INTERIOR VARIATIONS AND SOME EXTREMAL
PROBLEMS FOR CERTAIN CLASSES OF
UNIVALENT FUNCTIONS

VIKRAMADITYA SINGH

1. Introduction. The theory of regular univalent functions in the
unit circle U, has been developed for various subclasses, for example,
the class of real univalent functions which leads to symmetric domains,
the class of bounded univalent functions whose image domain lies with
in the unit circle and the functions for which the image domains are
convex or star-like. The approach through the calculus of variations
has been used very successfully towards the solution of extremal problems
belonging to the various classes and also towards the determination of
the extremal domains. The purpose of the present paper is to show
how the method of interior variations due to Schiffer [1] can be adapt-
ed for the following subclasses:

(i) The class V of symmetric regular univalent-functions f(z) in

U, which have the form f(z)=z+i a,2" with real a,. In particular we
n=2

show that if o¢(a, ay, ++-, d,; @, @, -+, @, is a real valued function
which is symmetric and analytic in a, and a, (+=2, 3, ---, n) and where
{a,} are the coefficients in the power series expansion of the more
general class V., of regular univalent functions then, under the assump-
tion that the function f(z) whose coefficients {«,} maximize ¢(a,, -+, a,,
a,, =+, a,) is symmetric, the functional differential equation satisfied by
f(z) in the general class V; is the same as the functional differential
equation satisfied by f(2) in the class V.

(i) The class S of bounded univalent funetions f(z) in U, which
are normalized so that f(0)=0, |f(2)] <<1 and at a fixed point ¢eU,,
Sf(©)=w. In particular we find the functions which maximize or minimize
L@l

(iii) The class Y of bounded univalent functions f(z) in U, which
are real on the real axis and are normalized so that f(0)=0, [f()|<1
and at a fixed point ¢ on the real axis f({)=w. In particular we find
the functions which maximize or minimize f(y) for real ye U,.

We observe that the existence and uniqueness of the solutions of
these problems is assured because the families of functions belonging
to the classes V, S and Y are normal and compact.

2. Real univalent functions. Let D be the image in the W-plane
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W=f(z)e V of |2 <1 and let us consider the Schiffer variation

i oW W
1 Wi=W+ap® L +ap .
(1) Cywow-wy " ww—w)

where W, is an interior point of D. It is easily seen that for small
enough p say p, <p, |W—W,=p, and |W—W,|=p, lie entirely in D
and W} is univalent on the boundary C of D and maps it univalently
on to the boundary C* of the new domain D*. Further, we see that
Wi=0 for W=0 and that W7 is real for real values of W. Thus if
W is a symmetric univalent function which vanishes at the origin we
have obtained another neighbouring function which also has the same
properties. In order to be able to add some side conditions to the
funetion W we consider the variation

a, W a,w
2 We=wer Slarswyw,t or—wow, |
where p is an integer > 1. This variation is of the same type as (1)
and has the independent constants (a.)” which can be used to satisfy
the side conditions, if any.

The technique of getting the wvariation formula for f(z) under the
variation (2) is similar to that used in [2] in getting the variation
formula for f(z) under the variation W*=W+ap*/(W—-W,). For the
sake of completeness we mention that we first find the variation formula
for the Green’s function G(W, 0) of D under the variation (2). We
thus have [3]

(3) dG(W, 0)= ﬂi[z‘(: ; Srp’(r, 0)p' (7, W)<;(>7)d77}+0(p3) ,
where

» W Cf‘,W
(4) ¢WF§%VWW+muwmy

and p(W, 7) is the analytic function whose real part is the Green’s
funection G(W, ) and [" is a curve system in D which is homotopic to
C and such that ¢(W) is analytic in the ring system bounded by C and
I'. If now z=¢(W) is the inverse function of W=f(2) then the rela-
tionship of the Green’s function G(W, w) to the function ¢(W) is given
by

(W) —g¢(w)

5 G(W, w)=—1
(5) (W o)==l | wew) |

and in particular
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, 1
G(W, 0)=log -~ .
(W, 0=los

Proceeding in this way we find that the variation formula for f{(z)
is given by

e T ), afe) 1
(6) S O=f)+ S [l_z ot e L

O aol #_ SR . &k 1
+f(zv)(f(2)—f(zy))]+2avp ] 122, 2,/"(z) L) £,—z

1) | -O(p?
b ey FOE

where
t,=¢(W,) or [(t,)=f().

Let f(z) have the {following power series expansion

(7) @) =2+, a2,

n=2

where the a, are real. Then denoting by af the coefficient of z* in
S*(z) and substituting these expansions in (6) and equating the coeffici-
ents of 2" on both sides we get

3 » n-1
(8) U —armfp Bafa S Erraro-ma,, b, e
N = m=

P T (1) o),

where

Ae L
2 (=)

and T,(f(2)) are given by the formula

J(?) 3
9 SUA 7 S — T.(f(t)) .
(9) Ft)Fe)—riey s T

We remark that (8) is the variation formula for the coefficient a,
given by (7) and for v=1 it agrees with the variation formula obtained
by Schiffer [2] for |a¢,] when a, are complex. Further, if we put oda,
=a}/af —a, then da,=da,+0(p’) and we find that Ja, in the present
case is twice O, in the general case a,=a,+1i0,.
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Now let us consider a function ¢(a,, ---, a,, @, ---, a,) which is
symmetric and analytic in a, and a, and has real coefficients. Then,
because a,=«a,+if,, we can write F(«,, ==+, &, By, ==+, B)=¢(a,, +++, a,;
a,, *++, @), and the function F' will contain only even powers of fS,’s
and

or .
10 "=0 f 5= =..-=n=0'
(10) o, it B,=p; B
Further, the condition for the extremum of F' in the general case when
a, are complex is

2[6Fda + ,é’jd@]

which in the limit when p — 0 can be written as

(11) z OF 5, ﬂ%@} 0.
oa,,

If a, are real then in view of (10), (11) reduces to
(12) s OF 50,0,
v=2 o,

We will obtain the same equation if we look for the solution of the
extremumproblem in the particular class V of real functions. Thus
under the assumption that the extremum function is real the functional
differential equation in the general case will coincide with the differential
equation in the symmetric case. We know from compactness arguments
that the problem ¢=max has a solution in V. We also know that the
same problem has a solution in the general class V,. What we have
shown is that both extremum funections satisfy the same functional dif-
ferential equation. This implies that either there are many solutions of
the problem in the class V, or that the solution lies in the class V.
Thus in particular the coefficient problem a,d,=max leads to the same
funectional differential equation for real univalent functions as for the
general class.

3. Bounded univalent functions. We now consider a variation
which transforms a function of the class S into another function of the
class S. We will first obtain a variation which keeps the origin fixed
and also keeps the unit circumference fixed. We will then add the side
condition that for a fixed ¢, f({)=w. Let
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¥ , W ap*w+
13 Wt e Wt ap? - Lo
(13) W w1 O

where O(p*) can be suitably chosen and W, is an interior point of the
image domain of |2| <1 by f(z). For small enough p, W¥ is a univa-
lent function of W outside |W— W, |=p, < p such that W¥=0 for W=0
and keeps the unit circumference |W|=1 fixed. In fact, to prove the
latter, we observe that when

wi=1, w=1
w

and

(14) |W ¥ =|:1 + 4‘04{3(wa)) }Z:Im L0 .

So to the order p* the unit circumference is kept fixed. By adding
to (13) term of the order of p* one could make the unit circumference
fixed. To see this let us denote by D* the boundary of the domain to
which W maps the unit circumference |W|=1. Now by the Riemann
mapping theorem there exists an analytic function S(W¥) which vanishes
at the origin and maps D* univalently on the unit eircumference [S(W )|
=1, WfeD*. From the boundary behavior (14) of W5 when W3 e D*
we then conclude that

S(W) | 4
(15) e | ~1+0(").

Since log |S(W¥)/W | is harmonic in |W}| <1, we conclude, by the
maximum principle that (15) holds everywhere inside the unit circle.
Thus

S(W)=S*(W)=Wi+0(p")

for |W|=1. We have thus obtained a function S*(W) which maps the
unit circumference |W|=1 onto itself and differs from W3 by O(p?). .

A more general type of variation which can take care of some ex-
tra side conditions can be written in the form

16 W*—W + "[avP‘TW,,_@LPsz :|+0 9.
19 w—w, 1wt

Taking n=1 we get according to the procedure outlined in § 2 the
following variation formula

(17 ¢H(W)=¢(W)—ap? AW, W)+apBW, W,
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—a AW, W)+aoB(W, W) +0(p")

where

_We' (W) Wy (Wo)p(W)
18 AW, wy="s _ -,
(18) = W, oW (W) — (W)
and
(19) Bw, Wy=WeUW) _  ¢OV)We"(W,)

L= WW, (W)= (W) (W)
Since we require that for all f(z)e S and fixed ¢, f(¢)=w, we must

have ¢*(w)=¢(w)=¢. Thus we obtain the determining relation between
a, and a,

(20) —aA(w, W) +a,B(w, WO) — o, A(w, W)+ a,B(w, Wl) +0(p*)=0.

We shall see that in general we can prescribe W,, W, and a, arbi-
trarily and adjust @, such that (20) holds.

Again, as ¢'(W)=1/f'(z) we see that the minimum and maximum
of |£'(¢)] would be given by the maximum and minimum of |¢'(w)|.
Thus the necessary condition for the extremum of |f'(¢)| is

(21) g{[adéf(%,_W ) g, Ble, W), Ale, W) _; Blo, W)
¢'(@) ¢'(@) ¢'() ¢'(w)
+0(p")=0,

where A'(w, W,) and B'(w, W,) are, respectively, the derivatives of

A(w, W,) and B(o, W,) with respect to the first argument.
The extremum condition (21) can also be written in the form

22)  a,Clw, W) —a,Clw, W) +a,Clw, W,)—a,Clw, W;)+0(p")=0,
where

C(w, Wo)zél(‘,‘bﬂ{o), _B(o, WT)) .
¢'(w) ¢'(w)

From (20) it is clear that for a fixed value of a, @, is a linear
function of @, and @, and can be written as

___@o(E)B1 - AO—A—l) + dO(BQIZ] - JIJBl)

23 |
) ‘ B4,

+0(p),
if
(24) B[ 7 |47,
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where we have put A,=A(w, W,), A=A(w, W;), and similarly for B,
and B,. We will show later that (24) can always be taken to be valid.
Taking the case when (24) holds, we get on substituting this value of
a, in (22) that

(25) a[Clw, W)+ 2B,~ 14, + a[Cw, W)+ aB,—14,]+0(p*)=0,

where

_B.C(0, W)+A,C(w, W)

! B — |4,

This holds for all sufficiently small values of p; hence because a,
is arbitrary, in the limit p — 0 the extremum function satisfies the
equation

(26) Clw, Wo)=24(w, Wy)=2B(w, W),

where 1 is independent of W,. Again, because W, is an arbitrary point
from (26), the equation satisfied by the extremum function can be
written in the form

@ +De=W)—o_a@+D)(1—aW)+aW _iog(e)  Io'y/©)

(0— W) A-oW) wo—W 1—oW
e W)[_ (W) _g()2—g(w) (W)
e(W) (¢(W)=¢(0))  A—@(w)p(W))
p(w) b Pl W) B ‘l
e(W)—g(0)  1—@(w)p(W) '
where

a=w¢"(0)]¢'(w)=—)f"¢) .

We now prove the following.

LEMMA. For the extremum functions of the class S which satisfy
the equation (27), we have

(28) {1 +we"(0)]¢'(0) — o (o)} =0
and
(29) I(2p(w))=0.

Proof. Let us consider the variation
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30 W*— W + a0’ W ap'W* 4 a W a,pW*
(30) W—Ww, 1-WW W-— W 1-wWWw

+iTp*W+O(p") ,

where T is real. It is easily seen that this variation keeps the origin
and the unit circumference fixed and, for small enough p, is univalent
on the boundary. So this is an acceptable variation. Under this variation
the variation formula (17) will have the additional term «7Tp*W¢'(W) on
the right-hand side. This will give rise to an additional term 77T¢’w¢'(w)
in (19), and to ¢T'{1+w¢"(w)/¢'(w)} in (21). Then, because (26) holds,
the equation corresponding to (26) in this case will give rise to (28).

To prove (29) we observe that the derivation of the variational
equation (17) leaves an arbitrariness which permits us to add a term
thko(W), for k real, to the right hand side of (17). The addition of this
term does affect the extremum condition (21), but it does appear as
ike(w) in the equation (20). The equation corresponding to (26) will
then have an extra term ¢k(1¢(w)—A¢(w), which must vanish since (26)
has been proved to be the equation for the extremum function.

Transforming (27) in terms of f(2) and using (28) and (29) we find
that the extremum function statisfies the differential equation

(31) (&) —a) (@)= w) _ p (z=F)e—F)

FR(f(R) = 0f(1—a () z(e—é’) (1—Ce)’

where the constants «y, «,, D, 8, and f3, are obtained from (27) in the
following form:

00 b A=2pp (1)
52 w(A(l—loP)— (1 +of)’

) f(2) 4lol+6(— 1+!m|) w
(33) f(z)'l‘ — ﬁ(l-—[ l)“‘(l ;r*‘;) -*(f(z) —a,)(f(z)—a),
34 2 »“1+4lClZ+lCl + 21— lC|‘) ),
Y e etk Ak -1 e
and

B=1+0w¢"(0)]¢'(0) — do¢'(w) .

One further finds from (33) and (34) that |aa.l=1 and |35,|=1.
In order to fix 2 which remains arbitrary, as yet, we need the geometry
of the extremum domain. In particular we prove the following.

THEOREM. If f(z) is @ function of the class S for which |f'(€)| is
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either a maximum or o minimum, then f(z) maps the unit circle |z| <1
onto a slit domain.

Proof. If the theorem were not true, then there would exist a
point W,, |W,| <1 such that a neighborhood of W, is contained in
[W] <1 and does not belong to the image domain. In the variation
(16) taking W, and W, to be two such points we get the following
variation formula for f(2):

)= WD) @ 4
® rre=meeg] S0 ] T

The requirement that for all f(z), /(¢)=/(¢)=w, yields that

! Ay _ '_Cb‘w 2\ __
9 2L S e oo

and the condition for the extremum of |f/(¢)| leads to

. o —oufz) _a2=o0f@) Y L op)—0
(37) {Z (0—f@)  (A—wf(z)) ]}Jr )

Thus, because

B S S B C

o—f(z)] " |1 —wflz,)
we see that the extremal function satisfies the equation
(38) ) 6R-afR) _ e _ 2o

(0—fR) (A-af@) o-fl) 1-af@)

But this is impossible since the left hand side has a second order
pole at z=¢, where as the right hand side has only a first order pole.

As a consequence of this theorem it follows that (24) can always
be assumed to hold. Indeed, if it were not so, we could find no point

z. in |z} <1 such that |4,|s4|B,|. Hence, because A4, and B, are analy-
tic functions of z, and as equality is to hold for all z, we have

(39) A(o, f(2)=¢B(o, £(2)) lxl=1
(39) gives the following differential equation for f(z):

(40) AR f Q) — po () = f@) | () = pa’f(0))]
FHOAO)[R(f(2) = ) (1= 5f(2))

_L—pe) =2t~ pl)
2(z—0)(1—C?)
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But the function given by the differential equation (40) does not
map the unit circle onto a slit domain, because at one end of the slit
f'(z) will have a first order zero. Hence the right hand side of (40)
should have a second order zero on the unit circumference. Since this
is obviously not so, we have shown that (24) can always be taken to
be valid.

We have thus shown that all extremal functions f(z) which belong
to S, and for which [f(¢)| is a maximum or minimum, satisfy the dif-
ferential equation (31). As the extremal funetion f(2) maps 2| =<1 onto
a slit domain, at one end of the slit f/(z) will have a first order zero.
To this zero of f’(z) there need to be a corresponding zero on the right-
hand side of (81), and as it is on the unit circumference |z|=1, we
must have 4,=f,=¢" in (31). Further, because the slit will make an
angle ¢ with the unit circle such that |0| <z, we get from simple
geometric considerations and the fact that the right hand side of (31)
has no pole at any point on the unit circumference that a,=a,=e".
Geometrically this means that the slit starts from the unit circumference
|W]=1, making an angle /2 with it.

As a result of the equality of «y, a, and f,, %, we have from (33)
and (34) that

. 115 Nile) 2|w)
41 B TS Y AT e
(41) Q@) =1l =4 PO
and
p w1 2Ll
(42) Ag—1+1_i .

Eliminating 2 from both these equations one finds that, at the fixed
point ¢, the extremum function satisfies the equation

ey ey — (15 20 N_ O g, 200
@ ero <13;1—mz> 7O i lil—\f(cnz]'

The differential equation (31) now reduces to

) FRf@pE ) Al _(1FE) GEFEY

FRAF R -0yl - fR) o ¢ 2e—0r(1—Ce)

where on each side either the upper or the lower sign is to be taken
at one time.

From (44) one can get the information regarding the nature of the
extremum domain. On account of the slit character of the extremum
domain, the unit circumference |W|=|/(z)|=1 is definitely a part of the
boundary. Further, if z=¢* we get from (44) that
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2@l (1F ol
&R —w)y(-oflz) o

is real. Hence, writing W(t)=f(2) and making a proper choice of the
parameter ¢, we can put it in the form

(45) e (Watle)  QFle)’_ ¢

W ((W—-ow)yd—oW)y o

C being some real constant. We now observe that this is an ordinary
differential equation of the first order and hence has only one solution.
Further, the straight line W=r|w|/®, where r is a real parameter, does
satisfy the differential equation. Since there is only one slit, this line
corresponds to the slit and we conclude that the boundary of the image
domain consists of the unit circumference and a radial slit pointing in-
wards at the points =+ |w|/®.
Taking the square root and integrating (44) we obtain

VAz)—V @ 1+V o f(2)
46 REAC e ) :
(46) [i log VARV o +log 1 1/E)f(z)j|+ const.
_ V-V 1+Vez
]+ log V-1 T 108 1352} :

The various possibilities arising from different combinations of signs
on the two sides of (46) are to be taken in such a way that the singulari-
ties at f(z)=w and z=¢ on the two sides of (46) balance each other.
We are thus left with only four possible combinations which after some
simple algebra give rise to the following equations for the extremal
functions:

) (1 —loP)o. () _ (L7 K2E
(0=l fR)  (CFICl)

and

(48) (1+ ‘(1)‘)3(1)_}7('(2)‘ — 7(1 + ]CI)ZZC* .

(0+lol fR)  (CxCl)

Equations (47) and (48), respectively, give rise to the following
values of f7(&):

)= 1l 1-lol
(49) FQ)= e 1Tl 14l

and
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(50) Fo—@ LFIl Lol

¢ 1+lel 1—|ol

As |ow] < |¢], one easily sees that the maximum value of |f/(¢)| is
given by

, w 1+1¢] 1+|w)
51 = - Cme——— — — —
(1) (9] £ 11t 1— ol

and that the function f(2) corresponding to it is given by

(0+lol ) (C—[le)"

Also, the minimum of |f/(¢)| is given by

- , w 1—1C| l—la)l
3 T I
(53) S ¢ 1+0¢] 1+ |wl

and the function corresponding to it is given by

(54) (l jﬂlﬁ“jl)zu).f(z)_ (1 ﬂCI)‘%C .

(0—lolf2))*  (C+ICR)

We have thus proven the following.

THEOREM. Let S denote the famaly of regular univalent functions
f(2) defined in the unit circle 2| <1 such that |f(2) <1, f(0)=0 and,
for some fived point ¢ in |2l <1, fl&)=w. Then the maximum and
manimum values of | f(&)| are given by

, o 1+ 1+ |w
55 — Lt ol
(55) S(©) £ 1T 1T ol

and the corresponding maximizing and minimizing functions are, respec-
twvely, given by the equation

(56) (1 +lol o flz)_ (1Tl
(0£lolfR)}  (CFIR?

where the upper signs on both sides give the maximal function and the
lower signs on both sides given the manimal function. The boundaries of
the maximal and the minimal domains consist of the unit circumference
together with radial slits starting, respectively, at the points +|ol|/®, the
end points of the slits being the images of the points F\C|/¢ by the cor-
responding functions given by (56).
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We now remark that we could as well have tried to solve the fol-
lowing problem:

In the class S of regular univalent functions f(z) in |2| <1 statisfy-
ing the normalization f(0)=0, |f(z)) <1 and, f(¢)=w at some fixed point
¢ in |zl <1, to find the function which maximizes |f(7)| at some 7£¢
in |g| <1.

The existence and uniqueness of the solution is easily proven. It
can also be readily shown that the extremal domain will be a slit
damain. The variational equation for the extremum -as obtained from
(17) can be written as

(57) S{{[“)A(wn f(zn)) ___anB(CQI{ f(z))) + alé(wlLf(gl)Z

, Wy w;

_@13(“)1@]}:0 ,

@y

where «,=f(7), and we have replaced ¢(w) by ¢ and W, by f(z,),
o(W)=z,, ¢ (W,) by 1/f'(z,), and similarly for W,.

By arguments similar to those which lead to the equation (26) we
can again assert that if

(58) C,= Ao, flz)) _ lﬂ@{_ S&) ,

w, w,
then the extremum funection will satisfy the equation

(59) Co=pA(w, f(z))—FB(w, fz)),

where p is independent of f(z,).

As in the lemma we can again show that pA(¢)/f({) and p¢ are
real. The differential equation for the extremum function can now be
written as

(60) - MR- e)(f(z) -d)
FR(f(2) = 0)(f(2) — )1~ 0f())(1 = ©.f(2))

(z—e)(z—e.)

K == O=t2)1-72)

where |¢d)|=1, and |e,e,|=1 and ¢, d,, e, e, and K can be determined
by a comparison with (59).

From geometric considerations and the fact that the extremal domain
will be a slight domain, one easily deduces that ¢,=d,=¢” and ¢,=e¢,=¢".
These conditions lead to
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(61) [(1—lo)A+|of) = m(1—|oP)1 + o) =411 —|o[)o— 1 — o)l
and

(62) [A—=[nP)A+ I[P —pLd— A+ 17 F=41— 7)), — peyp(1— P,
where

m=p f(OIf'(©)

and
a, =7 " ()If ().
Eliminating g from (61) and (62), we get
(63) L Olo—ol £ 1=da|F_nf (IIE—7]+ 11 =CIP )

O A=loP)A=lol)  fO) A=IPHA—7P)

From the slit character of the extremal domain and geometric con-
siderations we prove that the boundary of the extremal domain consists
of the unit circumference with a slit that starts at right angles to the
circumference. But we can no longer claim that this slit is radial.
Also, because the integration of (60) involves hyperelliptic integrals it
is not possible to get analytically any further information about the
nature of the image domain. However, if one could show that the
image domain is symmetric one could obtain an explicit result at least
when ¢ and 7 are real. We are thus lead to reformulate the problem
for bounded symmetric univalent functions.

4. Symmetrtc bounded univalent functions. We now want to con-
struct a variation which keeps the unit circumference and the real axis
fixed and which maps the origin into the origin. Evidently such a
variation will be a combination of the variations considered in §§ 2 and
3. One easily deduces that any such variation will be of the form

64) Wr=ws WW _apW: apW _ aplW: 5o
(64) Wew 1w wew 1w

where O(p') can be suitably chosen.

In order to be able to get a variation which can take account of
some side conditions we need to take a linear combination of the vari-
ational terms in (64) with different @, and W,. Thus, we get the
variation

65 * e S arWA=-WE o e WA=WY) L g0
©5) w W+EA[(W—W\,)(1~WVW)+(W—Wv)(l—WJV)]+ @)

v=0
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The variation formula for jf(z) in this case is

. a, f(2)(1—f*(2))
(66) [ (R)=f(2)+¢* Z[( F@&)— )1 - f(2)f(z,)

a,f(2)(1 =/*(2)) L af'(@)2(1=2) f(z.)
(f2)—f)(1 — f(z)f(zv)) (2 —2)(1—22)2,(2,)

a,f'(R)AL—2") f(2) |
+<1—az)(zv—z>af“<zv)]+O(” )

If we require [f*(¢)=f()=w, ¢ real, we get, using that f(z) is
symmetric,

| ) (1=)1C)  flz) o
60 R Sa, o CUme) 0(r)=0.
( ) [Z ¢ { ((') _f(zv))(l —w f(zv)) (C Z\,)(l - sz) va (7v) }:l * (P )

Also, if 7 is real, then the condition for the extremum of f(y)=w,
is

w,(1—w?) _ 7(1—77‘)7"(7/) f(zv) O(0%) =0
6 9= o L e el oy o) }J-owr=o.

Thus the extremum function satisfies the equations (67) and (68).
By Lagrange’s method of multipliers we see that the equation satisfied
by the extremum function is

8 L L o) "o sN )
_ al-7) _ aid-=)
(—2)1—72)  (C—2)1—C2)
where
a=7f"(9)/(z)
and

a,=Cf I(EAQ).

It is easily proven in this case that the image domain is a slit
domain. Thus, as in § 8, from geometric considerations and the fact
that the image domain is a slit domain we conclude that numerators on
both the sides of (69) should be perfect squares. We thus have that
either

(70) a(l+9)(1-0=ad(1+0)(1-7),
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or
(71) a(1=7)(1+0)=a 1 =0)1+7);
and either
(72) 1+o)(l—w)=11+o)(l—v)
or
(73) (I1-w)l+o)=(1-w)1l+w).
The differential equation finally reduces to the form
qy - (AFe)e—o)l-we) @R T}

(1 F o fl)(0—=f2) (0 =[2)1— o [())1— v, f(2)

(17} —7)(A—Ly)(zF 1)’

(L F7)e(C—2)(—2)(1—C2)(1—72)

where the upper or the lower sign on each side is to be taken at one
time.

The alternative in (70), (71) and (72), (73) arises on account of the
ambiguity of sign of the root in (74).

In the left hand side of (74) let us make the transformation

A= W1
(75) =%

according as we take the upper or the lower sign in (74). Then the
left hand side transforms either to

16 W W(l—l—a)l)(w-—(u[)(l a)wl)

(75)

(o)L +w ) (W =1) (W =)W= 3)
or
77) WPl - o) (w—w)(l-wo,)

(1= o)A =) (W—1)W*=F)(W '~ )

respectively, where g, =1+ w)/(1—w) and B,=1+w)/(1—w,).
Similarly, making the transformation

(78) e—FdtL
y—1

’

according as we take the upper or the lower sign in the right hand
side of (74), we get either
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(79) _ 16ay "y (1+7)(1—L7)(C—7) ,
W=D — )y —rH(1—7)

or

(80) _ 16ay™y’(1—7)(1—-C9)(C—7)

=D =1 =11 +7)

respectively, where r,=(1+¢)/(1—¢) and r,=(1+7%)/(1—7%). We note that
(77) is obtained from (76) by changing the signs of » and w,, and
similarly (80) is obtained from (79) by changing the signs of ¢ and 7.
Thus it is enough to consider the cases

w'w y'y
81 Sy v T e STV Y e
BV - =D - -1
where
c,,=|: a(l+7)(C—7)1 ,",Q??,),,J”Z
L A=A +2yQ+yy ’
and
_[A+o)o—w)1—ow) 12
“ [ 1+ o)1+ o) ] '
Putting
W,—W*— §<1+ﬂ%+ﬁ§) :
and

X=yp— S (14717

we have from (81), on integration,
cv=cu+ const. ,

where p(v)=W, and p*(w)=X, p and p* being the Weierstrass’s p-
functions.

Since f(0)=0, f(¢)=w and f(7)=w,, we get, using the periodicity
and homogeneity property of the p-functions,

(82) W,=%X.
Cy

Transforming back to z and f(z), we can write (82) in the form
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LI R GO R Gl

e lGo) =5 G+ GED

Since f(0)=0 we have from (83) that

I M R e B T el

This gives us w,, but it involves a which is not yet known in terms
of ¢, w and 7. Towards this we observe that on subtracting (84) from
(83) we have

AR e 4
(f) +1y & (1+e)p’

and because f({)=w we have

® c —4:7 )
(85) 1+w)? e+’
and finally
(86) S +o)y _ 2(1+0)

ol+f) (1+27¢ "
Now, putting z=7» and f(y)=w, we get for w, the required equation

(87) I+oyo_ 7 QA+
o(l+ o) (1 —{—'7)‘ ¢

Observing that all the possible extremal functions could be obtain-
ed by changing the signs of w, w,, £ and 7 and taking all the combi-
nations, we see that

1+ w)y flz z  (A=xoy
88 ) = S EG)
(88) w 1+ fR) * (1+22 ¢

gives all the extremal functions and

(89) (1 :l,:,,('))zfl),A1= 4 7 (1 + C), ’
w(l+w)’ (1+7)* ¢

the corresponding values of ,, where at one time either the upper or
the lower sign is to be taken on each side of (88) and (89).
Further, on account of the continuity and univalence of f(z) on the
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real axis, f(z) will have the same sign or different sign as 2z according
as o has the same or different sign as ¢. Thus (88) and (89), respec-
tively, reduce to

(90) (1 +w) f(z) _z (l;i-rC_)Z
o ([1+fR) A+ ¢

and

(91) 1 j—'i’)? o n (1+¢)? .

o (lto)y @Qeg2 ¢

The following different cases need to be considered: (i) o >0,
¢>0and >0 (ii) >0, >0and » <0 (ili) >0, £<C0 and >0
and (iv) o >0, £ <0 and < 0. We observe that (ii) can be easily
deduced from (i) for in this case w, <0, and the maximum and the
minimum of o, in this case will be the same as the minimum and maxi-
mum of w, in (i). A similar relationship exists between (iii) and (iv).
So we need to consider only the two cases (i) and (iii).

We now observe that if |x|< 1 and « is real then z+1/x is a
monotonic decreasing function of x, and also that

c+1je—2 T c+1/c+27
according as =¢ > 0.
With these considerations we can prove the following.

THEOREM. Let X be the class of bounded, symmetric univalent func-
tions f(z) which are normalized so that |f(z) <1, |2/ <1, f(0)=0 and
) =w where ¢ is a fized real point in |2} <1. Further let o >0,
¢ >0 and for some real point n let f(n)=w,. Then the maximum and
the minimum values of w,, when y» >, are given by
(93) o+l +2_7+1/9pF2

w+llwo+2 c+1/252°

and the corresponding marimizing and minimizing functions are respec-
tively given by

(94) Ity fl) _ =z ;7(’1;5)'{
o (£fR) A+27 ¢

where the upper signs on both sides give the maximum and the lower
signs the minimum. However, if y <_C then the maximum and minimum
values given by (93) and the corresponding function given by (94) are
wnterchanged,

s
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If <0, <0 and >0 then the maximum and the minimum
values of w, are given by

wt+llot2 c+1/c+2°

and the corresponding maximizing and minimizing functions are given
by

(96) (lif{ff f(z) = 2 : Q+0) ,
o (1£fz)} L+ ¢

where, as before, the upper sign on both sides gives the maximum and
the lower sign gives the minimum.

The boundary of the extremal domain in each case consists of the
unit circumference with a radial slit starting either at W=1 or W=-—1.
The length of the slit differs in various cases.

My thanks are due to Professor M. Schiffer for his interest and
help in the progress and completion of the paper.
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