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1. Introduction. In previous papers [1 6] the notion of sub-
harmonic functions was generalized by replacing the dominating family
of harmonic functions by a more general family of functions. The object
was to require of the dominating functions the minimum properties
necessary to study the boundary value problem by subfunction tech-
niques. In a natural way these properties were separated into two
parts : first, those properties sufficient to obtain functions which are
solutions in the interior of a domain and, second, those properties suf-
ficient to obtain agreement of the solution with the prescribed boundary
values on the boundary of the domain. In particular the aim was to
choose properties which would be sufficient to insure that a solution
would take on prescribed boundary values at any boundary point p at
which an exterior circle could be drawn intersecting the closed domain
only in the point p. In a recent paper Inoue [5] points out an error
in this second aspect of [1]. Inoue then lists properties of the dominating
functions which are sufficient to insure the regularity of boundary points
at which exterior triangles can be drawn. In his paper these properties
are embodied in six postulates the first four of which are essentially
the same as the first four postulates of [1]. Postulates 5 and 6 given
by Inoue are used in studying the behavior at the boundary and are
naturally more restrictive but they are such that the theory can be
applied to elliptic partial differential equations which have the property
that the difference between two solutions is subharmonic when positive.

In the present paper we use only the portion of the theory of sub-
functions which is based on the first four postulates of [1] to obtain
some results concerning the Dirichlet problem for certain types of
elliptic equations. We shall give some results concerning the linear
equation

( 1 ) Λz+a(x, y)zx+b{xy y)zy+c(x, y)z=f(x, y) ,

where Δz ——+—, and the quasi-linear equation
dx2 dψ

( 2 ) a(p, q)r+2b(p, q)s+c(p, q)t = O ,

where p =—, g = — , r = — , s = - ^ _ , and t=—. In particular we
dx dy dx1 dxdy dx2
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shall give a theorem concerning the Dirichlet problem for the minimal
surface equation

for non-convex regions. The result is quite weak but is perhaps of
some interest since results ef this type are very meagre indeed.

2. {F} -functions and sub-{F} functions. In this section we shall
list for convenience the postulates satisfied by the {F} -functions and
some theorems given in [1]. For simplicity our language will be in
terms of the plane, however, our statements in this section could be
phrased in terms of Euclidean space of any number of dimensions.

Let D be a given plane domain and let {/c} be the family of all

circles with radii less than some fixed number and such that K—K-\-κ c D
where K is the open circle bounded by K and K its closure. Throughout
the paper we shall use Ω to indicate an arbitrary bounded domain such
that ΩdD and the boundary of Ω will be represented by ω. We shall
use single small italic letters in this section to represent points in the
plane.

Let there be given a family of functions {F(x)}f which we shall
call {F} -functions, satisfying the postulates that follow.

POSTULATE 1. For any ice {/c} and any continuous boundary value
function h(x) defined on /c, there is a unique F(x h /c) e [Fix)} such that

(a) F(x h κ)=h(x) on /c,

and (b) F(x h; fc) is continuous on K.

POSTULATE 2. If h^x) and h2(x) are continuous on κe{/c} and if
h^x)^fh(x)^M on K, M^O, then

F(x hx κ)-F{x h2 κ)^M

in K; further, if the strict inequality holds at a point of /c, then the
strict inequality holds throughout K.

POSTULATE 3. For any &e {κ\ and any collection {hv(x)} of func-
tions h,(x) which are continuous and uniformly bounded on /c, the
functions F(x hv K) are equicontinuous in K.

DEFINITION 1. The function s(x) is defined to be a sub-{.F} func-
tion, or simply a subfunction, in D provided

(a) s(x) is bounded on every closed subset of D,
(b) s(x) is upper semicontinuous in Df
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and (c) s(x)^F(x)e {F(x)} on /c e {/c} implies s(x)^F(x) in K.

DEFINITION 2. The function S(x) is defined to be a super- {F}
function or a superfunction in D provided—S(x) is a sub-{—.F} function
in D.

Let g(x) be a bounded function defined on ω, the boundary of Ω,
and define

g*(xQ)=\immfg(x) ,
x ω—>a?Q

and

DEFINITION 3. The function φ(x) is an under-function (relative to

g(x)) in Ω if φ(x) is continuous in Z?, is sub-ji*7} in 42, and φ(x)^g(x)

on α>.

DEFINITION 4. The function φ(x) is an over-function (relative to

g(x)) in Ω if (̂a?) is continuous in Ω, is a super- {F} function in β, and
on ω.

POSTULATE 4. If Ω is any bounded domain comprised together with
its boundary ω in D and if g{x) is any bounded function defined on ω>
then the associated families of over-functions and under-functions are
both non-null.

DEFINITION 5. By a solution of the Dirichlet Problem for Ω relative
to {F(x)} and relative to a given bounded boundary value function g(x)
on ω, we shall mean a function H(x) which is continuous in Ω, satisfies

()

at each xoβω, and is such that for each κe{/c} with KcΩ we have

( 5 ) H(x)^F(x;H;κ) in ΪT .

DEFINITION 6. We shall say that a function H(x) which is continuous

in Ω, and which satisfies (5) for each /ce{/c} with KaΩ, is an {F}-

function in Ω.

DEFINITION 7. Given a bounded domain Ω such that ΩaD and a
bounded function g(x) defined on ω. We denote by H*(x) and #*(#) the
functions defined by
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H*(x) = sup φ(x) ,
φe{Φ]

and

H*(x)=inf ψ(x) ,
<pe{ψ]

where {φ} and {ψ} are the associated families of under-functions and
over-functions respectively.

THEOREM 1. Given any bounded domain Ω with ΩaD and any
bounded function g(x) defined on ω, then the associated functions H*(x)
and H*(x) are {F}-functions in Ω [1 p. 303].

DEFINITION 8. The point xoβω is a regular boundary point of Ω
relative to {F(x)} provided that for every bounded function g(x) defined
on ω the associated functions H^(oc) and H*(x) satisfy (4) at xQ.

THEOREM 2. // all points of ω are regular boundary points of Ω,
and g(x) is continuous on ω, then the Dirichlet problem for Ω, relative
to {F(x)} and g(x), has a unique solution [1 p. 304].

The next theorem shows that regularity of a boundary point ' ' in
the small" implies regularity " i n the large".

DEFINITION 9. For a point xQeω, a circle K with center at xQ and

with KaD, and constants ε>0, M, and N, a function

S(X)=ΞS(X K ε, M, N)

is a barrier subfunction provided :

(a) s(x) is continuous in ΩΠK,
(b) s(x) is a sub-{F} function in ΩΓiK,

(c) s(xo)^N— ε,

(d) s(x)^N+2e on ωΓ\K,

and (e) s(x)^M on fin«.

DEFINITION 10. With the notation of Definition 9, a function S(x)=
S(x K, ε, ikf, N) is a barrier superfunction provided :

(a) S(x) is continuous in Kf)Ω,
(b) S(x) is a super- {F} function in KΠΩ,

(c) S(xo)^N+ef

(d) S(x)^N-2e on

and (e) S(x)^M on

THEOREM 3. // /or xQeω and for each set of constants ε>0, M,
and N, there exists a sequence of circles ι^n — κn{xύ) with centers at xQ and
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radii rn(x0) -> 0 for which barrier subfunctions s(x κn ε, M, N) and bar-
rier superfunctions S(x κn e, M, N) exist, then xQ is a regular boundary
point of Ω relative to {F(x)} [1 p. 305].

3. Equicontinuity at the boundary. In this section, before turning
our attention to differential equations, we shall show that a property of
{F} -functions given as Postulate 8 in [1] is a consequence of Postulates
1 and 2.

THEOREM 4. For any circle & e {/c}, if the functions {hXx)}, uni-
formly bounded and continuous on K, are equicontinuous at xQeκ, then the

functions F(x hv fc), defined in K, are equicontinuous at xQ.

Proof. Assume that \hv(x)\<M on K for all hv{x)e {h^x)}. Since
the functions {K(x)} are equicontinuous at x0, it follows that given e>0
there exists an arc o of K with midpoint at x0 such that

\hv(x)—hv(xQ)\<e on σ

for all hv{x)e {K(x)}. Now let the function g(x) be continuous on /c,
g(x)>M on κ—σ, g(x)^>—M+ε on <r, and g(xQ)^—M+2e. For any
hy{x) e {K{x)} set

then

F(x hv κ)—cv<F(x g to)

on /c. Therefore, by Postulate 2

I φ ; hv «)—c v<F(^ g /c) in

for each /&v(α?) e {K{x)}. Since jP(α; g /c) is continuous in K, there exists

a circle κλ with center at x0 such that

F(α;;^;/c)- ί 7 (^ 0 ;^;/c)<e in

Then

J?Xa? hv Λ ) - C V < F ( O J ^ κ)<e+F(xQ ^

in JSΓΠ JSΓi, hence, for any hy{x)e {hv(x)}

F(x hv Λ)—F(a?0 v̂ /c)<3e in

By a similar argument there exists a circle Λ2 with center x0 such that

F(x fev ^)-,P(ίc0 hv /c)> -3e in KΓΪ K2 .

Hence, if % is the smaller of κλ and «2, then
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\F(x K κ)-F(x0 hv «)|<3e in Kf]K3

and the functions F(x hv; tc) are equicontinuous at x0.
Theorem 4 obviously remains valid under weaker conditions. For

example, the theorem remains valid if Postulate 1 is weakened by
assuming that the boundary value problem is solvable for some class of
continuous boundary value functions defined on K which under the uni-
form topology is dense in the set of all continuous functions defined on
K. Also, Theorem 4 remains valid if instead of dealing with a circle
/c6{/ί} we state the theorem in terms of a bounded demain Ω with
ΩcD and assume x0 is a regular boundary point of Ω. However, in
this case the proof draws on Postulates 3 and 4 as well as Postulates 1
and 2.

4. Applications to elliptic partial differential equations. In this
section we shall show that the solutions of certain types of elliptic
partial differential equations satisfy Postulates 1 to 4. We shall also
consider some regularity criteria for boundary points with respect to
these equations. It will be more convenient in this section to return to
the customary (x, y) representation of points in the plane.

First we shall consider Postulate 2 since it states a characteristic
property of the solutions of a wide class of elliptic differential equations.
We consider the function E(x, y, zy p, q, r, s, t) and make the following
assumptions :

(1) E is continuous in all 8 variables in the region T defined by

τ ((x,y)eD

where D is a domain in the ^-plane.
(2) The first partial derivatives E2, Ep, EqJ Er, E8, and Et are con-

tinuous in T, E2

s-4:ErEo<0, Er>0, and Ez<>0 in T.

THEOREM 5. The solutions of the elliptic partial differential equation

( 6 ) E(x,y,z,p,q,r,s, £) = 0

where p=—*L q — ~^f r——-, s=—-—, and t—~~-- satisfy Postulate 2.
dx dy dxι dxdy df

THEOREM 6. The functions s(x, y) and S(x, y) of class C(2) in the
subdomain ΩaD, are respectively a subfunction and a superfunction in
Ω with respect to solutions of (6) if and only if

( 7 ) E(x, y> s, 8X, sy, sxx, sxy, syy)^

and
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( 8 ) E(x, y, S, Sx, Sy, Sxx, Sxy, Syy)^0

in Ω.
The proofs of Theorems 5 and 6 follow immediately from the maxi-

mum principle for solutions of elliptic partial differential equations which
has been discussed by Hopf [4].

We consider now the linear elliptic equation

( 1 ) L(z)=Λz+a(x, y)zx+b(x, y)zti+c{x, y)z=j\x, y) .

We assume that D is a bounded plane domain such that a{x, y)> b(x, y),

c(x, y) and f(x, y) are Holder continuous in D and c(x, y)^0 in D.

THEOREM 7. The solutions of (1) satisfy Postulates 1, 2, 3, and 4.

Proof It follows from Theorem 5 that the condition c(x, y)^0 in

D insures that Postulate 2 is satisfied.

It is known [9] that there is an ro>O, depending on max[ |α | , |6 |,

\c\, I/ |] in D, such that Postulate 1 is satisfied for the family {K} of

circles with radii less than or equal to r0 and with K^K+KCZD. The
uniqueness part of Postulate 1 follows since Postulate 2 is satisfied.

If K 6 {/c}, if (α?0, y0) is an interior point of K, and if z(x, y) is con-

tinuous in K, is of class C(2) in K, and is a solution of (1) in K, then

\zx(x0,yQ)\^:M and \zy(xo,yo)\^M9 where M depends on max[ |α | , | δ | , | c | ,

I/|] in K, max | z(xf y) \ on /c, the radius of κf and the distance from

(#o> 2/o) to K [9]. This implies that Postulate 3 is satisfied.

Let Ω be any domain such that ΩcD and let g(x, y) be any bounded
function defined on ω. Then, if u(x, y)=γ[a—eβx] where α, β, and γ are
constants,

x, y)
a—eβx

Choose β so that β>ma.x\a(x,y)\ in D, then choose a so that a—eβx>l

in Ω. It is then clear that γτ>0 can be chosen large enough that the

function ψ(x, y)—γι[a—eβx'\ will simultaneously satisfy the conditions:

L[ψ]<:f(x,y) in Ω and ψ(x, y)>g(x, y) on ω.

Hence, it follows from Definition 4 and Theorem 6 that ψ(x9 y) is an
over-function. Similarly, if γ2>0 is taken large enough,

Φ(α, 2/)=—r2[<z—

will be an under-function. Postulate 4 is satisfied.
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Since Postulates 1 to 4 are satisfied it follows from Theorem 1 that,

given any domain Ω with ΩaD and any bounded function g(x, y) defined

on ω, the associated functions H*{x, y) and H*(x, y) exists and are

solutions of (1) in Ω.

THEOREM 8. Let Ω be a domain with ΩaD and let (xo,yo)eω be

such that a circle /c0 can be drawn with KoczD and Kof]Ω — (xQyyo). Then
(%o> Vo) is a regular boundary point of Ω relative to solutions of (1)

Proof Making use of Theorem 3 we see that to establish the
regularity of (xQ, yQ) it is sufficient to show that barrier subfunctions and
barrier superf unctions can be constructed for all sufficiently small circles
with centers at (x0, y0). We shall consider only the barrier superf unctions
since the barrier subfunctions can be dealt with in an exactly parallel
way.

By the method used in Theorem 7 we can select a functions S0(x, y)

which is continuous in Ω, is of class C(2) in Ω, and satisfies

( 9 ) L[S0Uf(x,y) i n β .

Now assume that constants ε>0, M, and N are given. Let (xlfy1) be
the center of «0 and r0 its radius. Let κx be a circle with center at
fo)> 2/o) and radius rλ<r0 taken small enough that

(10) S0(x, y)^S0(x0,yo)—e on ωΠK, .

Let

and

One can easily verify that, if n is chosen large enough, then

(11) L[w]^0 in Ω ,

furthermore, w(x,y) is continuous in Ω, w(xQ,yQ) — 0, and w(x,y)>0

elsewhere in Ω.

Now we consider two cases : N—SQ(xQ9 yQ)>0 and N—S0(xQ,y0)<Q.

First we assume N—S0(xQ,y0)>0, then we can choose h±>0 such that

(12) hxw{xy y)^M+ max \SQ(x, y)\ on κτ[\Ω .
(ί,y)6Q

The function

S(x, 2/ Λj ε, Λί, N) = h1w(%> v)+S0(x, y) + N-S0(xQ, y0)
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is then a barrier superfunction at (α?0, yύ) for the circle /cL. This follows
immediately from (9), (10), (11), (12) and the definition of a barrier
superfunction.

Now assume N—S0(xQfyΰ)<0. Again it is easily verified that, for
<5>0 chosen sufficiently large, the function

(13) v(x, y) = [N-S0(x0,

satisfies

(14) L|>]^0 in Ω .

Let the circle κ2 with center at (xQ, y0) and radius r 2 < n be chosen small
enough that

(15) v(x, y)^N—SQ(xOf y0)— on ωΠK2.

Then let hz>0 be taken large enough that

(16) h.βjo(x, y)^M+ max [|SQ(x, y)\ + \v(x, y)|] on κ2Π Ω .
Ca3,y)6Ω

It follows from (13), (14), (15), and (16) that

S(x, y ica ε, Λf, N)=h%w{x9 y)+v(x, y)+S0(x, y)

is a barrier superfunction at (#0,2/0) with respect to the circle /c2.

THEOREM 9. Let D be a domain in which the coefficient functions

in (1) are Holder continuous. Then, if Ω is any bounded domain with

ΩdD and is such that corresponding to each (xQ,y0)eω there is a circle

K with ΩΓ\K=(xQ9y0) and if g(x,y) is any continuous function defined

on ω, there is a unique function z(x, y) which is continuous in β, is of

class C(2) and satisfies (1) in Ω, and is equal to g(x, y) on ω.

Proof. This is an immediate consequence of Theorems 2 and 8.
In our consideration of the quasi-linear equation

( 2 ) φ, q)r+2b(p, q)s + c(p, q)t = O

we are going to employ two sets of conditions on the coefficient func-
tions, first, conditions (A): a(p, q), b(p, q), and c(p, q) have Holder
continuous first partial derivatives, ac—62 = 1, and α > 0 for all (p, q).

Bers [2] has proved that, if α, 6, and c satisfy conditions (A), then
there exist functions k(p,q), θ(p, q), and Λ(p, q) with k(p,q)>0, 0(0,0)
= A(0, 0) = 0, and which are such that

dp dp dq dq
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We now state conditions (B) on the coefficients of (2): There exists an
ε>0 such that

(17) a( ±±£) + β ( i ± £ ) + 2b( ML) ̂  2ε

for all (p,q) where w = l/Γ+p2 + g2, further θ and J can be chosen so
that

(18)
pθ+qΛ

for all (p, q). Conditions (A) and (B) are satisfied by the minimal surface
equation (3) if it is normalized so that αc—62 = 1. For this reason Finn
[3] calls equations (2) which satisfy conditions (A) and (B) equations of
" minimal surface type " .

In our application of the theory of §2 to equation (2), we let D be
the ίπ/-plane and {/c} the family of all circles in the plane.

THEOREM 10. If equation (2) satisfies conditions (A) and (B), then
its solutions satisfy Postulates 1 to 4.

Proof Nirenberg [7 p. 138] has proved that if Γ is any convex
domain in the plane with boundary γ which is of finite length, which
can be represented parametrically by

:=x(s)
γ: '

in terms of arc length s where x(s) and y(s) are of class C(3), and
which has positive curvature everywhere, and if g(s) has a Holder con-
tinuous second derivative on γ, then there is a function z(x, y) continuous
in Γ, of class C& and a solution of (2) in Γ, and such that z(x(s), y(s))
=zg(s) on γ.

Finn [3] has shown that if (2) satisfies conditions (A) and (B) and

if z(x, y) is continuous in K, is of class C(2) in K, and is a solution of
(2) in K, then at any point (xQ,yQ)eK \zx(xΰ, yo)\^M and \zXxQ9y0)\^M
where M depends on max | z(x, y) \ on K, the radius of K, the distance
from (x0, y0) to /c, and other quantities which are fixed for any particular
equation (2). Using standard arguments [3 p. 411], one can then use
Nirenberg's result to prove that Postulate 1 is satisfied. The bounds on
the first partial derivatives of solutions imply that Postulate 3 is satisfied.
That Postulate 2 is satisfied follows from Theorem 5 and since planes
are solutions of (2) Postulate 4 is obviously satisfied.

Thus, we can conclude that, if Q is any bounded domain and g(x, y)
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is any bounded function defined on ω, the functions H*(x, y) and HJjc, y)
of Theorem 1 exist and are solutions of (2) in Ω. In particular this is
true of the minimal surface equation.

THEOREM 11. Let equation (2) satisfy conditions (A) and (B) and let

Ω be any bounded, plane domain with boundary ω. If (Xo,yo)eω is suck

that there is a circle K with center at (xQ, yQ) and a straight line π such

that πΓ\(KΓϊΩ) = (xQ,yQ), then (xo,yo) is a regular boundary point of Ω

relative to solutions of (2).

Proof Since planes are solutions of (2), barrier subfunctions and
superfunctions can obviously be constructed at (x0, y0) for all sufficiently
small circles with centers at (x0, yQ).

It follows that if equation (2) satisfies conditions (A) and (B), then
in order that the Dirichlet problem have a solution for any convex
domain whose boundary contains no straight line segments, it is sufficient
that the Dirichlet problem have a solution for circles. Of course it is
well known that the Dirichlet problem for the minimal surface equation
always has a solution for convex domains whether or not their boundaries
contain straight line segments. It is known that the Dirichlet problem
for equation (2) is not always solvable for non-convex domains. In
particular an example of a boundary value problem for a non-convex
region which is not solvable for the minimal surface equation was given
by H. A. Schwarz [8 p. 42]. For a given domain Ω with boundary ω,
those points of ω which satisfy the criterion of Theorem 11 are regular
with respect to equation (2), those points which are interior points of
straight line segments of ω are possibly regular, but it seems likely
that all other points of ω are not regular relative to solutions of (2).
The possibility remains that the Dirichlet problem for (2) for certain
types of non-convex domains may be solvable if the boundary values
are suitably restricted. Our last theorem contains a weak result in
this direction.

Let ωc be the set of points of ω which satisfy the regularity criterion
of Theorem 11. Let ωn—ω—ωc and for δ>0 let ω8 be the set of points
of ω which belong to ωn or are within a distance δ of points of ωn.

THEOREM 12. Let Ω be a bounded plane domain with boundary ω for
which there is an i?>0 such that for every (x, y)e ω a circle & of radius

R may be drawn with ΩΓ\K=(x,y). If for a given <5>0 the boundary
value function g(x, y) is continuous on ω, is constant on each component
of ωδf and is such that
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(19) Vg= max g(x, y)— min g(x, y)<^

then the Dirichlet problem for Ω with boundary values g(x, y) has a unique
solution for the minimal surface equation (3).

Proof. As we have already observed the functions H^(x, y) and
H*(x, y) both exist and are solutions of (3) in Ω. Since the function
g(x, y) is continuous on ω, it is sufficient to show that inequality (4) is
satisfied at each point of ω. This implies that the functions H^(x, y)

and H*(x, y) are both continuous in Ω, agree on ω, and consequently

coincide in Ω to give the unique solution of the Dirichlet problem.
Since by Theorem 11 the points of ωc are regular, it will be sufficient
to show that at each point of ωn we can construct an over-function and
an under-function which take on the given boundary value at the point.

Let (xQ, y0) e ωn and let /c0 be a circle of radius R such that K0[]Ω
= (%o,yo)- Translate the origin to the center of /c0 and rotate the axes
so that (α?0, y0) becomes the point (R, 0). Draw the circle /cx with center
at (R, 0) and radius d. Then the function

(20) S i x ^

is of class C(2) on compiζ), S1(x,y)^0 on compif0, and S^R, 0)=0.
Furthermore, by substituting SL(xf y) in the left-hand member of equation
(3) one can verify that inequality (8) is satisfied in Ω. It follows from
Theorem 6 that SL(x, y) is a superfunction in Ω with respect to solutions
of (3). Finally, we also have that on ^ΠcompίΓo

4= if 8<R
(21) minSjix, y) =

1 " if d>R.
d+R

We define the function S2(x, y) by

(22) SJix9y)=S1(x9y)+g{R90).

The function S λ(x, y) is clearly also a superfunction in Ω because of the
form of equation (3). Now let M=ma,xg(x, y) on ω, then the function

(M in fin comply
(23) φ(x, y) = I m . n ^ s ^ ^ i n β n ^
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is the desired over-function. To see this we first observe that ψ(x, y)

is continuous in Ω since by (19), (21), and (22) S2(x,y)>M on βfΊfci.
The argument that ψ(x, y) is a superfunction is the same as that given
in [1 p. 306]. From the definitions of S^x, y) and ω8 it follows that
ψ{R, 0)=g(R, 0) and ψ(x, y)^g(x, y) on ω.

Similarly

and

s-A%, y)=s1(x, y)+g(R, 0)

are subfunctions in Ω. The function φ(x, y) defined by

(m in Ω Π comp Kλ

Φ(x,y) = ] . - -
I max [m, s2(x, y)] in fl Π iζ.

where m = min g(x, y) on ω is an under-function with φ(R, 0) = g(R, 0).
Thus inequality (4) holds at every point of ω and

H*(x, y)=H4x9 y) in Ω

constituting the unique solution of the Dirichlet problem.
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