(x) e F U ] , and

&(Aι)nMA2)C HAι <BA2).

We now have:

THEOREM 2. If A- Ax $ . . . Φ/4^, where each Aι is a total matrix algebra

of order m? of er GF ( pn ), αncί

m l ^. m 2 S * * * S. mk 9

then <Λ(/4 ) is ίAe principal ideal generated by f {πi}isp
n

9x).

3. A determination of f (m9p
n,x). The following theorem with Theorem 1

becomes the Fermat theorem in case m = 1.

T H E O R E M 3. f{m, P

n,χ) = ( x ^ - χ)(χP2n - %) ( ^ m " ~ χ ) .

This follows by induction from:

LEMMA 4. / (m, pn,x) = (χp n - x) f {m - 1, pn, x).
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T o s h o w t h i s w e l e t μ [ g ( x ) 9 h ( x ) ] 9 w h e r e g ( x ) 9 h ( x ) E G F { p n ) [ x ] 9 d e -

n o t e the m u l t i p l i c i t y ( i n c l u d i n g z e r o ) of g(x) a s a f a c t o r of h(x); b e c a u s e t h e

u n i q u e f a c t o r i z a t i o n p r o p e r t y h o l d s , w e h a v e only t o s h o w

( 1 ) μ[gk(x)9f(m,pn

9x)]

f o r a l l i r r e d u c i b l e m o n i c p o l y n o m i a l s gk(x) o f d e g r e e k < m i n GF (pn) [x]. B u t

μ [ g k ( x ) 9 f ( r n f p n

9 x ) ] i s μ [ g k ( x ) 9 f ( m - 1 9 p n

9 x ) ]

when k does not divide m9 and is μ[gk{x)9 f (m - 1, pn

9 x)] + 1 when k divides

m. Thus ( 1 ) holds, s ince x? — x is the product of all g,(%) such that k

divides m [ 1, pβ 17] β

4. further results concerning $ ( / ! ) . The preceding results together with

the structure theorem for semi-simple algebras imply:

THEOREM 4. // A is a semi-simple algebra of characteristic p9 and the

simple components of A have orders mj, , , m? over their centers GF (p ),•••,

GF (p k)9 respectively, then &{A) is the principal ideal generated by the least

common multiple of

f ( m i 9 p n \ x ) 9 9 f ( m k $ p n k , x ) .

A further extension is provided by:

THEOREM 5. If A is an algebra over F with radical N9 if

&{A-N)= (f)9feF[χ]9

and if cϋ(/V) = (xΓ)9 that is, index N = r, then

where gι is the least common multiple of xr and f (x)9 and g2 = [/ (x)]r.

Proof, From f (x) E &(A - N) we deduce f {a) £ N for every aEA9 so

From Lemma 2 we have both &(A-N) and &{N) including &(A ), so their

intersection ( g t ) includes &(A ).
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REMARK. The following example shows that the bounds on &{A) in Theo-

rem 5 cannot be improved without further hypothesis. If e y (i, / = 1, 2) are

matrix units, and F = GF (2) , let Ax be the algebra with basis e n , e 1 2 over F9

and let A2 be the algebra with basis e 1 1 ? e 1 2 , e 2 2 over F. Both algebras have

radicals of index 2, and f (x) = x2 - x; but

where

gι = x 3 - x 2

9 g2 = x 4 - x 2 = ( x 2 ~ x ) 2

9

so that (g^ £ (g2).
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