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1Φ Introduction. Let τk{x) denote the (C, k) mean of cos#, so that

(1.1) ro(#) = cos#,

and

(1.2) ϊM=~ Γ {x-uf-1 cos udu , (k>0),
Xk Jo

=k [ (1-tf-1 cos xtdt ,
Jo

where Ck(x), the kth. fractional integral of cos x, is commonly known as
Young's function [6, p. 564].

We shall say that the infinite series Σ an is summable (r, k) if

0

oo

(i) ΣαWfc(^) converges for 0<t<A
0

and
oo

(ii) lim Yjanγk{nt) — S , where S is finite.
ί-»0 0

We see that (γ, l)=(i?, 1) and (γ, 2) = (R, 2), where {R, 1) and (R} 2) are
the well known Riemann summability methods. Hence the (γ, &)-sum-
mability methods constitute, in a sense, an extension of (R, 1) and (R, 2)
summability methods to {R, k) methods where k may be non-integral.
But this extension is not linked with the ideas which lie at the root of
the Riemann summability methods, that is, taking generalised symmetric
derivatives of repeatedly integrated Fourier series, so that the equivalence
of (γ, k) and (R,k) for k=l,2 may be considered to be somewhat ac-
cidental, and the extension artificial. However, the {γ, k) methods are
also connected with certain aspects of the summability problems of

oo

Fourier series. For, let Σ An{x) be the Fourier series of a periodic and
0

Lebesgue integrable function f(x) and let
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Then, by some well known theorems (see, for example, [1].) the problem
of Cesaro summability of Σ An(x) is connected with Cesaro continuity
of φ(t) at t — 0, φ(t) being said to be (C, k) continuous at t = 0 if
k\ (l—yY''1φ(ty)dy exists for 0<£<A and tends to a finite limit as t tends

Jo

to zero. On the other hand, under certain conditions (e.g., if k^l) we
have

Jo ' o

Thus the nature of the connexion between (r, k) and Cesaro summability
methods, when the series in question is a Fourier series, is immediately
apparent.

Some known theorems which may be interpreted as results on (γ, k)
methods are stated below, δ denotes any arbitrary positive number.

(Ax) // a series is summable (γ, 1) then it is summable (C,

See Zygmund [11].

(A2) If a series is summable (γ, 2) then it is summable (C,

See Kuttner [7].

(A3) If a Fourier-Lebesgue series is summable (γ,k), &Ξ>1, then it is
summable, (C,k+δ).

See Bosanquet [1] and Paley [8].

Neither Bosanquet nor Paley actually states any such result, but if
α ^ l , then Bosanquet's Theorem 1 as well as Paley's Theorem 1 can be
restated in the present form.

(Bx) // a series is summable (C, —δ) then it is summable (γ, 1).

See Hardy and Littlewood [4],

(B2) // a series is summable (C, 1 — δ) then it is summable (r, 2).

See Bosanquet [1] and Verblunsky [10].

(B3) // Σajn2 is convergent and Σ α w is summable (C,k), k^— 1, then
0 0

OO

Σ an is summable (r, k+l + δ) .
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See Bosanquet [1].

In view of the above results the question naturally arises whether
we can remove the restrictions (a) that in (A3) the series in question is
a Fourier series and k^l and (b) that in (B3) ^ajn2 is convergent, and
obtain the general results

(A'3) (r, k) implies (C,k+d), k^O,

and

(B'3) (C, k) implies (γ,k+l + δ), k^-1.

But so far as (B3) is concerned, we may state here that the con-
vergence of Σ an/ή2 is essential for the truth of the conclusion, because
we shall prove a result (Lemma 5) which implies that if Σan is sum-
mable (r,k)y k>2, then ^anjn

2 is convergent.
In this paper we shall obtain the following results of the type of

(A',):
(i) If k is zero or a positive integer, then (γ, k) implies (C, k+δ).
(ii) // [fc]^4, then (γ, k) implies (C, k+δ).

The question of the truth of (A'3) for fractional values of k less than 4
is still open.

2 Lemmas.

LEMMA 1. // k>0, then for large positive values of x,

4
x1

where A and B are non-zero constants the asymptotic formulae for the
derivatives of γk(x) are obtained by formal differentiation of this formula.

This result is familiar. See, for example, Bosanquet [1].

LEMMA 2. Let f(x) be periodic with period 2π and Lebesque integr-
able, and let ^(ancosnx+bnsinnx) be its Fourier series. Set

Φ(t)=\{f{x+t)+f{x-t)} ,

Φ(t)=j{f(χ+t)-f(χ-t)} ,
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[φ{t)\tτ if r is an even integer

\φ{t)\tr if r is an odd integer.

If d{t) i>s integrable in the Cesaro-Lebesgue sense in (0, π) and its Fourier
/ d \r

series is summable (C, k) at t = 0, then Σ f ){an cosnx+bnsmnx) is
\dx /

summable (C,k+r).
For this result see Bosanquet [2, Theorem 2],

LEMMA 3. Let f(t) be an even periodic function with period 2π. If
f(t)εCλL where 0<Λ<l and f(t)=o(l)(C, λ + 1) as t->0, then the (CλL)-
Fourier series of f(t) at ί = 0 is summable (C,k) for every k>λ + l.

For this result see Sargent [9, Theorem 4].

oo

LEMMA 4. If Σ t t ( w ί ) is convergent for a<t<β, then
0

(i) an=o(nk) if

(ii) an=o(n2) if k^

Proof Case 1. &=0. The hypothesis implies that \imancosnt = 0

for a < t < β, which, by the Cantor-Lebesgue theorem, implies that

Case 2. &>0. The hypothesis implies that limanγk(nt)=:Q for a<
n—»co

t<β, which, on account of Lemma 1, implies that

B εosίnt-k—λ
—+θ( — ) \ = 0 for a<t<β .

If 0<fc^2, we write this as

Bcos(nt-k—
imM A ( X \ V 2

and if k>2, we write

B cos (nt-k—

The result, for 0<fc^2, is now obtained by a slight modification of the
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usual proof of the Cantor-Lebesgue theorem, whereas, for k>2 we get
the result by noticing that the expression within brackets tends to
a non-zero limit as n tends to infinity.

LEMMA 5. If k^2 and ̂ anrk(nt) is convergent for a<t<β, then
0

oo

Σαw/w2 is convergent.
1

Proof. Since Kuttner [7] has proved the result for &=2, we assume
that fe>2. We also assume without any loss of generality that α>0.
Now suppose that (aQ1 β0) is a subinterval of (a, β). Since

(2.1)
1 (fC—L)

therefore

Ck(nt)(β0-t)(t-a0) dt

(βo-t)(t~aQ)dt- Γ° CUnt)(βQ-t)(t-a0) dt
J

0, βQ)-\β° Cu-,{nt)(βQ-t)(t-aQ)dt ,

where

, βo) = ΎJ^τ, \β°t«-\β0-t)(t-a0)dt

is positive.
Hence, integrating by parts twice, we have

(2.2) [β°C,(nt)(β0-t)(t-aQ)dt

=^- 2 φ(α 0 , /9 0)^-IKA-OO) {C f c(^0)+C f cM0)}]+A Γ° C4(wί) dt
^ 2 nΛ J%

Now, since

for any fixed t. Hence, from (2.2) we get

(2.3) Γ° Ck(nt)(β0-t)(t-a0) dt = n«

Therefore, if p and q are two positive integers and q>p,
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(2.4)

n=pn"

q fβn π

) } d ί = Σ 1 ~<

-4)an by (2.3)

by Lemma 4.

dt

n

If possible, let the lemma be false. Then we can find a positive
number e such that, for an infinity of pairs of integers {VnQi), Q%>Vu
we have

(2.5) >2e.

Again, if p0 is sufficiently large, then

(2.6) Σ o(\)<εφ(a0fβ0).

From (2.4), (2.5), (2.6) it follows that

(2.7)

But the quantity on the left hand side of (2.7)

εφ(α 0 , βQ)

(2.8) gίl.u.b. Σ -niCh(nt)

From (2.7) and (2.8).

l.u.b. Σ ° (βo~t)(t-aa) dt

>Me,

where M is a positive constant independent of the subinterval (aQ, βQ)

Hence an < Me at some point in (aQ, β0) and therefore through-

out a subinterval (au βτ) of (α0> βo)9 since is a continuous

0

function of t.
If, in the above argument, we now replace (aQ, β0) by (alf βλ), (pύ, qϋ)

by (Pu Qι) where Pi>qQ, we will reach the conclusion that
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throughout a subinterval (a2, β2) of (α^ βτ). We can thus determine
a sequence of pairs of integers (pίf q^), tending to infinity with i, and a
corresponding sequence of intervals (at, βt) such that ai+1^aif βi+1<Lβί and

Σ ^ ^(wί) >Mε

throughout (aίf βt). Therefore, there is at least one point tQ common to

all these intervals such that the infinite series Σ — Cfc (nt) diverges for
nk

t—tQ. This contradicts the hypothesis of the lemma.

3. Theorems.

THEOREM 1. If Σan is summable (γ, k) where k is zero or a posi-
0

tive integer, then Σ α w is summable (C,k+d), d>0.
0

Proof. Case 1. k>0. As we have already noted in the introduc-
tion that the result is known to be true for k=l and k—2 we take k to

be an integer greater than 2 and assume that Σ an is summable (r, k)
0

to S.
Suppose k is an even integer. Then by (1.2) and repeated applica-

tion of (2.1), we find that, if w^l and tΦO,

where R, A19 A2, etc. are some constants. Therefore

(3.1) Σ ann(nt)=a0+± α B j ( A + A + . . . + i ^
w=o w=i l\nt ntr nt

oo oo

for ί̂ fcO. Since, by Lemmas 4 and 5, Σ°W^2> Σ α J ^ 4 ^ e t c converge
1 1

respectively to Si, S2, etc. say, it follows from (3.1) that Σ — cos nt is
i nr

covergent for 0<t<A. It is also convergent for ί=0.
From (3.1)

(3.2)
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By suitably altering fe/2+1 terms of the series Σ«» and working with
the resulting series, say Σ 4 we can simultaneously have S=ao—aOf

S1=Si=---=Sm=0, so that by (3.2),

(3.3) Σ,^ cos nt=o(tk) as ί->0 .
i nk

Again, -^—o(n2'k) — o (n~ι), so that Σ — c o s nt is a Fourier series con-
nk i n f c

verging to a function /(£), say, in a neighbourhood of the origin. Since f(t)
= o(tk) for small t, it follows that the kth symmetric generalised derivative
of f(t) exists at t — 0f and is equal to zero there. Hence, by virtue of well
known results in the theory of Fourier series, we can immediately con-
clude that ( C ^ + ^ Σ ^ O , so that (C, k+δ)Σan=S. The proof,

1 0

when k is an odd integer, is similar.
oo

Case 2. &=0. We are given that ^an cos nt converges to a func-

tion f(t) for 0<£<A and lim/(£) is a finite number S. Therefore f(t)
ί-»0

is bounded in some interval 0<t<η.
oo

Let Σ K cos nt be the Fourier series of an even periodic function
0

λ(t) defined as follows.
1 for

' 0 for η^t^π .

Moreover, let λ{t) change smoothly as t increases from ηf to η, so that
λ'"(t) exists and is continuous. Hence bn = o(ljn3). (See [5 Theorem 40]).

oo oo oo

If Σ cn cos nt is the formal product of Σ an cos nt and Σ bn cos nt,
0 0 0

then it follows from Rajchman's theory of formal multiplication [12,
oo

section 11.42] that ^cn cos nt converges to f(t) in 0<t^ηf, to λ(t)f(t)

in η'^t^η, and to zero in η<Lt^π. Hence it follows that Σ ^ c o s n ί is
0

oo

a Fourier series [12, Theorem 11.33], and therefore ^cn is summable
0

(c, δ) for d>0, because lim/(£) = £. Consequently, Σ an is also summable
t-»0 0

(c, δ) (See [12, section 11.42].

THEOREM 2. Let Σ an be summable (γ, k) where k^l
0

(when [k] is odd) or Σ °w sin nx (when [k] isVL nr\Ά viΎ (wham Ylr~\ <i.a nr7A\ nv V1 ΊL
i
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oo

a Fourier series. Then Σ an is summable (c,k+d), δ>0.
0

Proof. Since, in Theorem 1, we have already proved the result for
integral k under more general conditions, we assume k to be non-
integral. We also take [k] to be an odd integer. The proof, when [k]
is even, is similar.

ϊkl — 1
By making -LJ applications of (2.1), using Lemma 5, and arguing

Δ

as in the deduction of (3.3), we get

(3.4) ±^Ck-[k]
i rr

where Σ an differs from Σ an in a finite number of terms only,
0 0

oo oo oo

^anln
2=0f Yian/n4=0, etc., and Σ α » is summable {γ, k) to αό=α0.

1 1 0

Let Σ — r τ ~ c o s n x be the Fourier series of an even function φ{x)eL.
i nι

Then it can be easily shown that

(3.5) Φ*- m + i (0=Σ ^CΛ-W + 1(wί)

= o(£fc) by (3.4) .

Again, φ(t)eL obviously implies that φ(t) is Cesaro-Lebesgue integrable
CλL for any ^ 0 so that

(3.6) w

From (3.5) and (3.6), we have (See [3, Theorem 2])

Φ(t) G C r

and

as

Hence, in view of Lemma 3, we conclude that the (Cesaro-Lebesgue)

Fourier series of j£ί*L is summable (C, k — [k~\ + l + δ) at t=0 for any

Now it follows from Lemma 2, where we take r—\_k~\ — 1, that
oo

4 is summable (C, &+£). Hence Σ α ^ is a l s o summable (C,k+d).
0
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COROLLARY. If Σα™ is summable (γ, k), &^4, then ^an is summable

(C,k+δ), δ>0.

The corollary follows immediately from the theorem because an=o(n2)
by Lemma 4.
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