A NOTE ON THE COMPUTATION OF
ALDER’S POLYNOMIALS

V. N. SIiNGH

In two recent papers [2, 3] I deduced and used the general trans-
formation
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to prove certain generalized identities of the type
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where A(x,t) and G,,(x) are polynomials. For s=M and s=1
respectively in (2), we get Alder’s generalizations of the well-known
Rogers-Ramanujan identities
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For the Alder polynomials G, (x) in (1), I gave the general form
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where
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[a] denoting the integral part of a.

Alder in his paper [1] states that the polynomials G, (x) do not
seem to possess any striking properties, even for small values of M and
t. In the present note, using a simple recurrence relation, I prove
beside other results the interesting property that

Gy (x) =12, t<(M—-1).

The form (3) is not very suitable for the actual computation of the
polynomials G, (x) for particular values of M and ¢ since certain factor
have to be cancelled each time. Therefore, moving into the following
series the factor (a*~*"1*'; t,) from the first series and the factor (a'r-17*x*1; ¢,)
from each of the T, , series in (3), we put G, ,(x) in the form
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it is easily seen by induction that for ¢t < M — 1, we have
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From (4) we have
Gu+1,t(x) - GM,t(x)
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Hence from (8) and (9) it follows that, for ¢t < M — 1,
GM,L(w) = GM+1,L(x)
that is,
GM,t(x) = GM+1,t(x) = e = Gm,z(m) ’ t<M-—-1.
Now, for k=1 and M — o, (1) gives
Ta-ay ™ @0
n=1
whence G.. ,(x) = &', so that we finally get
(11) Gy (2) = o t<M-—1.

(10) can be further used for the computation of polynomials G, (x) as

follows.
We first find the general form for G, ,(x).
From (10) we have

(12) GM+1,M(x) -~ Gu,u(x) = xMw—KM—l)gM,M—l(M, x),

where x, = (1 — 2*)/(1 — z) for all «.
From (7) we find

(13) (M, x) = (w; M — 1)~ -D@-
Using (13) in (12) we get
(14) Guu(@) = 2"{1 — (2"; M — 1)}
since Gy, x(®) = 2. Thus, for example,
Gspw) =" + 2 4+ 2° —a" — 2% — a® 4+ &° + 2° + 27 —

More generally, taking ¢t = M + r in (7), since

xlg



274 V. N. SINGH

M2+(r—2)M—2r]: . o
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we easily get
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where, in T, ,,t = M + r and ¢, = M —». Thus for ¢t < 2M —2(t + M)
the second sum on the right of (10) does not exist and we may succes-
sively establish the general form of the polynomials G, ,(x) for M <t <
2(M — 1). We thus find that

Gy e1,00:(@) — Gy (@) = "+(2*; M — 1)z, M=>3,

so that, using (14), we get

Gty n(@) = "1 — (&3 M — 1)(1 + )} M=>3.
Similarly

Gu, @) = {1 — (25 M — 1)1 + o'~ )} M>4,

G was(@) = {1 — (2°; M — 1)1 + 2 - )} M>5,

The above values of the polynomials G, (x) suggest that probably,
(16) Gy () = {1 — (&, M — 1)L + 2" 2,_4)}
for t<2M—1).

But I have not been able to verify the truth of this conjecture directly.
However, I intend to investigate these interesting polynomials more
thoroughly in a future communication.
I am grateful to Dr. R. P. Agarwal for his kind help in the prepa-
ration of this note.
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