
AN INEQUALITY FOR SUBORDINATE ANALYTIC FUNCTIONS

EDGAR REICH

1 . I n t r o d u c t i o n . I f f ( z ) a n d F ( z ) a r e n o n c o n s t a n t a n a l y t i c f u n c t i o n s ,

r e g u l a r i n t h e u n i t c i r c l e \ z \ < 1 , t h e n f ( z ) i s c a l l e d s u b o r d i n a t e t o F ( z ) ,

w r i t t e n

( 1 ) f(z)^F(z), \z\ < 1 ,

provided there exists a function ω (z ), regular in the unit circle, with

ω ( 0 ) = 0, \ω(z)\ < 1, and / (z ) = F[ω (z ) ] .

The concept of subordination has proved useful in studies of the range of values

of analytic functions [2, pp. 163-171]. The following interesting result has

recently been established by G.M. Goluzin [ l ] :

G O L U Z I N ' S T H E O R E M . Let

a(r) = area of the region on the Riemann surface onto which the disk

I z I < r is mapped by f (z)9

and

A(r) = area of the region on the Riemann surface onto which the disk

\ z \ < r is mapped by F (z).

Then

( 2 ) a(r) <A(r) for r < —^

V2

further\ if r < l / γ 2 , equality in ( 2 ) can be achieved only in the trivial case
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ω(z ) - ηz . λ

It should be remarked that Goluzin's Theorem is intuitively obvious for the

case where ω ( z ) is schl icht, for then the Riemann surface corresponding to

I z \ < r under f (z) is a subset of the corresponding surface for F(z)9 and ( 2 )

is therefore obtained for any r < 1. If ω (z ) is not restr icted to be schl icht, the

example

f ( z ) = z 2 , F ( z ) = z

shows that (2) does not always hold for all r < 1; in fact for this case, as

pointed out by Goluzin,

a(r) > A(r) for any r > ,

λ/2

while

so that the range 0 < r < l / γ 2 is the best possible one for the inequality ( 2 ) .

2. Theorem. In this paper we extend Goluzin's Theorem to the complete

interval 0 < r < 1; that i s , we explicitly find a universal function T{r) (which

turns out to be a continuous function of r, made up of arcs of polynomials),

such that, for any f (z), F (z) satisfying ( 1 ) ,

(3) τf\<T{r) ( 0 < r < l ) ,
Ayr)

where we denote l i m Γ _ , 0 a{r)/A ( r ) by α ( 0 ) Λ 4 ( 0 ) , and where the inequality

( 3 ) is the best possible one, in the sense that for any r (0 .< r < 1) it is pos-

sible to find a pair of functions / {z)9 F{z), satisfying ( 1 ) , such that ( 3 ) is an

equality for that particular r. (Of course, it follows from Goluzin's Theorem

that T(r) - 1 for 0 < r 2 < 1/2.) We supplement our result by making a complete

enumeration of the function pairs [ / ( z ) , F(z)] for which equality in ( 3 ) can

be achieved. The final result is as follows.

T H E O R E M . The function T(r) is given by the formula

In this paper rj always denotes an arbitrary complex constant of unit absolute
value.
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(4) T(r) = mr2m-2

in the range

m — 1 0 m

< r < (m = 1, 2, . ) .
m m + 1

Equality in (3) /or α given r is possible under, and only under, the following

circumstances:

( i ) r 2 < 1/2 crno? ω ( z ) = 77Z (as remarked above )

( i i ) r 2 = 1/2, and either

ω(z) = 7/2

(5)

N /72 — 1 777
( i i i ) < r 2 < U > 2 ) ,

m m + 1

( i v ) r 2 = ( m > 2 ) ,
m + 1

and either

It is very easy to check that for the cases listed above one actually obtains

equality in (3), so that if (3) can be shown to be generally true it follows that

it is the best possible inequality.

Since / (z ) = 0 and \f (z)\ < 1 imply that f (z ) -< z9 we can, as an applica-

tion of the theorem, immediately state the following:
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C O R O L L A R Y . / / / ( z ) = 0 and \ f ( z ) \ < 1 for \ z \ < 1 , t h e n

a ( r ) < π m r 2 m

i n t h e range

m - 1 n m
r

2

m + 1
= 1,2,...).

This is the best possible inequality. [The cases of equality can be obtained by

putting Co = 0, Ct = 1 in ( 5 ) ] .

3. Lemmas. Before proceeding with the proof proper of the theorem we shall

state some known results, and derive some others.

The following notation will be adopted as standard:

2

/ {z) = c0 + cγz + c2z
2 + , F ( z ) = C 0

ω(z) = βχz + β2z

Thus

Furthermore, as an easy computation shows,

α ( r ) = ττ £ k \ c k \ 2 r 2 k , A { r ) = π £ k \ C k \ 2 r 2 k .

/c = l k = ί

L E M M A 1 [ 2 ] . If ω U ) φ ηz, then | C l I < \CΪ | , \βγ \ < 1.

This is an immediate consequence of the Lemma of Schwarz,

L E M M A 2 [ 2 ] . | β2 \ < 1 - \βι \ 2 .

This is proved by applying the Lemma of Schwarz to the function

ω(z)/z-βί

1 - ^ ω U ) / * '

LEMMA 3 [ 2 ] . max \f(z)\< max \F(z)\ ( r < l )
\\ \\
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Also a consequence of Schwarz's Lemma.

LEMMA 4.

(6) £ K l 2 ^ < £ \Ck\
2r2k ( r < 1 ) .

k=ί A;=l

This is a special case of a more general inequality for mean values of

arbitrary nonnegative order on the circle | z | = r The proof by Littlewood [ 2 ]

uses subharmonic functions. A different proof has been given by Goluzin [ l ] .

LEMMA 5. If

Ck

k=l k=l

then

(7) s n < S n ,

with equality for a particular n implying that

(8)

Ck\\

The inequality (7) is a known result [ l ] , but we shall repeat the proof to

show how (8) follows.

Proof. Let

sn(z) = £ ckz
k,Sn(z)= £ Ckz

k,Rn(z) = £ Ckz
k.

k=ί k=i k=n+l

Then

71 + 1

n + ί
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where

and so on We have

π + 1 ~ rc ^

71+1

d{n)-c r{n)

*k ~ Ck~ ck '

where

so that, for example,

Now, by the fundamental definition of subordination,

Therefore, using (6) in the equation above, we have

n
Σ \ 2 r 2 k + T \dίn)\2r2k < T \C,.\2r2k.

Thus (7) follows, and equality certainly implies

A") - c _ r βn+ι - 0
τι + 1 ~ c τ ι + l ϋ 7 i + i i ° l ~ U >

as was to be shown.

LEMMA 6 [ 1 ] . //{λ/f} are such that

(9) λΛ > 0, λΛ > λfc+1 (A = 1 , 2 , . . . ) ,

do)
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Proof Ly partial summation, using Lemma 5.

LEMMA 6 .1 . Under the hypothesis ( 9 ) , and with sn and Sn defined by ( 7 ) ,

equality in ( 1 0 ) implies

Proof. Let

λk

The hypothesis is

lim

Thus

0 = lim
n —»oo

n nΊ
lim

= lim

= lim
n —»oo

n-l

k=ί k-0

n-l

Σ λnSn - 22

λ Λ ( S Λ ~ Sn)

- λnsn

Since the terms in the square brackets are all nonnegative, (11) follows.

LEMMA 7. //

( i ) / (z ) = c 0 + c\z + c2z
2 -< F{z) = c0 + Ciz + C2z

2

 9

( ϋ ) k i l < I C i l ,

( i i i ) | c 1 | 2 + | c 2 | 2 = | C 1 | 2 + | C 2 | 2 ,
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then

(12) f ( z ) = c o + C i η z 2 , F ( z )

Proof. As indicated by ( i i ) , we have | Cι \ > 0, so we can normalize as

follows:

(13) f(z) = Cιz + c2z
2

9 F(z) = z + C2z
2.

L e t

P = l c i \f <7 = I C 2 |» Q = I C 2 I .

We h a v e , a c c o r d i n g t o ( i i ) a n d ( i i i ) ,

( 1 4 ) p < 1 ,

( 1 5 ) p 2

+ g 2 = l - f Q2.

N o w

m a x I cxz + c2ί
2 \ = | cx \ + | c 2 | = p + q ,

| z | = l

as is obvious if Cγ — 0, and follows by taking z = e if c^ ^ 0.

Similarly,

max | z

| z | = i

Applying Lemma 3, we get

(16) p + q < 1 + ρ .

The shaded triangle OLγL2 in the facing figure corresponds to the inequality

(16). The quarter-circle P1P2P3 corresponds to the equality (15); Pi lies below

Ll9 and P 3 to the left of L 2 , because

y/l + Q2 < 1 + Q for any Q > 0.

The circle and the hypotenuse of the triangle intersect in two points with co-

ordinates (Q9 1) and ( l , ζ ) ) , respectively (merging into a single point if Q = 1).

2 A more general result is stated, but not proved, in a footnote on page 56 of
Rogosinski's paper [ 3 j .
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When Q >_ 1, the point L 3 in the figure has the coordinates (19Q)9 and L 4 has

coordinates (Q, 1). When Q < 1, then L 3 = (() f 1), L 4 = (1 , Q). In either case,

(14) dictates that eligible points (p, q) lie to the left of L 4 , and therefore on

the arc PιL3. Therefore, since the ordinate of L3 is never less than 1, it is

always true that

(17) < 7 > 1 .

We proceed by considering two cases:

(I) ρ = o,

(π) Q > o,

and show that (II) leads to a contradiction. Thus, assume Q > 0. We have

c2z
2 = ω + C 2 ω 2 , C2 ^ 0,

Therefore

(18)
- 1 + 1 / 1 c2z

2)

2C2

where, since ω(z) is regular in | z \ < 1, we must have

(19) l + 4 C 2 ( C l z + c2z
2) φ 0 (1*1 <

0
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and we must take that branch of ω(z ) which equals zero for z = 0β Let zl9 z2 be

the roots of ( 1 9 ) , Since ( 1 9 ) is to have no roots for | z \ < 1, we have

and therefore, by ( 1 9 ) ,

1

4c2 C2

or, in view of (17),

(20) Q < 1/4.

The next step consists in applying Lemma 2. By (18),

y = ω ' ( 0 ) = C ι , β3 = - ω " ( 0 ) = c2 -

Thus, by Lemma 2,

and so

\c2-c\C2

that is ,

pHl-Q) < 1.

But q > 1 by (17), and 1 - Q > 0 by (20). Therefore

9 = 1 and p = 0.

Equation (15) now implies Q = 0, showing the impossibility of (II).

Since (I) is the only alternative to (II), we may conclude that

(22) ρ = | c a | = o.

Then (14), (15), (17), (22) jointly imply

q = 1 and p = 0.
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Therefore, by (13 ),

and (12) now follows.

(z ) = ηz 2 ,

LEMMA 8 Let m be a fixed positive integer, t a fixed positive real number,

and k a positive integer. The following relations hold:

( i ) for any k9 if
— 1 772 i

< t < , then mt > kt
772 + 1

( i i ) if k <^m9 t >_ , then {kt \^ is an increasing sequence',
m

( i i i ) if k < m, t > , then { kt \^ is a strictly increasing sequence;
m

(iv ) if k <_ m — 1, t >_ 9 then { kt }, is a strictly increasing sequence;
m

(v) if k >_ m9 t <_ , then \ kt }, is a decreasing sequence;
m + 1

(vi) if k >_ m? t < , then {kt }, is a strictly decreasing sequence;
772 + 1

m t

(vii) if k >_ m + 1, t <^ ; then { kt }, is a strictly decreasing sequence.
m + 1

4. Proof of the theorem. For any positive integer m,

(23)

mτ- c, Γ + c, rr-
k=l k=m

mΊ m-1
2m

where Σ/^x is to be understood to have the value zero; (23) can be rewritten as

(24)
a(r)

A = i

m- 1

k=ι

where
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(25)

Similarly,

(26)

mr2m if 1 <k <m-l,

kr2k if k > m.

Air)

k=l

Kmr2m-kr2k)\Ck\
2]t

Henceforth let r be positive, and restricted to the interval

m

m + 1

We see by (25) and Lemma 8 ( v ) that

(m)

if

i - l

(m)

772

while, by Lemma 8(vi i),

(m) χ(τn (m)

if

7 7 1 + 1

By Lemmas 6 and 6.1, therefore,

. . . > 0

(27) < Σ = 1 , 2 , . . . ) ,

with equality possible only if

771 1 2

(28) S, = s, for all k >_m9 providing < r <
+ 1
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or

S, = s, for all k >_ m + 1, providing r =

Subtracting (26) from (24) gives, by (27),

/ \ __ A / \ rn-i m-ί
(30) J J L ί < £ [(mr2m-kr2k)\Ck\

2]-Σ[(mr2m-kr2k)\ck\
2],

77

with equality possible only if conditions (28) and (29) are met. By Lemma ( 8 )

( i i ) , ( i i i ) , and ( iv) , the last sum of (30) is nonnegative, and can vanish only if

m — 1 m
(31) ck = 0, k = 1, 2 , , m - 1, providing < Γ <_

m m + 1 '

or

9 m
(32) c, = 0, fe = 1 , 2 , . . . , m - 2 , if r 2 =

We conclude that

(33)

m-1

k = ι k-i

By Lemma ( 8 ) ( i v ) , the last sum of (33) is nonnegative, and can vanish only if

(34) Ca = C 8 - . . . - C , , , . , - 0 .

Therefore

(35) a { r ) ~ Λ ( r ) < ( m r ^ - ^ l ) ^ k\Ck\
2r2k

(mr2m-2-l)
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where the first inequality sign may reduce to an equality sign only if (28),

(29), (31), (32), and (34) hold, while the second inequality may become an

equality only if either m = 1, or r 2 = 1/2, or

1

From (35) we immediately obtain the desired relation ( 4 ) . Only the need for

examining the possibility of equality in (35) remains.

Collecting the available information for this case, we are led to ( 5 ) ( i i i )

when

m — 1 m
< r 2 < , m > 2 .

When

r 2 = , m > 2,
m + 1

on the other hand, we obtain

with

Since f (z) -< F (z), we also have

Therefore, using Lemma 3, we get

< l c i

Squaring (37), and subtracting (36), yields the conclusion that either cm = 0

or cm + ι = 0, and therefore ( 5 ) ( i v ) follows.

For r 2 < 1/2 we know that
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(38) £ K l 2 = Σ \ck\2 f o r * > 2

For r 2 < 1/2, from Lemma 6.1 it i s found to be necessary that ω{z) = ηz, a s

was already shown by Goluzin.

The only remaining case is r2 = 1/2. Again ω{z)-ηz gives equality in

( 3 ) . We leave this trivial possibi l i ty aside by restricting our attention ( s e e

Lemma 1) to

(39) | c , | < | C J , | j8J < 1.

Applying Lemma 5 to (38) yields

(40) ck =βk

ιCk (4 = 3 , 4 , . . . ) ,

or, by (38) and (40),

Therefore, in view of (39),

ck = Ck = 0 (k > 3 ) .

T h i s s h o w s t h a t f (z) a n d F (z) a r e r e s p e c t i v e l y of t h e f o r m s

( 4 1 ) f ( z ) = cQ + c γ z + c2z
2 a n d F ( z ) = cQ + C^z + C2z

2 .

Equations (38) and (41) contain the hypotheses of Lemma 7, and the result

(5) ( i i ) of the theorem therefore follows.

In conclusion, it may be remarked that due to Lemma ( 8 ) ( i ) , the function

T (r) may be written in the compact form

Π r ) = max {kr2k'2) (0 < r < 1 ) .

As an immediate consequence, we have the much weaker result that

T(r) < T kr2k'2 = ( r > 0 ) .

Λ = ι ( 1 - r 2 ) 2
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