ON THE CONSTRUCTION OF R-MODULES AND RINGS
WITH POLYNOMIAL MULTIPLICATION

Ross A. BEAUMONT AND J. RICHARD BYRNE

1. Introduction. Let R be a ring and let R* be the additive group
of R. If R*=S,PS.P---PS, is a direct sum of subgroups S;, then
each element of R can be written as an n-tuple (s, s, =--, S»), 8;€S,,
1=1, 2, +++, n, and multiplication in R is given by n mappings

ot SixSyx oo xS, x8 xS, x-+-x8,—>R*, k=1,2, 4, n,

where fi(s;, 8yy <+, 8y ti, &y, = -+, £,) is the k-th component of the product
(815 82y ***y 8p)-(ty, Ly =+ -, t,). The distributive laws in R imply that the
mappings f; are additive in the first » and in the last n arguments. If
S, S,, +-+, S, are ideals in R, then

fk(sly Sz, teey Spy Ty by v e ey tn)zslutk, k=1, 2, e, n,

which is a homogeneous quadratic polynomial with integral coefficients in
the arguments.

If R is a commutative ring with identity, and if M is a free (left)
R-module with basis e, ¢, ---, ¢,, then M is an algebra over R if and

only if there exist elements 7,,,€ R such that multiplication in M is
defined by

(E Siei> : (2 tj@.i)= > TinSitsen -
i=1 =1 i,jk=1
The k-th coordinate of the product,
flu(sly Syy * 0y Sny tly t:r ctty tn)ziJZ:AlTiﬂuSitJ ’
is a mapping

2n
fit R XR* X+ XxR*— R*

which is additive in the first » and last » arguments, and which is a
homogeneous quadratic polynomial with coefficients in R in the argu-
ments.

These examples suggest the investigation of polynomial mappings
with the indicated additive properties, and a discussion of the problem
of constructing R-modules and rings which have an additive group which
is the direct sum of ideals of a ring R, and for which the multiplication
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is defined by a polynomial mapping.

In § 2 the basic properties of distributive mappings are given. The
form of a distributive polynomial mapping is investigated in §3, and
such mappings are characterized in Theorem 2, under the assumption
that R is a commutative integral domain. In §4 and 5 the results of
the previous sections are applied to the construction problems mentioned
above.

2. Distributive mappings. Let S,, S,, ---, S, be additive semi-groups
with identity 0, and let M be an additive abelian group. Let f be a
mapping of S;xS,x .-+ xS, into M.

DEFINITION. If there exists an integer m, where 1 <m <k, such
that

(1) f(sitsy = v 8ut8u5 Suey =, 8)

=SS5 0, Sus Smary 7, S)HL, o0, Shs Susn tt0, S,
(i) S ="y 8us SusrFSuen, =o 0, Se+80)

=f(31’ ce L S Smats 0, '5';;)+f(31, ceey S 3;n+1, ces, Sk) ,

for all s,, s,€S,, t=1, 2, ---, k, the mapping f of S, xS,x ---S; into M
is called m-distributive.

If k=m, only (i) of the definition applies, and the mapping f is a
homomorphism of S;ES.P ---PS, into M. In the examples given in
the introduction, k=2n, and the mappings are n-distributive.

The following are rather obvious consequences of the definition.

(1) The m-distributive mappings of S,xS,x --- xS, into M form a sub-
group H of the additive abelian group G of all mappings of S;xS,x -+
xS, into M.

If M is a ring, then the set of mappings G is an M-module in the
usual way, and the set of m-distributive mappings H is a submodule
of G.

(2) The mappings in H satisfy the relation

f(slv Tty Sy Sy Sk)
& m
= Z Zf(oi Tty Oy Sus O) Tt 0; Oy T, 0: S, 09 tt 0)
j=m+11i=1
for all s,e8;, i=1,2, «--, k.
Statement (2) is proved by induction from (i) and (ii) of the
definition.
(8) The mappings in H satisfy
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f(sh sy S 07 R O)=f(0, Y O’ Sty 0y SI\‘):O

for all s;e8,, 1=1,2, --- k.
Statement (3) is a generalization of the fact that the distributive
laws in a ring imply a-0=0-a0=0.

3. Polynomial functions. Let S,, S,, ---, S, be subsemigroups (not
necessarily distinet) of the additive group R* of a ring R, all of which
contain the element 0 of R. Let R* be any ring containing R, and let

S@, @y oee, 3)=300y 5,00 0@ 2l

be a polynomial in R*[x, x,, ---, #.]. Then f defines a mapping of
S, xS,x -+ xS, into R* where

f(sly 827 M) S-)zza’jl]z"'jksiljl‘gg:“' '31{" ’ SieSiy ?:21’ 2’ '..’ k .

The set S of all such mappings (polynomial functions) is a submodule
of the left R*-module G of all mappings of S, xS,x --- xS, into
R*. As above, we let H be the set of m-distributive mappings of
S x8,x -+ xS, into R*, so that H is a submodule of G. Consequently
the set of mappings HN\S is a submodule of G.

THEOREM 1. Each mapping fe€ HNS is defined by a polynomial of
the form

k m t—1 .
(A) f@, @, ooo,m)= X 3 X afpwlal .
L=m+1i=1j,,7;=1 ¢
Jyrigst

Proof. Let f be defined by a polynomial in R*z, @, ---, 2] of
degree t. Since f e H, we have by (2), Section 2

f(slr Sy oty Slc)
k m

= Z Zf(ov "'aOv Siy 07 "'90;Oy “',0, Sy, Oy ”'yO)

I=m+1 i=1

k m t

_ jigl
= D, 3 2 oo 005,000 8T8
l=m+11=1j;5),;=0

3 st

for all s,€8,, ¢=1, 2, ---, k. The latter expression can be written

m :
S DL DL @ueeein gy 0,0, g0, 0 0STIST

l=m+1i=1
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" t
+ D D0 p0, e 08 Qg g g

l=m+1 Jl—_-l

By (8), Section 2,
0—’=f(0, 0! ttt, O)IGO,O\'”,O ;

O=f(0r ttcy 07 Siv Oy ttey 0; 0! Tty 0):(1'0,0,"'.0+ Zaﬂ,n-.o,j ,0.--~.OSL'71

J;=1
t
= 2a0,~-~,u,j.,0,---.uslj'5
J;=1 ¢
¢
for all s;,e8,, 1=1,2, ---, m;
0=7(0, «--,0;0, -+-,0,8,0, ---, 0)
! i
Ia’d,ll,“-‘u'{“ Laa‘---vo,”'o,...‘osljl
=1
[y :
= a/07..-,(]'jl,(].-..,08'll
J,=1
forall s,eS;; I=m+1, ---, k. Denoting a, ..., IO l0, 10 e e by “5'?31’ we

have

E om t-1
— \" N 1) @J;al
f(su Sy 00, Sk)‘— >_| Z-I Z a’ji,jlsz‘s/l
l=m+1 i=1 ji’]l=1
i+ ast

for all s,€8,, t=1, 2, ---, k, which completes the proof.

The following examples show that for an arbitrary ring R, the
converse of Theorem 1 does not hold, and that Theorem 1 is the best
possible theorem in the sense that there exist rings for which every
polynomial function defined by a polynomial of form (A) is m-~distributive.

ExamMPLE 1. Let R=I, the ring of ordinary integers, let R*=R,
and let S,=8S,=R*. Let f: S;xS,— R be defined by f(x, x,)=2a,.
Then f is defined by a polynomial of form (A) with m=1. However
féH for f1+1; 1)=,(2, 1)=4, and F(1; 1)+ F(1; 1)==1+1=2,

ExAMPLE 2. Let R be the ring with additive group R*={u}, the
cyclic group of order 9, and with multiplication defined by (tu)-(ju)=3iju.
Then R is a commutative ring [2] such that R*=0, B>~ 0.

Let f be any mapping of S;xS,x .-+ xS, into an extension R* of
R, where S, S,, ---, S; are any subsemigroups of R* containing 0, such
that f is defined by a polynomial of form (A). Then
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-
S(S1, 80y v oey 8)= > E > ag‘i;l})lsz)"'sl]’

= > aii’ss,
j=m+1i=1

since R*=0. It is evident that f is m-distributive, that is, fe HNS.

In the sequel we will be concerned with m-distributive polynomial
mappings of S;xS,x ..+ xS, into B. Since a polynomial with coefficients
in an extension R* of R may have its values in R, we obtain a larger
class of mappings by allowing the coefficients of f(x,, @,, ---, ;) to be in
R* 2 R. For example, polynomials with (ordinary) integral coefficients
have values in R, and if R does not have an identity, we may con-
sider the coefficients to be in an extension R* of R. Moreover it is
a consequence of the theorem that if R is an ideal in R™, then f has
values in R.

The following lemma is well known (see for example [6, pp. 65-
66]), but is given here in the form in which it is most useful for our
purposes.

LEMMA. Let
f= Zajl,jz,"', jkx{lx;fg' * 'x){k € Rk[xly Lyy =00,y xk]

where R* is a commutative integral domain, and let f be of degree m,
n x;, 1=1,2, -+, k. Let (s{, s, ---, s{™’) be a set of distinct elements
of R* where n, >m,;, i=1,2, -+, k, such that f(s{'0, s{?, -+, s{)=0
Jor 4,=1,2, ««+ m;, ©=1,2, «--, k. Then f=0e R*[x, ©,, ---, 2]

THEOREM 2. Let R* be a commutative integral domain, let R be a
subring of R*, and let S,, S,, ---, S, be non-zero ideals in R. A mapping
S from S;x8,x - xS, into R* is in HNS of and only if f is defined
by a polynomial of the form

2

.

g

S

(B) S (@, @y -, xfc)=[ i

=m

”
1)) p8 81
> at s, Ti
R

t

+

14

[
-

when R has characteristic p >0, and by
k m
(&) f@, @, oo0, x)= >, > 0@,

l=m+1 1=1

when R has characteristic zero.

Proof. Let f be defined by a polynomial of form (B) when R has
characteristic p > 0. Then
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f(sl‘l‘SI, ct Ty sm+8:u; Suaty * 0, s/r)

m 7

P }L_‘J Z Z a/(is,‘l') (9+S\p zspsl

S
l=m+1{=15,%,=0 »ripl

. r

— Z Z ; a(b )] sl(81) L+g » L)Spl

I=m+li=1 5, =0 pip

zf(su R Sm; Sm-l-]’ ctcy Slc)+f(S;’ ] S;n; Sm-H' Tty slc) y

so that f satisfies (i) of the definition for m-distributiveness. Similarly
(ii) is satisfied, so that fe HNS.

It is immediate that a mapping f defined by a polynomial of form
(C) is m-distributive.

Conversely, we divide the proof into three parts.
1. R s infinite and has characteristic p > 0.

If feHNS, then f is defined by a polynomial of form (A) by
Theorem 1. Then we have for each 4 (1 <C¢<Cm) and for each [
(m <l=k),

.f(0+0y"“ysi+8;r...y0+0; Ov 7873"'70)
t—1
= > (”(e +s) i)t
Jpd,=1
)+]L<f

~:f(0, e, 8, “",0; O’ e 8y, y0)
+‘f‘(0’ ...’S;’ ...’0; 05 ey Syttt O)

=S af) shsii+ X > ashy sl

for all s, s;eS,, s,€8,. Therefore we have the identity

(3.1) > Cl/_(,”])l[j sfi _19”+j(j9:f )Si *s7 -+
J,=20=1 H
+ji(jé’__l)s%s’i%“’—l—jisis}’ ]9’1—0 .

Since R is an infinite integral domain, each ideal S;=%40 is infinite.

Therefore the polynomial in R*[x, y, 2] which has the same coefficients

as the above expression, vanishes for infinitely many values of each

argument z, ¥, z in R*. By the lemma, each coefficient is zero. Now the

coefficient of "Y'zt (0<"»r<g,; 177, <¢; 0<g,<¥) is ( >a§“fl 0.
7
If 4, is not a power of p, then at least one of the binomial coefficients

(J"), r=1,2, ---,4,—1, is prime to p. Since B, and consequently R¥,
»

has characteristic p, this implies that a“ =0, for j, and j, in the stipu-
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lated ranges, whenever j, is not a power of p.

Using (ii) of the definition of an m-distributive mapping, a similar
argument shows that o’} =0 for j,=1, 2, ---, t—-1; 5,=2,8, ---, t—1
whenever j, is not a power of p.

Since the above argument holds for each ¢ and each /, the polynomial
of form (A) which defines f has all coefficients zero except for coefficients
al s,=0,1,2, ---,5=0,1,2, --- . Thus f is defined by a poly-

pSipSL?
nomial of form (B).
2. R 1s finite and has characteristic p > 0.

Since R is a commutative integral domain, R is a finite field GF(p")
and each ideal S,540 in R is R itself. Since s*"=s for all se R, each
polynomial function of S, xS,x ... xS, into R* is defined by a polynomial
of form (A) of degree at most p"~! in each argument. Since the degree
in each argument is less than the number of elements in each S,=R,
the lemma can be applied to the identity 3.1, and the proof of 1. is
valid in this case also.

3. R has characteristic zero.

Since R and each ideal S;740 in R have infinitely many elements,

the proof of 1. can be followed to obtain

(%)ass=0  and (7)asi=o0,
r r
for j,, 7,, and r in the ranges previously stipulated. Since R, and
consequently R*, has characteristic zero, this implies that a?i:’}L=O except
for j,=7,=1. Consequently f is defined by a polynomial of form (C).
The following result was obtained in the proof of the theorem.

COROLLARY. Let R=GF(p") and R* be a commutative integral domain
containing R. A mapping f of

k terms
RxRx-+++ xR

into R* is in HN\S if and only if [ is defined by a polynomial of form
(B) with r=n—1.

4, Application to the construction of R-modules. Let S0 be
an ideal in a ring R. The set of (k—1)-tuples V=/{(s,, 83, -, 8;), s;€ S}
with equality, addition and left scalar multiplication defined component-
wise is a left R-module. The group of the module is the direct sum

k—1 terms
S*HS*P---PS~.
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Forre R, s, €S, the 4-th component rs; of the scalar product r(s,, s;, - -+, Sx)
is a 1-distributive polynomial function f of the arguments r; s, s, ++ -, S;.
In this section we characterize the most general polynomial funetion f
for which V=S+*@S*@:--@PS* is an R-module, where R is a com-
mutative integral domain with characteristic zero.

Now V is a left R-module if and only if there exists a mapping f
from Rx V into V which satisfies the module identities

(M,) Sy, vitv)=f(r, v)+ 0, v),
(M) Sri+ry, v)=Ff(r, v)+ (0, v),
(M) Sy, v)=F(r, f(r,, 1)),

for every r, r,e R and every v, v,€ V. Denoting the components of
S, v)=7(r; 8, +++, 8) by fi(r; s, -+, s,), ©=2,3, -+, k, we observe
that f is given by a set of k—1 mappings f;, from

k terms
RxSxSx-+-+x8S

into SE R. Setting R=S,, S=8S,, ---, S=S, to agree with the notation
of the preceding sections, the identities (M,) and (M,) are just the con-
ditions (i) and (ii) that each mapping f, be 1-distributive. Interpreting
M, for the components f; we have

4.1)  filriry; sy w00, 8= fu1y; 8y v o0y 8k), o, fu(rss Suy v o0, 8k))

for every r, r,€ R and every s;€S; =2, 3, ---, k.

We now assume that R* is an ideal-preserving extension of R, that
is, R* is a ring containing R with the property that if S is an ideal in
R, then S is an ideal in R*. For example, there exists a ring with
identity containing R which is an ideal-preserving extension of R. Let
fi, 1=2,38, +++, k, be a mapping from Rx V into R* defined by a poly-
nomial

(4.2) Filwy @y oo ey @)= 0y, g ahahe - alr

with coefficients in R*. Denote the system consisting of the group V
and the mappings f; defined by (4.2) by (V, f;). We obtain the following
application of Theorem 2.

THEOREM 3. Let R* be a commutative integral domain with charac-
teristic zero which s an ideal-preserving extension of R. Then (V, f;) is
a left R-module with scalar multiplication defined by r-(S,, S5, *++, Sp)=
(For For + ==, F2) if and only if each f, is defined by, a polynomial of the
form
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k X
(4'3) fi(wl; Loy 0y mk)= ; agb)xp'vz , UJEZ) e R* ,

such that the matriz A=(a{®) is tdempotent; that is r-(s,, Ss, *++, Sp)=
7(8yy S35y + =+, Sp)A', where the right member is an ordinary matric product
in which A’ s the tramspose of the matrix A.

Proof. 1If (V, f) is a left R-module, then by the foregoing discus-
sion, the mappings f, are 1-distributive polynomial mappings with values
in SE€ R*. By Theorem 2, with S;=R, S,=S;=---=8§,=S, and m=1,
each f, is defined by a polynomial of form (C)

k k .
Jl@s @y o0, )= ZZ_Q a5y @, = z% aPwa,

Since each f; must satisfy the identity (4.1) we have

k k k
z:zz as(rr,)s, = ;__,‘2 agf)rl[ 12_2 aPr,s j:,

B

:ﬁ

i j
G/(i >CL§")7"1’7'.,SZ y
2 j=:

2

1

k
for every r, r,e R and every s,€S. This implies a{’= >\ a%af” or that
j=2

the matrix A=(a{”) is idempotent. Since
k . k .
Jilrs 8y w00y s)= 3, aiPrs=nr 3, ai%s,
=9 =

we have 7-(s, -, 8,)=70(s,, -+, 8,)A” where the right member is an
ordinary matrix product.

Conversely, it is readily observed that if f; is defined by (4.3) with
A=(a®) idempotent, then f; has values in S since S is an ideal in R*,
fi is 1-distributive, and f; satisfies (4.1). Therefore (V, f,) is a left R-
module.

If we specialize to the case where R=F is a field, we have S,=S,
=...=8,=F and R*=F, so that (V, f;) is the group of (k—1)-tuples
with elements in F' for which scalar multiplication is defined by (4.2).
Theorem 3 characterizes the (V,f,) which are F-modules, and we let
(V, A) denote the F-module (V, f;) with scalar multiplication defined by
(4.83) where A=(a”) is idempotent. Let E‘,,L=(IO’" g) , Where 0 <m <k-1.
The following theorem completely classifies the F-modules (V, f).

THEOREM 4. The left F-module (V, A) is F-isomorphic to the F-
module (V, K,) for some m, 0 <m <k—1. Moreover (V, E,) is not F-
asomorphic to (V, E,) if m % n.
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Proof. 1If A is similar to B, then (V, 4) is F-isomorphic to (V, B).
For in (V, A),

(8, S5, o0, Sp)=0(8,, 8, -+, S)A",
and in (V, B),
7(8y, Sy, * =+, S)=1(8,, S, *++-, S)B'=7r(s,, 8, -+, s, )PA P!
for some non-singular matrix P. The mapping ¢ defined by

‘P[(Szr Sih R sk)]z(su SS, Tty SIG)P_1
is an F-isomorphism.
Since A is idempotent, A is similar to E,, for some m, 0 <m <k-—1
[1, p. 88], which completes the proof of the first part of the theorem.
In (V, E.),

re(s, 8, ---, 8)=(78,, 1Sy, *++, 1S4y, 0, =+, 0),

so that the submodule 1-(V, E,))=(s,, 83, ***, Sp+1, 0, +-+, 0) is the vector
space over F' of dimension m. Any F-isomorphism of (V, E,) onto
(V, E,) induces an F-isomorphism of 1-(V, E,) onto 1-(V, E,), but if
m % n these submodules cannot be F-isomorphic since they are vector
spaces of different dimensions over F.

COROLLARY. The F-modules (V, A) and (V, B) are F-isomorphic if
and only if A and B have the same rank.

In the above discussion, the (V, f;) were all (£—1)-tuples for a fixed
k. We now consider (V,, ;) and (V;, f,), k%~1. By Theorem 4, it is
sufficient to consider (V,, E,), 0<m <k—1 and (V,, E,), 0 < n<1-1.

THEOREM 5. The F-modules (V,, E,) and (V,, E,) are F-isomorphic
iof and only if m=n and either k=10 or F'* has infinite rank.’

Proof. Suppose first that ¢ is an F-isomorphism of (V,, E,) onto
(V,, E,). Then as in Theorem 4, 1-(V,, E,) and 1-(V,, E,) are F-
isomorphic vector spaces of dimension m and n respectively over F.
Hence m=n. Assume that k=41, and let M and N be the submodules
of (V,, E,) and (V,, E,) respectively which are annihilated by 1e F.
Then ¢ induces an isomorphism of M onto N as additive groups.

k—1—m
MZ{(O, Tty 07 Svn+]y ‘o.rsk-L)r SieF}:F+@".@F+

1 T}:e additive group F'+ of a field F' of characteristic 0 is a divisible torsion-free
group and therefore is the direct sum of « copies of the additive group of rational num-
bers. The cardinal number «, which is an invariant, is called the rank of F'+ [4, pp. 10-
11].
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and
[—1—-m
N={(07 ) O) s7n+l, “'ysl—l)y SieF}=F+®'°'@F+ .

If F* has finite rank, then M and N have different rank, and are not
isomorphic. Hence F'* has infinite rank.

Conversely, if m=n and k=I[, there is nothing to prove. Suppose,
then, that m=n and that F'* has infinite rank. Now (V,, E,)=
1-(Vi, E.)PM and (V,, E,)=1-(V,, E,)P N, where M and N each
have the decomposition into a direct sum of copies of F'* given above.
Since F'* has infinite rank, M and N have the same rank and are
isomorphic as additive groups. But since F' annihilates M and N, this
isomorphism is an F-isomorphism. Finally, 1-(V,, E,) is F-isomorphic
to 1-(V,, E,) since they are vector spaces of the same dimension.

5. Application to the construction of rings. As in the previous
section, we let S%0 be an ideal in a ring R and consider the set of
n-tuples V=1{(s, s, -+, 8,), s, €S} with equality and addition defined
componentwise. Now V is a ring if and only if there exists a mapping
f from VxV into V which satisfies '

(R) St v, v)=r (v, v)+ F(v,, v3)
(R.) S, va+0)=f (v, v.)+ f (v, v)
(Ry) S, v), v)=f (v, f(v, v))
for every v, v,, v;€ V.
Denoting the components of f(v, v,)=f(s1, ++*, Su; ti, +++, L,) by

fi(sy, =o+, 805 b, »o0, t,), 9=1,2, -.- n, f is given by a set of » mappings
f; from
2n terms
—
SxSx .- x8

into S R. The identities R, and R, are just the conditions (i) and
(ii) that each mapping f; be n-distributive. In this application, k=2n,
and S;=S, ¢=1,2, .-+, k in the notation of §2. Interpreting R,, the
associative law, for the components f,, we obtain

(51) fi(fl(su Sy tly ) tn)y "'v-f‘n(sl; ctcy Spy tl, Tty tn); Uy = ° -, un)
=fi(sly *ccy Sny -fl(tly HRI AN T Tty un)y "'vfn(tly Sty tn; Uy =y un))

for every s;, t,, u,€S.
We assume that R* is an ideal-preserving extension of R and that
each f;, 1=1, 2, ---, n is defined by a polynomial
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(5.2) Sy ot @y Yy, Ya)= D Wy e, T Ty Y

with coefficients in R*. Denote the system consisting of the group V
and the mappings f; defined by (5.2) by (V,f;, n). We obtain the
following application of Theorem 2.

THEOREM 6. Let R* be a commutative integral domain which is an
ideal preserving extension of R. Then (V, f;, n) is a ring with multipli-
cation defined by (s, «--, 8,)(t,, -+, t,)=(f1, +++, fn) of and only if each
fiyi=1,2, -+, n satisfies (5.1) and s defined by a polynomial of the
form

n

(5'3) fi(xlr R} wn; :I/ly ) yn) = ZZI‘
=1

5Dy Gt
Z as.islxj yL ’
8, =0 J

-l
L85y

s

or

(54) fi(xb ey Ly Yuy vty yn)= Z 2 a’_(iiL)xjyl ’

i=1j=1

according as B has characteristic p >0 or 0.

Proof. If (V,f,, mn) is a ring, then we have observed above that
the mappings f; are n-distributive mappings with values in S < R*.
Since the f; are polynomial mappings into R*, it follows from Theorem
2, that they are defined by polynomials of form (B) or (C) according as
the characteristic of Ris p >0 or 0. We have seen that the associative
law implies (5.1).

Conversely, if multiplication in (V, f;, n) is defined by (s, +++, 8,)-
@, =+, t))=(f1, -+, fn), Where each f; is defined by (5.3) or (5.4) ac-
cording as the characteristic of R is p >0 or 0, then by Theorem 2,
each f; is n-distributive. Thus, multiplication in (V, f;, n) is distributive
with respect to addition. Since each f, satisfies (5.1), multiplication is
associative, and (V, £, n) is a ring.

ExaMPLE 3. Let R be a field F with characteristic zero. Then
R*=F, S=F, and (V, f, 1) is the group F'* and the mapping f defined
by f(x; y)= > axy", a,eF. By Theorem 6, (V, f, 1) is a ring with
multiplication defined by s-t= 3 a,s't" only if f is defined by f(z; y)=
axy, ae F. If as£0, (V, f, 1) is isomorphic to F' under the correspond-
ence sa~'<>s, so that we can conclude that the only non-trivial rings
with additive group F'* and with multiplication defined by a polynomial
function of F'x F' into F' are fields isomorphic to F' [3, p. 177].

EXAMPLE 4. Let R be the finite field GF(3°). Then R*=GF(3"),
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S=GF\(3*, and (V, f, 1) is a ring only if multiplication is defined by
(see the Corollary to Theorem 2).

Se t =f(S ; t) == aoost + amstS + 0;1083t + a1183t3 y a“ € GF(32) .

Selecting ayp=a,=1, an=a,=0, f(s; t)=st+s’t, and f(s; t) satisfies (5.1).
Hence (V, f, 1) is a ring. Let & be the primitive eighth root of unity
which generates the multiplicative group of GF{(3*). Then £-1=f(&; 1)
=+ &=86(1+¢&)=0. Hence (V, f, 1) has zero divisors, and in this case
we have an example of a non-trivial ring with additive group GF(3%)*
and with polynomial multiplication which is not isomorphic to GF(3?).

It should be remarked in conclusion, that when R has characteristic
zero and (V, f;, n) is a ring, the multiplication rule (5.4) is the same as
that for an algebra over R* (see Introduection); and if B* has an identity,
(V, fi, n) can be regarded as a subalgebra of an ordinary algebra of
dimension » over R*. Hence the coefficients a’ of the polynomials f;
play the same role as the multiplication constants of an algebra, and
the associative law (5.1) can be interpreted as a matrix identity [5, p.
294].
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