NOTE ON THE MULTIPLICATION FORMULAS FOR THE
JACOBI ELLIPTIC FUNCTIONS

L. CarLITZ

1. Introduction. For ¢ an odd integer it is well known [4, vol. 2, p. 197 ] that

snx ¢ G(lt)(z)
(1.1) SN X = — (z =sn%),

(¢)
Got (z)
where

1) _ 2 t
C'(o =l+ay, z+ay,z°+ - +ay,-z,

(1.2)

6 _ 2 t’ (42 _
G(l =t+a, z+a,2 +e0eta, 2 (¢7= (£ -1)/2),

and the a;; are polynomials in u = k? with rational integral coefficients. If we

define
B () =B,(tu)
by means of

2m

(2m)!

sn lx

(1.3) (B, +,(t)=0),

tsnx

= 2 B,,(t)
m=0

it follows from (1.1) and (1.2) that ¢8, (¢) is a polynomial in u with integral
coefficients for all m and all odd ¢. We shall show that

1
(1.4) Bom(8) =Hn() — 22 = 42w,
p-t|2m P
ple

where Hp(t) =H,(t,u) denotes a polynomial in u with integral coefficients,
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the summation in the right member is over all (odd) primes p such that(p~1)|2m
and p | finally 4,(u) is defined [4, vol. 1, p. 399] by means of

2mt1

(1.5) snx =sn(x,u) = Z Az”‘“(u)(2m+1)! |

m=0

so that A, +,(u) is a polynomial in u with integral coefficients. We show also
that

(L6) ¢35 (-1 (;)Bm”(p_‘)(t)A;‘s(u)sO (mod (p™, p")),
s$=0

where p is an arbitrary odd prime and r > 1; by (1.6) we understand that the
left member is a polynomial in u every coefficient of which is divisible by the

indicated power of p.

The proof of these formulas depends upon the results of [2]; for a theorem
analogous to (1.4), see [1].

2. Proof of (1.4), Put

0o 2m
(2.1) =z x .
snx ”Eﬁzm (2m)!

Then B, is a polynomial in u with rational coefficients; indeed [2, Theorem

2],

=42/ P () ((p=1)|2m)
(2.2) pB, = (mod p)
0 ((p-1)2m).

In the next place, if we write

sn tx sn tx x
= ’
tsnx tx sn x

and make use of (1.3), (1.5), and (2.1), it follows that

m 2m t2.s
(2.3) B, (V=3 (28) Fameastzgss (0) o
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As already observed, tB,, (¢) has integral coefficients; thus the denominator

of Bzm(t) is a divisor of ¢. Now let p denote a prime divisor of ¢, and assume
p¢|(2s +1), e > 1. Then

2s+1>p° >3%>e+2, 2s >e+1,

Thus not only is ¢2°/(2s + 1) integral (mod p) but it is divisible by p. Since
by (2.2) the denominator of B, ,, contains p to at most the first power it there-
fore follows that the product

(2.4) Bameas S/ (25 +1)

is integral (mod p) when p |(2s + 1).
Suppose next that p 4 (2s + 1), where s > 1. It is again clear that (2.4) is

integral (mod p) since p occurs in the denominator of B, p-2s at most once

while it occurs in ¢2° at least twice. Thus as a matter of fact (2.4) is divisible

by p in this case.

It remains to consider the term s =0 in (2.3). Clearly we have proved that
(2.5) pﬂzm(t)spﬁzm (mod p).

Comparing (2.5) with (2.2) we may state:
THEOREM 1. Ift is an arbitrary odd integer then (1.4) holds.

We remark that the residue of Ap(u) is determined [2, $61 by

1 1
Ap(u) = (—1)‘/’(P")F(—, -3 1; u)
22

(2.6)

%(p-1) 1y _ 2
N e ”) y

j:o ]

(mod p).

Here F denotes the hypergeometric function.

3. Some corollaries. By means of Theorem 1 a number of further results
are readily obtained. By H,,, will be understood an unspecified polynomial in

u with integral coefficients.

Since B,,,, as defined by (2.1), is integral (mod 2) we have first:
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THEOREM 2. Ift is divisible by the denominator of B, , then

(3.1) By () =H, +B, .

If t is prime to the denominator of B, , then Bzm(t) has integral coefficients.
THEOREM 3. If t;, ty are relatively prime and odd, then

(3.2) ﬁgm(tlt2)=H2m +B2m(tl)+ﬁ2m(t2)'

If ¢t is a power of a prime we get:

THEOREM 4. If p is an odd prime and r > 1 we have
(3.3) By mP") =Hap + B, (p)

Using (3.2) and (3.3) we get also:

THEOREM 5. The following identity holds:
(3.4) By (t) =Ham + 2= B,.(p)
ple

where the summation is over all prime divisors of t.
We have also:

THEOREM 6. If a is an arbitrary integer, then the product
(3.5) ala™~1)B, (1)

has integral coefficients.

4. A related result. It follows from (1.1) and (1.2) that, for ¢ odd,

00
(4.1) sn tx=z Cort1sn? i,

r=o

where the C,,+; are polynomials in u with integral coefficients, Clearly we have

(4.2) (t)— Z A(2r) Car+1y
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where the Ag:) are defined by

L] 2m

2r _ (2r) %
(4.3) sn¥x= 7 A22”: G’

m=0

and like the C’s are polynomials with integral coefficients.

We shall now prove the following property of the C’s.

THEOREM 7. For t odd we have
(4-.4) (2m+1)C2m+1=0 (mOdt) (m=0! 19 2"")9

where (4.4) indicates that every coefficient in (2m +1)Cy 4y is divisible
by t.

Proof. Differentiating (4.1) with respect to x, we get

cn tx dn tx hnd
(4.5) { ————— = z (2m +1)Cypm+1sn?™x.
cnxdnx m=0

Now we have, in addition to (1.1),
6 (z2) 6\ (z)

= (z =sn’x),

ent G(()t)(z) dn x th)(z)

cn tx dn tx

(4.6)

where G, and G; are polynomials in z of the same form as G,. By means of
(1.1) and (4.6) it is evident that (4.5) implies

(4.7) t > B = 3 (2m 4+ 1) Copy 2™,
m=0

m=0

where the H,, are polynomials in u with integral coefficients. Clearly (4.4) is

an immediate consequence of (4.7).

Kronecker [5, p.439] has proved a similar result in connection with the
transformation of prime order of sn x. For a result like Theorem 7 for the
Weierstrass g-function, see [3 1

Returning to (4.2) we recall [2, $ 21 that
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(4.8) AP0 20 (mod(2r)1) (m=0,1,2,...),

We rewrite (4.2) in the form

(2r)
m 2r)! A (2r +1)Cprs
(4.9) B, (=3 @)} Zam .
m oo 2r+1 (2! t

By (4.4) and (4.8) the last two fractions in the right member of (4.9) have
integral coefficients; also (2r)!/(2r + 1) is integral unless 2r + 1 is prime.
Consequently (4.9) becomes

1 pC
(4.10) B2m(t)=H2m.. > —Az(,e;l)"'ﬂ'
p-t|2m P ¢
plt

Comparing (4.10) with (1.4) we get:

THEOREM 8. If the prime p divides t, then

pC
(4.11) -—psl (mod p).
t

Hence if p® |t, p®*' t ¢t it follows that

(4.12) C (mod p€).

5. Proof of (1.6). Again using (5.1) we have

o0
sn tx 25
= Z C2,-+lsn x.

=0

(5.1)

sSn x

Now it is proved in [2, Theorem 4] that the coefficients Ag";f) defined by (4.3)
satisfy

r r .
(5.2) z (=1)"s (S)A;r-s)b/(p-l)Agfntzsb =0 (mod(pzm, p)),
=0

where p€ !(p —1) | b. Hence using (1.3) and (5.1) we get:
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THEOREM 9. If p ' (p —1)|b, then

(53) 3 <_1)'-S(;)Aﬁ,"s)””f""ﬁzmsbu)zo (mod (p2™,per)),
S=0

For b =p -1, (5.3) evidently reduces to (1.6),
It is of some interest to compare Theorem 9 with the results of (2,871

If we take r = 1, (5.3) becomes

t{ﬁ2m+b(t)—As/(P'l)ﬁZm(t)}EO (mod (p2™, p)).

If we put

ﬁzm(t) = Z Bzm,iui

and recall that, by (2.6),

4,(0) = (~1)4(P"1) (mod p)
we get exactly as in the proof of [2, Theorem 61.

THEOREM 10, Let p® ' (p =1)|b and p/"* < i < p/. Then
(5.4) ‘82m+b, ;= (—l)%bﬁZm’ ; (mod (p2™, pe)).

6. An elementary analogue of 8, (t). It may be of interest to say a word
about the numbers ¢m(t) defined by

etx_l 00 xm
(6.1) —_— = ¢ (t) —,
t(e*-1) mZ=:0 "om!

where ¢ is now an arbitrary integer. Clearly (6.1) implies that
t-1
tém(t) =S,(t) = Z s™,

s=0

By a theorem of Staudt (see for example [6, p.1431),
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(6.2) P, () =G+ 2 ¢ (p),
ple

where G is an integer. Moreover,

-1 (p=1|m)
(6.3) pé,(p) = (mod p)
0 (p=14m).
It follows [6, p.153] that
(6.4) 6, (=6- > L
p-t|2m P
ple

Thus Staudt’s theorems (6.2) and (6.4) may be viewed as elementary analogues
of (3.4) and (1.4).
Formulas like (6.2) and (6.4) hold also for the numbers Y, ,(¢) occurring in

sin tx i g (1) Zm
= t
tsinx =0 Imo T (2m)!
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