
ON A THEOREM OF BEURLING AND KAPLANSKY

M. COTLAR

1. Introduction. The object of this paper is to remark that a natural and

simple proof of the theorem of Beurling and Kaplansky (Theorem 1 below) can

be obtained by adapting to general groups a classical proof already given in the

books of Wiener [8] and Zygmund [ 9 ] . In fact, Theorem 1 is an immediate con-

sequence of a lemma (Lemma 1 below) which was proved by these authors in

the case when the group is the integers or the real numbers. An easy generaliza-

tion of Lemma 1 (Lemma 2 below) yields immediately the generalization of the

Beurling and Kaplansky theorem stated as Theorem 2 below. For the history

of the development of this theorem, see [3, p. 149] and [ 5 ] ; the book [3] did

not appear until the present paper had been submitted, but it seemed wise to

add the reference.

2. Statement of results. Let A = { α, b, \ be a locally compact abelian

group and X = {x9y9 ••• 1 the dual group ( the group operations will be written

multiplicatively )• Let

denote the set of all integrable functions with respect to the Haar measure of A,

the L ι-norm of /, f(x) the Fourier transform of f(a)9

the product of convolution (that is, the product in the group algebra),

the ordinary product of functions, and

( x 9 a ) = x ( a ) = a { x )
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the va lue of the charac ter x G X at the point a EA. S u b s e t s of A wi l l be denoted

by C, / ) , . . . , s u b s e t s of X by P, Q, S, , and s u b s e t s of L 1{A ) by /, / , .

The spectrum S(f) of a function feLι{A) is the s e t of the p o i n t s x Gλ 7

such t h a t f (x) = 0, and the spectrum S ( / ) of a s e t / C L ι(A ) i s the s e t of the

p o i n t s x G X such t h a t / (x) = 0 for all / G /.

$ e s u p p o s e known the following T a u b e r i a n theorem of Segal and Godement

( s e e [ 1 ] or [ 4 ] ) .

T H E O R E M A . / / / is a closed ideal of Lι{A)y and fβLι(A) is such that

S (I) is interior to S (f )9 then f G /.

Theorem A is a c o n s e q u e n c e of the regular i ty ( in the s e n s e of S i l o v ) of the

a l g e b r a L ι(A ), and the following Lemma A ( s e e [ 7 J, [ l ] , or [ 4 ] ) .

L E M M A A . Given f G Lι(A) and e > 0, there is a function g G L ι(A ) with

the following properties:

( i ) / (x) - 0 implies g (x ) = 0 ; that is, S (f ) C S {g).
Λ

( i i ) If h — f — g$ then h(x) vanishes in a neighborhood of the point oo {that

is outside of a compact set P CX).

( » i ) \\g\\ < 6

It i s known [ 6 ] t h a t T h e o r e m A i s not t rue if S(f) i s m e r e l y c o n t a i n e d in

but not i n t e r i o r to S{f); h o w e v e r , if S{I) c o n s i s t s of a s i n g l e p o i n t , t h e fol-

l o w i n g t h e o r e m i s t r u e :

T H E O R E M 1 ( B e u r l i n g a n d K a p l a n s k y ) . // / is a closed ideal such that

S ( / ) consists of a single point x Q y then S ( f ) D S ( / ) implies f G /.

This is a special case of the following:

T H E O R E M 2 . Let I be a closed ideal such that the boundary P of S{I) is

a reducible set {or that the intersection of P with the boundary of S{f) is a

reducible set) Then S {f ) D S ( / ) implies f G /.

A set is said to be reducible if it contains no nonvoid perfect subsets.

Theorem 1 was proved by Beurling in the case when A consists of the real

numbers, using complex-variable methods. Kaplansky proved the theorem in the

general case using the structure theory of groups. A direct and simple proof of

Theorem 1 is given in a recent paper of Ilelson [ 2 ] , and in the same paper is

given a complete proof of Theorem 2.
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We want to show that a still more natural and simple proof of Theorems 1 and

2 can be obtained as follows.

2. Proofs. We first reduce Theorem 1 to the following Lemma 1 (observe

that Lemma A is obtained from Lemma 1 by replacing the point x0 by oo)

LEMMA 1. Given a point x0 G S ( / ) , / G Lι(A), and e > 0 ? there is a func-

tion g E Lι(A) with the following properties:

( i ) S(f)CS(g):
A

(i i) if h = f — g9 then h (x ) vanishes in a neighborhood U (x0 ) of the point

( H i ) | | g | | < e.

It is easy to see that Theorem 1 is an immediate consequence of Lemma 1

and Theorem A. In fact, if S(I) cons is t s of a single point x0 G S ( / ) , then by

Lemma 1 there is a function h such that | | / - λ | | < e, and χ0 is interior to

S(h); hence, by Theorem A, h £ /. Since 6 is arbitrary and | | / - / ? | | < e, it

follows that / G /, and this proves Theorem 1.

Similarly it is easy to see that Theorem 2 is an immediate consequence of

Theorem A, Lemma A, and the following Lemma 2.

LEMMA 2. Given a compact reducible set Q C S (f ), / G L (A)9 and e > 0,

there is a function g G Lι{A ) with the following properties:

( i ) S ( / ) c S ( g ) ;

( i i ) if h - f - g$ then h ( x ) vanishes in a neighborhood U {Q) o f t h e s e t Q ;

( i ϋ ) l l g l l < e

Hence Theorems 1 and 2 will be proved if we prove Lemmas 1 and 2.

3. Proof of Lemma 1. Without loss of generality we may suppose # 0 = l

of X. Then by hypothesis

/ ( * „ ) = J f(a)da = 0.
A

Given e > 0, there is a compact set C C A such that

( 1 ) / \f(a)\ da < 6 / 4 ,
A-C
I
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hence also

( 2 ) I [ f(a)da\ = I / f(a)da\ < e / 4 .

If p (a) i s a n y f u n c t i o n from Lι(A), a n d g = p * f, vie h a v e

g ( α ) = / f{b)p(ab-χ)db= ί + ί f(b)p(ab-ι)db,

A C - n

(3) | | g | | < / I / / ( M p ί α ό " 1 ) ^ !

•'/I JA-C

Using (1) and (2), and denoting the characteristic function of the set

C = A — C by φ r , 9 we have

- C

= ί l I(3a) Λ'= ί l I f(b)φrAb)p{ab-ι)db\da

= W(fΦc,) *p\\ < c

= I I P I I f \f(a)\da< e/4 | | P | | ,

(3b) M < [ \ [ f(b)[p(ab-ι)-p(a)]db\da

+ I \ I f(b)db\ \p(a)\da
JA JC

< ί s u p f\p{ab-ι)-p{a)\da} \\f\\

b'1) by pL e t u s denote p (ab'1) by p (a); then

( 4 ) | | g | | < € / 2 | | p | | + 11/11 sup

bee

Since
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g(x) = f(x)p(x),

A A

/ {x) = 0 implies g(%) = 0, and inequality ( 4 ) shows that Lemma 1 will be

proved if we prove the following proposition.

PROPOSITION A. Given e > 0 and a compact set C C Λ9 there is a function

p(a) such that:

a) p ELι(Λ) and \\p\\ < 2 ;

b ) there is a neighborhood U ( 1 ) of the point 1 G/Y such that p(x) = 1 for

xeU(l);

e ) | | p — p | | < 6 for b in the compact set C.

Proof of Proposition A. Take two compact neighborhoods V and F ' of the

1 G X, of measures η and r\\ and such that

(5) F C F ' ; τy'< 4^,

and define

(6) pU)=i/7?5<L * < L , ! = 1A? \Φ*Φ'\,

A A

<£ = <
A A

where φ = φy (φ' = φy,) is the characterist ic tunction of the se t V(V').

Since φj <p E L 2 ( A 7 ) , by P l a n c h e r e l ' s theorem p(x) is the Fourier transform

of a function p{a) G L ι ( i ) . Since V C V, there is a neighborhood [/ = {/( 1)

such that F U CV'9 and from ( 6 ) it is clear that p ( # ) = 1 for x G U. Using

the Plancherel theorem it is easy to see that p (a) sat is f ies a l so the conditions

a ) and c ) , provided F ' is taken small enough (cfr. [ δ ] ) For instance, let us

prove condition c ) . Since the Fourier transform of φ — φ is <p(x) [(x, b) — l ] ,

and s ince φ(x) = 0 outside of F ' F ' , it follows that iϊ b EC, and F ' i s small

enough, then

\\φb-φ\\2=\\[(x,b)-l]φ\\2<eι\\φ\\2 = eιη
l\

for every b G C, where 6i > 0 is arbitrarily small Since

p{a) = 0 ( α ) φ'{a)/η,

by Plancherel's theorem,

| | p 6 - p | | ι = l / η \ \ φ φ ' ~ φ b φ ' b \ \ < l / η ί \ \ φ ' ( φ - φ b ) \ \ + \ \ φ b ( φ ' - φ ' b ) \ \ ]
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< l / η l \ \ Φ ' \ \ 2 e , \\Φ\\2 + \\Φ\\2 e t l l ώ ' I I J < 2 e t ( T ^ ' ^ Λ ? < 4 e t ,

and this proves condition c ) .

REMARK. AS we already mentioned, the foregoing proof of Lemma 1 is an

adaptation of a proof given in Zygmund's book. Zygmund considers the particu-

lar case when A consists of the integers and X is the unit circle, so that the

functions f (x) are periodic functions with absolutely convergent Fourier series,

and he takes for p (x) the function

p{x)= 1 if I Λ; I ^77,

p ( * ) = 0 if | * | > 2η,

p(x) linear if η <_ | x \ <^ 2η .

Then he proves that the total variation of the derivative of the function is

bounded by a fixed number, and from this he deduces properties a ) , b), c) of

the function p ( α ) . This is the only point in Zygmund's proof which does not

apply to general groups; however, it is easy to see that the function p used by

Zygmund is exactly what formula (6) reduces to when V is taken to be an in-

terval, and thus the proof can be adapted to the general case.

4. Proof of Lemma 2. Let QcS(f) be a compact reducible set, and let

Q^ι'=zQ' be the set of the points x such that any neighborhood of x contains

an infinite subset of Q. Define

and form in the usual way the sequence of derivative sets:

QjQ{ι)DQ{2)i..*DQ{a)D . . . .

Let w be such that

Q (w) = Q {w +1) .

then Q^w>j is a perfect set; and since Q is reducible, Q^w'= 0. If w = 1, then

Q is a finite set and n successive applications of Lemma 1 yields Lemma 2 in

this case. We will now prove Lemma 2 by induction on w.

Suppose that Lemma 2 is true if (? = 0 for lί; < wo; we shall prove that
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it is also true if Q^w' =-. 0 for w = w0. Consider first the case when w0 = w' + 1.

Then Q ' is a finite set, and hence there is a function h E Lι{Λ) such that

H / - A I I < e/2, S ( / ) c S U ) ,

and h(x) vanishes on an open set U D () . Since Q— U has the property

and y' < u>0, by the inductive assumption there is a function A' such that

S(f)cS(h)CS(h'), \\h- h'\\ < e/2,

Λ A

and h'{x) vanishes on an open set ί/'D Q — U. Hence h'{x) vanishes on U u ί/'D

0 , and

If 7̂ o i s n°t of the form w '-i- 1? then by definition

ρ = n ρ ( W ) .
lί; < w o

hence for some M;' < ^ 0

 w e must have Q = 0, and by the inductive assump-

tion Lemma 2 is true in this case.

This proves Lemma 2.
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