
ON THE CONSTRUCTION OF ^-MODULES AND RINGS

WITH POLYNOMIAL MULTIPLICATION

Ross A. BEAUMONT AND J. RICHARD BYRNE

1. Introduction* Let R be a ring and let R+ be the additive group
of R. If i ? + = S 1 φ S 2 φ ••• φ S n is a direct sum of subgroups Si9 then
each element of R can be writ ten as an %-tuple (slf s2, •••, sw), sieSi9

i = l , 2, -", n, and multiplication in i2 is given by rc mappings

Λ : Si x S2 x x Sn x SΊ x S2 x x Sn -> iϋ+ , λ ; = l , 2, , w ,

where/A.(si, s2,
 # , s n ; £i, £2,

 # # >^) is the &-th component of the product
(su s2, •••, sw) (ίi, £2, •**> ίw) The distributive laws in R imply t h a t the
mappings fk are additive in the first n and in the last n arguments. If
S19 S2, , Sn are ideals in R, then

which is a homogeneous quadratic polynomial with integral coefficients in
the arguments.

If R is a commutative ring with identity, and if M is a free (left)
i2-module with basis el9 e.i9 •••, en9 then Λf is an algebra over R if and
only if there exist elements γίjlύ e R such that multiplication in M is
defined by

/ n \ / n \ w

( Σ^eJ I Σ^e? )= Σ
\ ί = i / \ j = i J i,j,k = i

The yfc-th coordinate of the product,

is a mapping
fh: R+xR+x ^xϊi+ - ^ R +

which is additive in the first n and last n arguments, and which is a
homogeneous quadratic polynomial with coefficients in R in the argu-
ments.

These examples suggest the investigation of polynomial mappings
with the indicated additive properties, and a discussion of the problem
of constructing i2-modules and rings which have an additive group which
is the direct sum of ideals of a ring R, and for which the multiplication
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is defined by a polynomial mapping.
In § 2 the basic properties of distributive mappings are given. The

form of a distributive polynomial mapping is investigated in § 3, and
such mappings are characterized in Theorem 2, under the assumption
that R is a commutative integral domain. In § 4 and 5 the results of
the previous sections are applied to the construction problems mentioned
above.

2 Distributive mappings* Let Su S2, , Sk be additive semi-groups
with identity 0, and let M be an additive abelian group. Let / be a
mapping of Sλ x S2 x x Sfc into M.

DEFINITION. If there exists an integer m, where l<Lm<Lk, such
that

/(SL + SU •• ,SM +

J \S\y ° " , Sr

/ ( S i , e , s,Λ; s m +

ζ? * Q

so+/(«;,

% + sί)

ϊ*) + / ( 8 l f

(ii)

for all su s[eSu ΐ = l , 2, •••,&, the mapping / of SιxS.λx ---SL into M

is called m-distributίve.
If k=m, only (i) of the definition applies, and the mapping / is a

homomorphism of SΊ © So 0 φ Sh. into M. In the examples given in
the introduction, Jc=2n, and the mappings are ^-distributive.

The following are rather obvious consequences of the definition.
(1) The m-distributive mappings of Sλ x S2 x x Sh. into M form a sub-
group Hof the additive abelian group G of all mappings of SιxS2x •
xSL into M.

If M is a ring, then the set of mappings G is an Λf-module in the
usual way, and the set of m-distributive mappings H is a submodule
of G.
(2) The mappings in H satisfy the relation

= Σ Σ / ( 0 , ••-, 0 , 8 l ( 0 , . . . . 0 ; 0 , •••, 0 , 8 j , 0 , . . - , 0 )
j = m + ί ΐ = l

f o r a l l SiβSi, ΐ = l , 2, . . . , & .

Statement (2) is proved by induction from (i) and (ii) of the

definition.

(3) The mappings in H satisfy
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f(su ••-,*„; 0, . . . , 0 ) = / ( 0 , •-., 0;s,rt+1, ---,8k) = 0

for all sLeSu i = l , 2, ••, k.
Statement (3) is a generalization of the fact that the distributive

laws in a ring imply α 0 = 0 α = 0 .

3. Polynomial functions. Let Sl9 S2, , Sk be subsemigroups (not
necessarily distinct) of the additive group R+ of a ring R, all of which
contain the element 0 of R. Let R* be any ring containing R, and let

be a polynomial in R*[xlf xi9 •••,#,]. Then / defines a mapping of
SiXS2x " xSk into # * where

/(s :, s2, •••, s ;) = Σ ^ 1 v Jfc

sίls22 ' s*fc » s i e S t , ΐ = l , 2, ••-, A; .

The set S of all such mappings (polynomial functions) is a submodule
of the left .B*-module G of all mappings of ^ x S2 x x & into
iϋ*. As above, we let H be the set of m-distributive mappings of
S1xS.2x •* XSA into i2*, so that i ϊ is a submodule of G. Consequently
the set of mappings H^\S is a submodule of G.

THEOREM 1. Zϊ'αc/z, mapping feHΓ\S is defined by a polynomial of
the form

k m ί - 1

(A) f(xitx2, . . ,arA.)= Σ Σ Σ a ^ a r ^ .
Z 1 ί ^ '

Proof L e t / be defined b y a po lynomia l in R*[xlf x,, ••-, a;fc] of
d e g r e e ί. S ince f e H, w e h a v e b y (2), S e c t i o n 2

fc m

= Σ Σ / ( θ . •••, o , β,, o , . . . , 0 ; o , •••, o , 8,, o , - . . , 0 )
7 l ί

, o , j . , o , •••, o , j ; , o , ^ i f S Z

for all SiβSt, ΐ = l , 2, *",k. The latter expression can be written

fc 77? ί - l

m t
4- V V n Qj;
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/,- t

"^ 2 - i 2-χ ^ o , , ϋ, j L , o, , o &1 ' " Ό , o, , o

By (3), Section 2,

0 = / ( 0 , 0, •• , O ) = α o , o . . . . , o ;

t

0— f(() . . . 0 ςj 0 . . β A. π . . . Λ\ ^ i v a < ? 7 ί

ί

f o r a l l steSlr i = l, 2, , m ;

0 - / ( 0 , .-, 0; 0, ••-, 0, Si, 0, •••, 0)

ί

f o r a l l s z e S z ; Z = m + 1 , •••, A;. D e n o t i n g α O i . . . ) O , / . , o , . . . , o , ? z,o,-- ,o b y ^ ^, w e
h a v e

fc m ί - 1

„ βlf •• ,s,)= Σ Σ Σ α W #
? + l i l J l

for all SiβSi, i==l, 2, - - -, k, which completes the proof.

The following examples show that for an arbitrary ring i?, the
converse of Theorem 1 does not hold, and that Theorem 1 is the best
possible theorem in the sense that there exist rings for which every
polynomial function defined by a polynomial of form (A) is m-distributive.

EXAMPLE 1. Let R=I, the ring of ordinary integers, let R*=R,
and let S1=S2=R+. Let / : SλxS2~>R be defined by f{xu xt)=x\x2.
Then / is defined by a polynomial of form (A) with m = l . However
fφHίor /( l + l; l) = /(2, 1)=4, and /(I; 1)4-/(1; 1)=--1 + 1 = 2.

EXAMPLE 2. Let R be the ring with additive group R+ = {u], the
cyclic group of order 9, and with multiplication defined by (iu)-(ju) = 3ίju.
Then R is a commutative ring [2] such that i23=O, Rιφ0.

Let / be any mapping of SλxS2x xSk into an extension R* of
R, where Su £,, , Sk are any subsemigroups of R+ containing 0, such
that / is defined by a polynomial of form (A). Then
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k m t-ί

f(sus«, •• ,sA.)= Σ Σ Σ °Ίίlh

k m

2-ι 2-ι °&U S i S l y

since # 3 =0. It is evident that / is m-distributive, that is, feHf\S.
In the sequel we will be concerned with m-distributive polynomial

mappings of S1 x S2 x x Sk into R. Since a polynomial with coefficients
in an extension ϋJ* of β may have its values in R, we obtain a larger
class of mappings by allowing the coefficients of f(xu x2, , xk) to be in
R*Z^R. For example, polynomials with (ordinary) integral coefficients
have values in R, and if R does not have an identity, we may con-
sider the coefficients to be in an extension R* of R. Moreover it is
a consequence of the theorem that if R is an ideal in R\ then / has
values in R.

The following lemma is well known (see for example [6, pp. 65-
66]), but is given here in the form in which it is most useful for our
purposes.

LEMMA. Let

where i2* is a commutative integral domain, and let f be of degree mt

in x h, ΐ = l, 2, •••,&. Let (sγ\ s 2), •••, s£V) be a set of distinct elements
of R* where n.t> mL, i = l , 2, , k, such that /(si?i\ sc

2

ιJ, , sc

k

k)) = 0
for lt = l, 2, , nlf i = l , 2, , k. Then f=QeR*[xu x,, , xk].

THEOREM 2. Let i2* be a commutative integral domain, let R be a
subring of R*, and let Slf S2, , Sk be non-zero ideals in R. A mapping
f from Si x S2 x x Sk into j?* is in H f\S if and only if f is defined
by a polynomial of the form

k m r

(T)\ fίrγ sy. . . . ™ \ — \ Λ V V ΠCί^ ^1

0,T'S ^
V-C-V J V ^ l * *^2> y ^k)— ZΛ 2-Λ 2-Λ jsi, s ι ι ι

when R has characteristic p^>0, and by

k in

\\j) J \*IΊ, *1>Z9 , Jjk) 2-1 ZΛ ^ll^i^l

when R has characteristic zero.

Proof. Let / be defined by a polynomial of form (B) when R has
characteristic p > 0 . Then
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= Σ Σ Σ

= Σ Σ Σ
1 l 4 L

, 4.; s ί W + 1, , sk) ,

so that / satisfies (i) of the definition for ??ι-distributiveness. Similarly
(ii) is satisfied, so that feHΓ\S.

It is immediate that a mapping / defined by a polynomial of form
(C) is m-distributive.

Conversely, we divide the proof into three parts.
1. R is infinite and has characteristic p^>0.

If feHf^S, then / is defined by a polynomial of form (A) by
Theorem 1. Then we have for each i (l<i<Lm) and for each I

/ ( O + O , ••-, St + s'u ••-, 0 4 - 0 ; 0 , ••-, Sj, - , 0 )

ί - L

- / ( O , . - - , 8 , , •. , 0 ; 0 , . . . , 8 , , - - - , 0 )

4 - / ( 0 , . . . , s ; , - . - , 0 ; 0 , .--, S ι , . - - , 0 )

f o r a l l s.t, s e ^ , s ? e S z . T h e r e f o r e w e h a v e t h e i d e n t i t y

.7 , — 2 > J> 7 - 1 L_ Z ί .

Since β is an infinite integral domain, each ideal S^O is infinite.
Therefore the polynomial in R*[x, y, z] which has the same coefficients
as the above expression, vanishes for infinitely many values of each
argument x, y, z in i?*. By the lemma, each coefficient is zero. Now the

coefficient of xjr>yzj< (0<r<O' t ; l<jt<t; 0 < j , <ί) is

If j t is not a power of p, then at least one of the binomial coefficients

r = l , 2, ••'tji — l, is prime to p. Since R, and consequently i2*,

has characteristic p, this implies that α?;;^=0, for j} and i? in the stipu-
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lated ranges, whenever j t is not a power of p.
Using (ii) of the definition of an m-distributive mapping, a similar

argument shows that α $ ^ = 0 for ji=l,2f •••,£ — 1; ^ = 2 , 3 , •••,£ — 1
whenever j \ is not a power of p.

Since the above argument holds for each i and each /, the polynomial

of form (A) which defines / has all coefficients zero except for coefficients
a°/l ,*ι> s* = 0> 1' 2, ••• , st = 0, 1, 2, ••• . Thus / is defined by a poly-

nomial of form (B).

2. R is finite and has characteristic p^>0.
Since R is a commutative integral domain, R is a finite field GF(pn)

and each ideal Stφ0 in R is R itself. Since spn=s for all seR, each
polynomial function of SLx S,x -- xSk into iϋ* is defined by a polynomial
of form (A) of degree at most pn~ι in each argument. Since the degree
in each argument is less than the number of elements in each Sι=R,
the lemma can be applied to the identity 3.1, and the proof of 1. is
valid in this case also.
3. R has characteristic zero.

Since R and each ideal Si Φ 0 in R have infinitely many elements,
the proof of 1. can be followed to obtain

x^==0 and

for jlf jlf and r in the ranges previously stipulated. Since R, and
consequently i2*, has characteristic zero, this implies that α ^ = 0 except
for jι=jι = l. Consequently / is defined by a polynomial of form (C).

The following result was obtained in the proof of the theorem.

COROLLARY. Let R=GF(pn) and i2* be a commutative integral domain
containing R. A mapping f of

k terms

R x R x x R

into jβ* is in HΓ\S if and only iff is defined by a polynomial of form
(B) with r=n — l.

4 Application to the construction of R-modules. Let SφO be
an ideal in a ring R. The set of (k — l)-tuples V= {(s,, s3, , sfc), st e S}
with equality, addition and left scalar multiplication defined component-
wise is a left β-module. The group of the module is the direct sum

k — 1 terms
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For r e 72, ste S, the i-th. component rs.h of the scalar product r(s2, s3, , sk)
is a 1-distributive polynomial function / of the arguments r; s2s3, , sk.
In this section we characterize the most general polynomial function /
for which F = S + φ S + © © S + is an 72-module, where 72 is a com-
mutative integral domain with characteristic zero.

Now V is a left 72-module if and only if there exists a mapping /
from RxV into V which satisfies the module identities

(MO f(ru v1 + v,)^f(rlf

(M2) f{rλ + r2, v1)=f(ru

(M3) f(rτri9 vx)=f(rλ, /(r 2, Vl)) ,

for every rur2eR and every vuv2eV. Denoting the components of

fir, v)=f(r; s2, « ,s fc) by f(r; s2, « ,s f c), i = 2 , 3, ••-,&, we observe

t h a t / is given by a set of k — 1 mappings fi from

k terms

. x S

into SξΞ:R. Setting R=Slf S=S2, •••, S=Sk to agree with the notation
of the preceding sections, the identities (Mj) and (M2) are just the con-
ditions (i) and (ii) that each mapping /4 be 1-distributive. Interpreting
M3 for the components /4 we have

(4.1) /i(nr2; 8I9 , 8 ^ ) = / ^ ; / 2(n; s2, , sΛ), , Λ(r2; s2, , sfc))

for every r2, r2eR and every s^eS; i = 2 , 3, •••, k.
We now assume that 72* is an ideal-preserving extension of 72, that

is, 72* is a ring containing 72 with the property that if S is an ideal in
72, then S is an ideal in 72*. For example, there exists a ring with
identity containing 72 which is an ideal-preserving extension of 72. Let
fu i=2, 3, •••, k, be a mapping from 72x V into 72* defined by a poly-
nomial

(4.2) fix,) x2f , a O = Σ α w . . j f c # ^ xίk

with coefficients in 72*. Denote the system consisting of the group V
and the mappings ft defined by (4.2) by (V,ft). We obtain the following
application of Theorem 2.

THEOREM 3. Let 72* be a commutative integral domain with charac-
teristic zero which is an ideal-preserving extension of R. Then (V,ft) is
a left R-module with scalar multiplication defined by r (s2, s3, •••, sk) =
ifu fόi *m, fk) Ί'f and only if each f is defined by a polynomial of the
form
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(4.3) fix,) α?3, , xk)= Σ aPx&i , <#> e 12* ,

£Λe matrix A={a!p) is idempotent; that is r (s2, s3, •••, sΛ) =

K^* S3? •••> sfc)^'> where the right member is an ordinary matrix product

in which A' is the transpose of the matrix A.

Proof. If (V,fι) is a left 12-module, then by the foregoing discus-
sion, the mappings f are 1-distributive polynomial mappings with values
in S £ 1 2 * . By Theorem 2, with S^R, S2=S3=-- =*Sk=S, and m = l ,
each /4 is defined by a polynomial of form (C)

k k

flxύ x2, , a;Λ)= Σ a$ΰc1x Σ ^
1=2

Since each /β must satisfy the identity (4.1) we have

Σ αίo(^>« = Σ α^vί Σ α?V
1 l * Lj 2

V V
2-1 2u
1 = 2 j = 2

k

for every rx, rteR and every s^eS. This implies α£°= Y.aψa^ or that

the matrix A=(αP)) is idempotent. Since

)= Σ
1=2

we have r (s2, , sk)—r(s2, •• ,sfc)A/ where the right member is an
ordinary matrix product.

Conversely, it is readily observed that if f is defined by (4.3) with
A=(aγ)) idempotent, then ft has values in S since S is an ideal in 12*,
f is 1-distributive, and ft satisfies (4.1). Therefore (V, ft) is a left R-
module.

If we specialize to the case where 12=F is a field, we have S2=S3

= = S f c = F and # * = F , so that (V, f) is the group of (fc-l)-tuples
with elements in F for which scalar multiplication is defined by (4.2).
Theorem 3 characterizes the (V9ft) which are .F-modules, and we let
(V, A) denote the 1^-module (V, /*) with scalar multiplication defined by

(4.3) where A=(aP) is idempotent. Let Em=(Im °), where 0<L_m<Lk-l.

The following theorem completely classifies the F-modules (F,/«).

THEOREM 4. The left F-module (V, A) is F-isomorphic to the F-
modiile (F, Em) for some m, 0 <Lm<Lk — 1. Moreover (F, Em) is not F-
isomorphic to (F, En) if mφn.
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Proof. If A is similar to 5, then (F, A) is ίMsomorphic to (F, B).
For in (F, A),

r fe, s,, , s fc)=r(s2, si9 , sfc)A' ,

and in (F, 5),

r (s2, s3, , sk)=r(sly s3, , sA.)S/=r(s2, s3, , sk)PA'P~ι

for some non-singular matrix P. The mapping ψ defined by

is an jF'-isomorphism.
Since A is idempotent, A is similar to Em for some m, 0<^m<I& —1

[1, p. 88], which completes the proof of the first part of the theorem.
In (F, Em),

r ( s z , s ό , •••, s k ) = (rs.lf rs-if « , r s m + 1 , 0 , " , 0 ) ,

so that the submodule 1 (F, Em) = (si9 s3, , sm+1, 0, , 0) is the vector
space over î 7 of dimension m. Any .^-isomorphism of (F, £"m) onto
(V, En) induces an F-isomorphism of 1 (F, Em) onto 1 (F, £"w), but if
ΎYiφn these submodules cannot be F-isomorphic since they are vector
spaces of different dimensions over F.

COROLLARY. The F-modules (F, A) and (F, B) are F-isomorphic if
and only if A and B have the same rank.

In the above discussion, the (F, f) were all (k — l)-tuples for a fixed
k. We now consider (F f c,/*) and ( F 7 , / 4 ) , /k^Z. By Theorem 4, it is
sufficient to consider (F f c, £•„,), 0 <Lm<Lk — 1 and (F ? , £*n), 0<I?ι<iZ — 1 .

THEOREM 5. The F-modules (F f c, Em) and (VΊ, En) are F-isomorphic
if and only if m=n and either k = l or F+ has infinite rank.1

Proof. Suppose first that φ is an F-isomorphism of (F f c, Em) onto
(Vl9En). Then as in Theorem 4, l (Vk9 E.m) and l-(Vl9 En) are F-
isomorphic vector spaces of dimension m and n respectively over F.
Hence m=n. Assume that kφl, and let M and N be the submodules
of (F fc, Em) and (Vl9 Em) respectively which are annihilated by leF.
Then φ induces an isomorphism of M onto N as additive groups.

k — 1 — m

M={(0, ••-, 0, sm+u --,8,-0, ^ e f H ^ © . . ^ ? ^

1 The additive group 7^+ of a field F of characteristic 0 is a divisible torsion-free
group and therefore is the direct sum of a copies of the additive group of rational num-
bers. The cardinal number n, which is an invariant, is called the rank of F+ [4, pp. 10-
11].
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and

I — 1 — m

If F+ has finite rank, then M and iV have different rank, and are not
isomorphic. Hence F+ has infinite rank.

Conversely, if m=n and k=l, there is nothing to prove. Suppose,
then, that m=n and that F+ has infinite rank. Now (Vk9 Ew) =
l (Vk9Em)®M and (Vl9 Em) = l-(Vl9 Em)®N9 where M and N each
have the decomposition into a direct sum of copies of F+ given above.
Since F+ has infinite rank, M and N have the same rank and are
isomorphic as additive groups. But since F annihilates M and N9 this
isomorphism is an F-isomorphism. Finally, lm(Vk, Em) is F-isomorphic
to 1 (FZ, Em) since they are vector spaces of the same dimension.

5. Application to the construction of rings. As in the previous
section, we let S^O be an ideal in a ring R and consider the set of
w-tuples V={(su s,, , 8n), Si eS} with equality and addition defined
componentwise. Now V is a ring if and only if there exists a mapping
/ from V x V into V which satisfies

(Ri) f{Vi + V.if V3) = f(vlf V3) + f(vi9 V3)

(Ra) f(vl9 v, + v-ό) = f(vu v2) + f(vl9 v,)

(B3) f(f(vl9 v,\ v3)=f(vl9 f(v2f v3))

for every vlf v29 v3e V.

Denoting the components of f(vl9v2)=f(8l9 ',sn;tu ",tn) by

fi(sι, , sn; tu , tn)9 i = l, 2, -, n9 f is given by a set of n mappings
ft from

2n terms

SxSx -xS

into SξΞ:R. The identities i^ and i23 are just the conditions (i) and
(ii) that each mapping ft be ^-distributive. In this application, k=2n,
and Si=S, i=l, 2, •••, & in the notation of §2. Interpreting i?3, the
associative law, for the components fif we obtain

(5.1) /iί/ife, , sw; tu , ίw), , Λ(s :, , sn; tu , tn) ^ , , %n)

for every sh tJf uk e S.
We assume that R* is an ideal-preserving extension of R and that

each fu i = l , 2, •••, w is defined by a polynomial
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(5.2) f{xu , xn; yu , yn) = Σ α ^ . . . ^ ^ . . . ^ ^ - -aψ^i yfa

with coefficients in jβ*. Denote the system consisting of the group V
and the mappings / t defined by (5.2) by (V,fl9ή). We obtain the
following application of Theorem 2.

THEOREM 6. Let R* be a commutative integral domain which is an
ideal preserving extension of R. Then (V, fi9 n) is a ring with multipli-
cation defined by (s19 , sn)*(t19 , tn)=(fl9 , fn) if and only if each
fi, i=l, 2, " ,n satisfies (5.1) and is defined by a polynomial of the
form

(5.3) Uxu , xn; yu , yn) 4 Σ Σ «H%*f3vfι ,

or
n n

(5.4) ft(xu , xn) yu , yn)= Σ Σ a
1 = 1 j = l

according as R has characteristic p ]> 0 or 0.

Proof. If (V,/£, w) is a ring, then we have observed above that
the mappings ft are ^-distributive mappings with values in SQR*.
Since the f are polynomial mappings into R*9 it follows from Theorem
2, that they are defined by polynomials of form (B) or (C) according as
the characteristic of R is p > 0 or 0. We have seen that the associative
law implies (5.1).

Conversely, if multiplication in (V9fi9 n) is defined by (su •••, sn)
(£i> "••> *n) = (/i, •••,/»), where each/^ is defined by (5.3) or (5.4) ac-
cording as the characteristic of R is p > 0 or 0, then by Theorem 2,
each fi is ^-distributive. Thus, multiplication in (V9fi9 n) is distributive
with respect to addition. Since each ft satisfies (5.1), multiplication is
associative, and (V,fi9 n) is a ring.

EXAMPLE 3. Let R be a field F with characteristic zero. Then
R*=F, S=F, and ( F , / , 1) is the group F+ and the mapping / defined
by f(x; y)=ΣAajk%3yk, ^ e ί 1 . By Theorem 6, (V,f, 1) is a ring with
multiplication defined by S't=^ajks

jt]c only if / is defined by f(x; y)=
axy, aeF. If α ^ O , (V, /, 1) is isomorphic to F under the correspond-
ence sa~l<^s, so that we can conclude that the only non-trivial rings
with additive group F+ and with multiplication defined by a polynomial
function of FxF into F are fields isomorphic to F [3, p. 177].

EXAMPLE 4. Let R be the finite field GF(32). Then β * =
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S=GF(32), and (V,f, 1) is a ring only if multiplication is defined by
(see the Corollary to Theorem 2).

s -1 =f(s t) = a0Qst -f a0lst3 + aws
3t + ansΨ , atj e GF(32) .

Selecting α o o =α l o =l, aol=au = O, f(s; t)=st + s3t, and f(s; t) satisfies (5.1).
Hence (V, f, 1) is a ring. Let ξ be the primitive eighth root of unity
which generates the multiplicative group of GF(32). Then f2 l = /(£2; 1)
= f24-f6=62(l + fi) = 0. Hence (V,f, 1) has zero divisors, and in this case
we have an example of a non-trivial ring with additive group GF(32)+

and with polynomial multiplication which is not isomorphic to GF(32).
It should be remarked in conclusion, that when R has characteristic

zero and (V, fif n) is a ring, the multiplication rule (5.4) is the same as
that for an algebra over i2* (see Introduction) and if R* has an identity,
(V>fi, n) can be regarded as a subalgebra of an ordinary algebra of
dimension n over i?*. Hence the coefficients aψ of the polynomials ft

play the same role as the multiplication constants of an algebra, and
the associative law (5.1) can be interpreted as a matrix identity [5, p.
294].
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