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!• Introduction* In this paper we shall apply some theorems proved
in [3] to study the following problem in conformal mapping. Let D be
a domain of the complex plane, the boundary of which in the neighbor-
hood of the origin consists of portions of two analytic curves Γx and Γ2.
Suppose Γλ and Γ2 meet at the origin and form a corner with opening
7rα>0, and suppose the origin is a regular point of both curves. Let
F(z) be a function which maps conformally the upper half plane $ 2 > 0
onto the domain D, and suppose that F(0) = 0. How does the mapping
function F(z) behave in the neighborhood of the origin ?

A partial answer to this question is given by a theorem stated by
Lichtenstein [5]. Let F~\z) be the inverse function which maps D onto
the upper half plane. Then Lichtenstein stated that for z in the neigh-
borhood of the origin

dz

where ψ(z) is a continuous function with ^(O^O.1 This same result
can, however, be obtained with much weaker requirements on the
boundary curve as has been shown by the work of Kellogg [2] and
Warschawski [6].

In the case α = l where the curves Γλ and Γ2 meet at a straight
angle Lewy [4] has proved a much stronger result—that F(z) has an
asymptotic expansion in powers of z and log z. The method used in this
paper is a generalization of that used by Lewy. We find that for all
a > 0 the function F{z) has an asymptotic expansion in the neighborhood
of the origin. If a is irrational then the expansion is in integral powers
of z, and z*. If a is rational then the expansion is in integral powers
of z, zf*, and logs.

2* Notation, First let us make clear what type of asymptotic
expansions we will be considering. Let χn(z), (^=0,1,2, •••) be a se-
quence of functions such that yn+ι(z)lχn(z)~^0 as z->0 in the sector
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1 Lichtenstein proved this result only in the case of irrational a. The complete theorem
has been proved recently by Warschawski [7].
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. A series ΣjAnχn(z) is called an asymptotic expansion for
n = Q

f(z) valid in the sector θ^argz^Lθz, and we write

if for every integer JV̂ >

as 2->0,
Clearly, in a sector #i<Iarg2:<I#2 a function /(s) cannot have more

than one asymptotic expansion in terms of such a sequence of functions

We shall sometimes be concerned with asymptotic expansions which
are valid in every finite sector on the logarithmic Riemann surface with
the origin as branch point. By this we mean that the limits hold for
2->0 in any finite sector Θ1^argz^θ2 where θλ and 02 are arbitrary con-
stants. Otherwise expressed, we consider any sequence z19 z2, zs,
such that there exist constants θx and θ2 for which

(^=1,2,3, . . .)

and

lim |sJ = O.

Thus we exclude any sequence for which lim sup | arg zn \ = oo.

Throughout this paper we will use the letter c to denote a typical

coefficient in a series when the exact value of the coefficient is not im-

portant in the discussion. For example, instead of writing Σ cmnz
n, we

may write simply ^cz71. Thus we avoid a multiplicity of subscripts.

3. Principal results* Let F(z) be the mapping function which maps
the upper half plane onto the domain D, and let Γx be the image of
a portion of the negative real axis and Γ2 the image of a portion of
the positive real axis. We shall prove the following theorem.

THEOREM 1. If oc^>0 is irrational, then for z->0 in any finite
sector

where k and I run over integers, &^>0, £2>1 and the coefficient A
If ct=plq^>0, a fraction reduced to lowest terms, then for z->0 in any
finite sector
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where k, I, and m run over integers for which

and the coefficient A
In this theorem the terms in the series are supposed to be arranged

in an order such that a term of the form zk+ιoύ(\ogz)m precedes one of
the form zk'+ι'*(\ogz)m' if either k-hla<Ck' + Va or k + la=kr + Γa and
m^>mf. Arranged in this order, these products of powers of z and
log z form a sequence of functions χn. The coefficients in these expan-
sions are complex constants, some of which may be zero.

From Theorem 1 an asymptotic expansion for the inverse function
F~\z), which maps the domain D onto a portion of the upper half plane,
can be obtained easily by replacing the asymptotic expansions by finite
developments with error terms and proceeding as usual in the inversion
of functions. The result obtained is stated in the following theorem.

THEOREM 2. // a is irrational, then for z-+0 in any finite sector
the inverse of F(z),

ivhere k and I run over integers, k^tO, ZI>1 and B01φ0. If oc=p\q,
a fraction reduced to lowest terms, then for z->0 in any finite sector

where k, I and m run over integers for which &I>0, l<Ll^Lp, 0<Lm<Lk/q ;
and BmφQ.

There is another way to state Theorems 1 and 2 in the case of ra-
tional a. We can write

F(z)^zllaM1(z9 zλl«, zq logs)

and

F~\z) ^ z« M2 (s, z*, zp log s)

where M1 and M2 are triple power series in their three arguments. In
the case a=l the triple power series reduces to a double series in s and

z \ogz as found by Lewy [4].
Observe that the function F(s), defined originally for 0<Iarg2<Ξ>,

can be extended by the reflection principle across both the positive #-axis
and the negative x-axis since the curves Γτ and Γ2 are analytic curves.
The images of Γ1 and Γ\λ in such reflections are again analytic curves.
Hence F(z) can again be extended by reflection, and in fact can be con-
tinued near the origin onto the entire logarithmic Riemann surface with
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branch point at the origin. The function F(z) is regular for \z\ suf-
ficiently small, say, 0 < | 2 ; | < j o , on any sheet of this Riemann surface
but, generally speaking, p depends on the sheet of the surface.

4* Extension of developments to larger sectors. If the asymptotic
expansions of Theorems 1 and 2 hold for z->0 in 0<Iarg2<;7r, they
hold for z->0 in any finite sector 0i<larg3<102. Suppose, indeed, that
for given r > 0 , F(z) has a finite development of the form

(4.1) F(z)=ΣAklmz^(\ogzr + o(zη

as 2->0, 0<Iarg£<i7r, where the sum is extended over integers k, I, and
m such that kΛ-la<Ir, &ί>0, 1^1 ) and 0<im<l&/p when <X=PIQ, m = 0
when a is irrational. Then the same development is valid for z->0 with
— 7τ<Iarg2<10. To see this let C* be the image of ζ in an analytic reflec-
tion on the curve A . Then £*, the complex conjugate of £*, is an analytic
function of ζ, say φ(ζ), which is regular for \ζ\ sufficiently small. By
the reflection principle, since F(z) takes the positive real axis, arg2=0,
into the analytic curve Γlf we have

F(z) = (F(zψ=Φ(F(z))

for 0^arga:^7r. Observe that this formula continues F(z) for \z\ suf-
ficiently small into the sector — 7r<Iarg2:<l7r. Since Φ(ζ) is regular for
\ζ\ sufficiently small and Φ(0) = 0, we have

for z->0. Then with

we have by (4.1) for ̂ —>0, 0 < a r g 2 < π ,

where A^O, Ϊ^O, k + la<Lr — na m is limited as before. Also

o(Cl«)=o((O(z«)yl«)=o(zr)

as ^->0. Consequently for z-+0, 0<arg^<7r τ

where /fc, Z, and m are restricted in the same way as in (4.1). But this
means that F(z) has a development of the same type as (4.1) for
— τr<;arg2<I0. This new development must coincide with that given
by (4.1) since both hold for z-+0 with arg2=0.
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In the same way we can reflect across the line &τgz=π and estab-
lish that (4.1) holds in the larger sector thus obtained. By induction we
can prove that (4.1) holds in any finite sector #i^arg2<^#2. Thus we
see that if Theorem 1 holds for z->0 in the sector 0<iarg2<i7r, it holds
for z-+0 in any finite sector.

5* Some lemmas. We now state some lemmas which will be used
in the proof of Theorem 1. Lemmas 1 and 2 are special cases of
Theorems 4.1 and 4.2 of [3]. The integrals are Lebesgue integrals ex-
tended over positive values of t. The range of z considered is 0 < | z | < A ,
— 27r<Iarg2:<I0. We take the branch of the analytic function of z,
\og(l — zit) which is real for 0<O<£, argz=0.

LEMMA 1. Let A be a positive real number, μ a real number ]>•—1,
and n a nonnegative integer and let

<p(z)= f V(log t)n log (l-zlt)dt .
Jo

Then there is a power series q(z), which converges for \z\<^A, and
a polynomial in logz, P(logz), such that

If μ is an integer then, the polynomial P is of degree n 4-1 and if μ is
not an integer, it is of degree n.

LEMMA 2. Let β(t) be a measurable function, bounded absolutely for
0<^t<^A and such that /?(£)-> 0 as t~+0 through positive real values.
Let μ be a real number > —1 which is not an integer, and let

W log(l-z/t)dt .

Then there is a power series q(z) such that for z—>0

LEMMA 3. Let μ be a real number. Let η(z) be an analytic func-
tion, regular for Q<l\z\<lR, ^i5^arg^^^2 and such that η(z) = o(zμ) for
£->0 in the sector βι<L&γg z<L02. Then the derivative

for z->0 in any sector in the interior of the sector θ{<Laγg z^θ2.
A proof of Lemma 3 is obtained by estimating a Cauchy integral

with path a circle about z with radius d\z\, o small.
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LEMMA 4. Let λ be a real number. Then for z->0 with |arg£|
bounded, \z~λF(z)\ tends to zero if Λ<α and tends to infinity if Λ>α.

A proof of Lemma 4 can be obtained by a study of the Poisson
integral (see Gross [1, pp. 57-61] the requirement that z-^0 in an
angle in the interior of 0<Largz<Lπ can be eliminated by using the fact
that Γτ and Γ2 are analytic curves).

This lemma also follows from the theorem of Lichtenstein mentioned
in the introduction.

6Φ Preliminary transformations. First we establish that the general
case can be reduced to the special case in which the curve Γ2 is an
analytic curve tangent to the positive real axis and Γλ is a portion of
the ray argC= — πa in the ζ plane. Consider a function ψ(ζ), regular
for |Cl sufficiently small, for which ^(0) = 0, φ/(O)=b^Of and which takes
the analytic curve Γλ into the line argζ=—πa. The function ψ maps Γ2

into an analytic curve tangent to the positive real axis. For the sake
of simplicity of notation we carry through the proof in detail only for
irrational a.

Suppose that we know Theorem 1 in the special case in which Γλ is
the line argC= — π<x, then for z->0 we have

where the sum is extended over integers k and I for which &I>0, Z>0,
h + loc<Lr. In addition, we can suppose that CΌO=£O. Then since the
inverse

as ζ->0, we have

)

+ +s**{Σ czk+ι« + o(zr)} +o{zN«)

for 2->0. Hence by taking N large enough, we obtain

where Cίo=-—CΌOT^O. All of the sums considered are extended over
b

integers Jc^>0, 1<LO, k + lcc^Lr. Thus we need consider only the special
case in which Γτ is a portion of the line argC= — ̂ a.

Now we make another preliminary transformation. Let w=ζιloL> so
that the line argC=— πa goes into the negative real axis. The analytic
curve Γ% goes into a curve Γr tangent to the positive real axis. This



DEVELOPMENT OF THE MAPPING FUNCTION 1443

new curve Γ' is not analytic at the origin; we will find it useful to have
the equation of Γ;.

Let ζ=ξ Λ-iη. The analytic curve Γ2 is given by an equation with
real dj

for 6>0, where the series is convergent for ξ sufficiently small. Then
on Γ' we have

Separating real and imaginary parts, we have with w^u-hiv

Consequently,

and thus

Hence we obtain finally that the curve Γ' is given by an equation of
the form

(6.1) v=

for u<0, where the series converges for u sufficiently small.

7. Obtaining the asymptotic expansion. Let Ώ' be the image of
D under the transformation w=ζlloi we can now assume that near the
origin Π is bounded by the negative real axis and the curve Γr given
by the equation (6.1). We consider the function w=G(z)=(F( — z))ll<*
which is a univalent conformal mapping of a semi-neighborhood y<^0 oί
the z=x + iy plane into the domain U of the w=uJriv plane. Observe
that G(0)=0, a portion — .4<Ia;<I0 of the negative α -axis is mapped into
a portion of the negative w-axis, and a portion 0<^x<LA of the positive
a -axis goes into Γf.

We will need an estimate for G(z) and its derivative G\z). By
Lemma 4 we have for z->0, |argz| bounded

for any Λ<α. Hence for any ε > 0
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(7.1) G(z)=o(z1-*)

as 2;~>0 with |argz| bounded. Using Lemma 3 we conclude further that
for 2-»0

(7.2) G'(z)=o(z-*) .

Now we construct a certain function H(z) which differs from G(z)
by a single-valued function. Observe that the function

G(z)=u(x, y) + iv(x, y)

can be continued across the negative real axis, argz= — π, by the reflec-
tion principle. In particular, we have for arg£=0

G(z)-(Gze-2*l)=u(z, 0) + i φ , 0)-[%(s, 0)-iv(z, 0)]

= 2 i φ , 0) .

Consider for — 2π <:arg2<I0 the analytic function

(7.3) H( π Jo dt

where the integral is extended over positive real values and the branch
of \og(l — zlt) considered is the one which is real for 0<O<£, argz=0.
That the integral converges follows from the estimate (7.2).

For arg£=0 we have

2^ f "M*0) = = 2iφ, 0)
π Jo dt

since

2πί for
log(l-zlt)-log(l-zβ-"*lt)=.

I 0 for

Thus the difference p(z) = G(z) — H(z) satisfies the condition p(z)=p{ze~%ηci)
for arg£=0. Furthermore p(z) is regular for 0 < | ^ | < A , — 2τr<argz<<0
it is continuous as z approaches a point of the positive real axis for
argz=0 or arg£= —2π, and it is bounded for s->0. Hence by Riemann's
theorem on removable singularities p(z) is equal to a power series con-
vergent for j ^ K A

From (6.1) and (7.3) we conclude that for — 2τr<;arg£<I0

(7.4) {)
J I dt
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where p(z) is a power series with constant term equal to zero.

By (7.1) and (7.2) we have M M ) = 0 (ί-«) and uΛ=o(t^1-^) for

£->0, ε an arbitrary positive number. Hence for £->0

du(t,0)

dt

Inserting this estimate in (7.4) and applying Lemma 2, we obtain for
z->0,

(7.5)

where q(z) is a power series in z which converges for \z\ sufficiently
small. We conclude that α ^ O by applying Lemma 4 with λ slightly
larger than a. Knowing this, we can conclude further that a is posi-
tive from the fact that G(z) maps the positive real axis into Γ', a curve
which at the origin makes an angle of π with the negative real axis.
Since G(z) = [F(-z)]ίloύ the result of § 4 shows that the estimate (7.5)
holds for z->0 in any finite sector.

Now we prove Theorem 1 by induction. We consider first the case
in which a is irrational. We shall prove that there are constants akl

such that for every integer N,

(7.6) G(z)= Σ aklz
k+ι* + o(z?*) , k^l, Z>0

as 2-»0 with | a rgz | bounded. We begin by noting that G(z) has such

a development for N=NQ where iV0 is the integer for which <IiVo<l
a

4- --. This follows directly from (7.5) since for ε sufficiently small
a

α)(l-ε):>iVoα and hence o(2 ( 1 +* ) ( 1- ε )=o(zV). Consequently, to prove
(7.6) by induction it will be sufficient to show that if G(z) has a develop-
ment of the type (7.6) with an error term 0(zm), then G(z) has such a
development with an error term o(#(iV+1)Ω% In proving (7.6) by induction
we will simultaneously obtatin a proof of Theorem 1 by using the fact
that F(z) = [G(-z)γ.

By the induction hypothesis we have

H Σ
k l^N

and thus since α l o = α

u(t, 0)=a

where the sum is over k^>0, l^>0, for which (k, l)Φ(0, 0) and Jc + la
<LNa — l. Using the binomial theorem, we find
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un*=an«tn*{ Σ ct^' + oit""-1)} , (&I>0, Z^O) .
λ + ZctfgiVtf-l

Moreover, by Lemma 3 and the induction hypothesis we have for £->0

?.0).=s=gtG/(ί)= Σ

where &I>0, Z^>0. Inserting these estimates in (7.4), we obtain

where the sum is over integers &I>0, ZI>1, for which &4-Zα:<I(iV-fl)α: —1.
Now we apply Lemmas 1 and 2, observing that since ZI>1 and a is
irrational, kΛ-loi cannot be an integer. We find for 2->0, — 2π<arg£<I0,

(7.7) G(s)= Σ α ^ + ^ + φ ^ 1 * ) , ( * ^ 1 , Z^O) .

When k and Z are integers for which k-\-la<LNa, the coefficient akl must,
of ceurse, be the same as that appearing in the development with error
term o(zNoί).

We wish to prove that (7.7) holds for 2->0 in any finite sector.
We note that for z-+0,

where the sum is over fc^O, Z^O, which for (k, 1)^(0, 0) and k + la
<L(N+1)OL — 1. Hence by the binomial theorem

(7.8) F(2) = ΣΛι«*+ I Λ + ΦCΛΓ+a)fli"1)

where the sum is extended over k^>0, l^l, for which k + la<L(N+2)a — 1.
Note further that AQ1^0. We have proved (7.8) for z->0 with O^arg^
<L2π, but by the result of § 4 this formula must hold for 2->0 in any
finite sector. Consequently, from (7.8) by using the binomial theorem
we can obtain (7.7) for z->0 in any finite sector. Thus G(z) has
a development with error term o(z(N+Όa). Hence by induction (7.6) and
also (7.8) hold for all N. This proves Theorem 1 for irrational a.

Now we prove Theorem 1 for a = p/q9 a fraction reduced to lowest
terms. Let γ be a positive irrational number less than a. We shall
prove that there are constants aklm such that for every integer N, as
3->0, in a finite sector

(7.9) G(z)= Σ aklmz*+ι*(logz)m + o(z*v)
k + lcc^Ny

where k^>l, 0<Ll<^q — l, and 0<Ira^I~^——. We begin by noting that
V

G(z) has such a development for N=N0 where No is the integer for
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which <liVo<l + —, as can be seen directly from (7.5). Consequently,

r r
to prove (7.9) by induction it will be sufficient to show that if G(z) has
a development of the above type with error term o(zNΊ), then it has
such a development with error term o{ziN+r)Ί).

By the induction hypothesis we have for positive £->0

where fcl>l, O ^ i ^ g —1, 0<lm<I ~ —. Since am=a^0, we have
V

u(t, 0)=at{l + Σ,ctk

where the sum is over integers for which

(7.10) k^O O^l<Lq-l O^m^k/p fc-fkc<LNγ-l .

Using the binomial theorem, we obtain

+ o(tNy-1)}

where k, I, and m are restricted by the conditions (7.10). Moreover, by
Lemma 3 and the induction hypothesis we have

L 0) =

where again Λ, I, and m are restricted by the conditions (7.10).
Inserting these estimates in (7.4) we have, since

the formula

G(z)=p(z)+

The sum in the integrand is extended over integers k, I, and m for which

Now we apply Lemmas 1 and 2 to obtain a better development for
G(z). Note that kΛ-la^kΛ-lpfq cannot be an integer unless l=q. Con-
sequently terms of the form

cbk+ι*(\ogt)m

in the integrand, with Iφq, produce besides a power series only terms
of the form
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czk+ι+ιoύ(logz)m'

with

V

in the development for G(z). On the other hand, when l=q they produce
besides a power series only terms of the form

czk+1+ι«(log z)m'=czk+p+1(\og z)m'

with

In applying Lemma 2 we observe that (N+l)γ — l is not an integer be-
cause γ is irrational. Hence we conclude that for z->0, —

(7.11) G(z)= Σ akl1^*+

where fcl>l, Q<Ll^q-l, and O ^

As in the case of irrational a we obtain from this the result

(7.12) F(z)= ΣΛ ί ms f c + ί*(logz)m + φ ^ 1 ^ * " 1 ) ,

where the sum is over integers k, I, and m for which

&^0 , l<Ll<Lq , 0<Lm<Lk/p;

By (7.11) this result holds for z->0 with 0<;arg£<;27r, but by the
result of §4, it must hold for 2-+0 in any finite sector. From this we
then obtain (7.11) for z->0 in any finite sector. Hence G(z) has a deve-
lopment with error term o(zCN+Όy). Thus by induction (7.9) and also
(7.12) hold for all N. This completes the proof of Theorem 1.

We note finally that by Lemma 3 derivatives of F(z) and F~\z) of
arbitrary order have asymptotic expansions which can be obtained by
differentiating the expansion for F(z) and F~\z) termwise and then
rearranging the terms in the new series in an appropriate order.
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