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1. Introduction. The von Neumann minimax theorem [2] for finite
games asserts that for every r xs matrix M=|m(%, j)|| with real elements
there exist a number v and vectors

p=(p1, ct pr)y q=(<11, ey Qs)v Dy (IJ_—ZO, szzz q.f:l
such that
S ponli, 2= amli, )

for all ¢, 5. Thus in the (two-person, zero-sum) game with matrix M,
player I has a strategy insuring an expected gain of at least v, and
player II has a strategy insuring an expected loss of at most v. An
alternative statement, which follows from the von Neumann theorem
and an appropriate law of large numbers is that, for any ¢>0, I can,
in a long series of plays of the game with matrix M, guarantee, with
probability approaching 1 as the number of plays becomes infinite, that
his average actual gain per play exceeds v—e and that II can similarly
restrict his average actual loss to v+e¢. These facts are assertions about
the extent to which each player can control the center of gravity of
the actual payoffs in a long series of plays. In this paper we investigate
the extent to which this center of gravity can be controlled by the
players for the case of matrices M whose elements m(i, j) are points
of N-space. Roughly, we seek to answer the following question. Given
a matrix M and a set S in N-space, can I guarantee that the center of
gravity of the payoffs in a long series of plays is in or arbitrarily near
S, with probability approaching 1 as the number of plays becomes in-
finite ? The question is formulated more precisely below, and a complete
solution is given in two cases: the case N=1 and the case of convex S.
Let

—|m(, 5], 1<i<r, 1<j<s

be an rxs matrix, each element of which is a probability distribution
over a closed bounded convex set X in Euclidean N-space. By a
strategy for Player 1 is meant a sequence f={f,}, n=0, 1, 2, ... of
functions, where f, is defined on the set of n-tuples (a, --+, ,), ;€ X
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and has values in the set P of vectors p=(p,, -+, »,) with p, >0, S p,=
1; f, is simply a point in P. A strategy g={g,} for Player II is defined
similarly, except that the values of g, are in the set Q@ of vectors ¢g=
(q1, *+-, @) with ¢;=0, >¥q¢;=1. The interpretation is that I, II select
%, j according to the distributions f,, g, respectively, and a point ;e X
is selected according to the distribution m(i, 7). The players are told
x;, after which they again select 4, 7, this time according to the distri-
butions f,(x,), ¢:(x.), a point , is chosen according to the m(s, 5) cor-
responding to their second choices, they are told «, and select a third
4, j according to fau(xi, @), ¢.(x, x,), ete. Thus each pair (f, g) of
strategies, together with M, determines a sequence of (vector-valued)
random variables z,, @,, «---.

Let S be any set in N-space. We shall say that S is approachable
with f* in M, if for every ¢>0 there is an N, such that, for every g,

Prob {6,=¢ for some n=>N,} e,

where 6, denotes the distance of the point Y7 a;/n from S and =z,, z,,
... are the variables determined by f*, g. We shall say that S is ex-
cludable with g* in M, if there exists d>>0 such that for every >0
there is an N, such that, for every f,

Prob {6,=d for all n==N,} >1—¢,

where z,, x,, --- are the variables determined by f, ¢*. We shall say
that S is approachable (excludable) in M, if there exists f* (g*) such
that S is approachable with f* (excludable with ¢*). Approachability
and excludability are clearly the same for S and its closure, so that we
may suppose S closed.

In terms of these concepts, von Neumann’s theorem has the follow-
ing analog.

For N=1, associated with every M are a number v and vectors p € P,
g € Q such that the set S= {x=>t} is approachable for t<v with f:f,=p
and excludable for t™>v with g: g,=q.

A slightly more complete result for N=1, characterizing all ap-
proachable and excludable sets S for a given M, is given in § 4 below.

Obviously any superset of an approachable set is approachable, any
subset of an excludable set is excludable, and no set is both approach-
able and excludable. Another obvious fact which will be useful is that
if a closed set S is approachable in the sx» matrix M’, the transpose
of M, then any closed set 7' not intersecting S is excludable in M with
any strategy with which S is approachable in M’. Thus any sufficient
condition for approachability yields immediately a sufficient condition for
excludability. A sufficient condition for approachability is given in § 2.

It turns out that every convex S satisfies either this condition for
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approachability or the corresponding condition for excludability, enabling
us to give in § 3 a complete solution for convex S. For non-convex S,
the problem is not solved except for N=1. An example of a set which
is neither approachable nor excludable in a given M is given in § 5, the
concepts of weak approachability and excludability are introduced, and
it is conjectured that every set is either weakly approachable or weakly
excludable.

2. A sufficient condition for approachability. If z, y are distinct
points in N-space, H is the hyperplane through y perpendicular to the
line segment xy, and z is any point on H or on the opposite side of H
from «, then all points interior to the line segment 2z and sufficiently
near x are closer to ¥ than is x. This fact is the basis for our sufficient
condition for approachability.

For any matrix M, denote by M the matrix whose elements 7(s, 5)
are the mean values of the distributions m(¢, j). For any pe P denote
by R(p) the convex hull of the s points >; p;#(¢, ). The sufficient
condition for approachability is given in the following theorem.

THEOREM 1. Let S be any closed set. If for every x¢ S there is a
p (=p(x)) e P such that the hyperplane through y, the closest point in S
to x, perpendicular to the line segment xy separates x from R(p), then
S is approachable with the strategy f:f,, where

p@,) if n>0 and 3,—(+ Sa)¢ s
fn= no

arbitrary if n=0 or z,€S.

Proof. Suppose the hypotheses satisfied, let I use the specified
strategy, let II use any strategy, and let z,, @,, --- be the resulting
sequence of chance variables. For

(2 ge)es.

let y, be the point of S closest to Z,, and write u,=y,—z,. Then, for
z, €8,

( 1 ) E((um xn+1)|x11 ) xn);>—.(um yn)y

where FE(x|y) denotes the conditional expectation of « given y and (u, v)
denotes the inner product of the vectors » and v.
Let ¢, denote the squared distance from z, to S. If §,>>0, then

(2 ) 3n+l§l5_vn+l'—yn[2= !&n—ynlz"'_z({["n_ym 57n+1—§7n)+ I&ru-l_zznlz'
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Since Z,.1—Z,=(C,+.1—%,)/(n+1), we have

3 Bty Tus1—3,) = En " Ynr Tns1=Yn) | (Fa=Yn, Yn=Fn)
(3) @~y 1= %) n+1 n+1

and

(4) la—7n+1_5:n|2§c/(n+1)z ’

where ¢ depends only on the size of the bounded set X. From (2), using
@), (3), and (4), we obtain, replacing » by n—1,

(5) E@3s, -+, 0 )=(1-2) 0,0 +5, if 6,.,>0.
n n

Moreover

(6) 0<0,<a

and

(7) 16, —8,al< 2 .
n

Thus it remains only to establish the following.

LEMMA. A sequence of chance variables 6., 6, -+ satisfying (5),
(6), and (7) converges to zero with probability 1 at a rate depending only
on a, b, ¢, that is, for every ¢>0 there is an N, depending only on e,
a, b, ¢ such that for auy {8,} satisfying (5), (6), and (7), we have

Prob {6,=¢ for some n=>N,} <e.

Proof of Lemma. Let n, be any integer. There exists n,>n,,
depending only on %, ¢, a, ¢ such that

Prob {6,=¢/2 for n,<n<n,} <e/2.

To see this, define, for n>n,, «,=96, if 6,>0 for n,<i<n, and «,=0
otherwise. Then «,<e/2 implies 6,<e/2 for some ¢ with n,<i<m. Also
a,,<a and, for n>n,,

By -y oy )<(1= 2N 4.2,

so that

E(a,,);(l—%)za(an_l) +L
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Thus E(«,)—0 at a rate depending only on 7, @, ¢, and there is an n,
depending only on n,, ¢, a, ¢ for which E(«,) is so small that

Prob {a, <e/2} >1—(¢/2).

For every =, k with n<k we define variables z,, as follows. Un-
less 6,.,<e/2 and 0,>¢/2, 2,,=0 for all k. If 8,.,<le/2 and 8,=>¢/2 for
n<i<k, then z,=0. If 0,.:1<le/2, 6,=¢/2 for n<i<k, and 0,,<¢/2,
then 2z,,+2,,=0s, for k=k,. If 8,=¢ for some n=>n,, either J,=¢/2
for all » such that n,.<n<n, or 2z,,=>¢ for some n_>n,. The former
event has already been shown to have probability less than ¢/2; it
remains to show that the probability of the latter event can be made
less than &/2 by choosing n, sufficiently large.

Fix n>n, and write fo=2u —%u c-1, k>0, B,=0. Then, if 2, ,.,=>¢/2

E(ﬁklznm ﬁny ey, ﬂk_l)__é_—% Zn k-1 +~;—G—2§—2£k

for sufficiently large n, depending on ¢ and e, and [3,|<b/k. If z,,_.<C
¢/2, B,=0 so that, in any case

(8 ) E(ﬂklﬂn’ M) ﬂk-l)é—%max(lﬂku ﬂm M) ﬂk-—l) .

We now apply the following form of the strong law of large
numbers, recently proved by the writer [1].

THEOREM 2. If z,, 2,, --- i8S a sequence of random wvariables such
that |2,|<1 and

E@z:, + ¢, 2p)<—umax (|2 21, *++, Ze-1)s u>0,
then for all t,

Prob {#,+ -+ +2,=>¢t for some k} < (E@)c .
u

The variables 2z,=(n/b)f;-,.. satisfy the hypotheses of Theorem 2,
with u=(¢/2b), so that

1—u Mo
Prob {z,,—z,, >t for some k=>n}=<r", 9'=( 1+u> s

For large n,, 2,,<3¢/4, so that z,,=>¢ for some %k implies z,,—z,,>¢/4.
Thus

Prob {z,,=¢ for some k=n}<s",

where s=r%¢, so that
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Prob {z,,=>¢ for some n=>n,, k=>n} < is"‘,
L)

which will be less than ¢/2 for », sufficiently large. This completes the
proof.

3. The case of convex S.

THEOREM 3. Let T(q) denote the comvex hull of the r points
Siam(e, j). A closed convexr set S is approachable if and only if it
intersects every set T(q). If it fails to intersect T(q,), it is excludable
with g : g.=q,.

Proof. Suppose S intersects every T'(q), let x, ¢ S, let y be the point
of S closest to x,, and consider the game with matrix A=|a(%, 7)|, where
a(t, §)=(y—m,, m(, 7)). Its value is

min max (y—woy Z qjm(iv .7))=mln max (y—wﬂy t)gmin (y~x073)°
q i J qa ETD SES

Consequently there is a pe P such that
(y—xﬂy ; pz%(ir j))grzé];n (y_wl)r 8)

for all 7, that is,
(Y=o, 1) =(y—20, ¥)

for all re R(p). Sinece (y—x,, x.)<(y—x,, y), the hyperplane (y—a,, )=
(y—=,, y) separates x, from R(p), completing the proof.

On the other hand, any 7'(q,) satisfies the hypotheses of Theorem 1
in M’ with f:f,=q,, and so is approachable in M’ with this f. Con-
sequently, if S fails to interseet T(g,), S is excludable in M with
9 9.=q0-

COROLLARY 1. The sets R(p) are approachable with f:f,=p.

COROLLARY 2. A closed convex set S is approachable if and only if
Sfor every vector u,

v(u)=min (u, ),
SES
where v(u) is the value of the game with matriz |(u, m(z, 5))| .

Proof of Corollary 2. If for some u, the inequality fails, then T'(q,)
is disjoint from S, where ¢, is a good strategy for II in the game with
matrix |(«,, m(<, 7))|, and conversely if any T(g,) is disjoint from S and
u, is a vector with
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max (%o, t)< min (4, s),
teT gy s€8

then
V(1)< min (%0, 8).

4. The case N=1.

THEOREM 4. For N=1, let v, v/ be the values of the games with
matrices M, M'. If v'<v, a closed set S is approachable if it inter-
sects the closed interval v'v and excludable otherwise. If v'=w, a closed
set S 1s approachable if it contains the closed interval vv' and excludable
otherwise.

Proof. Application of Corollary 2 to the closed interval AB, A<B
with =41 yields that AB is approachable if and only if v=>4 and
—v'>—B. If v"<v, these are simply the conditions that AB intersect
the closed interval »'», and if v'=v, they are the conditions that 4B
contain vv’. Thus if »'<v every point in v’v is approachable, so that
any set S intersecting v’v contains an approachable subset and is hence
approachable, while if v'Z>v, the interval v»’ and hence any set con-
taining it, is approachable. The last sentence, applied to M’', yields
that if v»’<{v, the interval v’v is approachable in M’, so that any closed
set not intersecting v'v is excludable in M, and that if v/=>w», any point
in vv’ is approachable in M’ so that any closed set not containing v’
is disjoint from a point approachable in M’ and consequently is exclud-
able in M. This completes the proof.

5. An example. We saw in the last section that for N=1 every
set is approachable or excludable. This is false for N=2 as is shown
by the following example. Let

r=s=2, m(1, 1)=m(17 2)=(0’ 0), m(2, 1)=(1, 0), m(2, 2)=(1, 1),

let I, be the set of points (%, ), 0<y=<%, let I, be the set of points
1, ), :<y<1, and let S=I;\JI,. For every n, player I has a strategy
which guarantees that Z,,€ S, as follows: f,=(0, 1) for j<n, so that
ZT,=(u, 1); if u>3}, f,;=(0, 1) for j=>n, and if u<%, f,=(1, 0) for j=>n.
Then for u=%, z,, € I,, and for u<%, Z,€l,. However S is not approach-
able, since the following strategy for II does permit Z, to remain near
either I, or I,. Let %,=(a,, b,), if a,=>%, 9,=(, 0); if a,<%, 9,=(0, 1).
Thus S is neither approachable nor excludable.

In the above example, S is weakly approachable, where a set S is
said to be weakly approachable in M if for every ¢>0 there is an N,
such that for every n=>N, there is a strategy f for I such that, for
all g,
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Prob {8, >¢} <e,

where ¢, is the distance from z, to S. Similarly S is weakly excludable
in M if there is a d>>0 such that for every ¢>0 there is an N, such
that for every n=N, there is a strategy ¢ for II such that, for all f,

Prob {6,<d} <.

Clearly no S is both weakly approachable and weakly excludable, we
conjecture that every S is one or the other. In the above example, it
is not hard to show that a closed S is weakly approachable if it inter-
sects the graph of every function % defined for 0<{t<{1 which satisfies

r(0)=0, 0=(A(t.)—n())/(t.—2,)<1 for 0<5¢,<8,<1,

and is weakly excludable if there is such an %2 whose graph it fails to
intersect.
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