DIRICHLET MULTIPLICATION IN LATTICE
POINT PROBLEMS. II

J. P. TuLL

1. The author [8]* has given a theorem in which we assume two
functions A and B have asymptotic formulae of the form

(1) A@) = 3 a%P,(log ©) + O {#*logh(z + 1))
=1

and upper estimates O{x°log™(x + 1)} on their total variations. We then
conclude that their Stieltjes resultant C satisfies a formula similar to
(1). The «, are complex numbers, the P, are polynomial functions, and
we give an explicit formula for the error term in the resultant in terms
of the given parameters.

In this paper we shall give a generalization of the above-mentioned
result which will cover a wider class of lattice point problems.

2. Given two functions A and B defined for # =1, of bounded
variation on each bounded interval, we call the Stieltjes resultant of A
by B any function C such that

(1) Clx) = S A(z/u)d B(w)

wherever the integral exists and for all x either.

(2) lim C(x — k) < C(z) < lim C(x + h)
-0+ h—0+

or

(3) IimCx + k) < Clx) < lim C(x — h) .
R—0+ -0+

Note that there are at most countably many x for which the integral
(1) does not exist, namely those ® = ab where o is a discontinuity of A
and b is a discontinuity of B. Note further that if A(1) = B(1) = 0 then
the Stieltjes resultant is a commutative binary operation:

(4) S A(zu)dB(u) = S Baju)d Aw) .

Widder [9] gives a slightly more restrictive definition of Stieltjes resultant,
however, his requirement that A, B, and C be ‘‘normalized’’ is un-
necessary.

Received August 19, 1958. Excerpt from dissertation for the degree Doctor of Philosophy,
University of Illinois, 1957.

* Note that in the proof of [8] Theorem 2, no use was made of the assumption «, B,
0, v are non-negative. Thus that assumption may be deleted from the theorem.
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We shall denote the total variation of a function A on (1, 2) by V().

3. In place of the functions P,(logx) in the asymptotic formulae
we shall use the more general slowly oscillating functions. By ‘‘slowly
oscillating funection’’ we mean a function L which is positive-valued and
continuous on x = x,, for some x, = 0, such that

(1) lim L(cx)/L(x) = 1

for every ¢ > 0. Karamata [4] has characterized such functions in the
form

(2) L(z) = ap(x)es:orlsmdt

where a > 0, p(x) > 1, 8(x) > 0 as © — o ; p and & being continuous on
% = %,. (See also a proof by Korevaar et al [5]).

From (2) it follows that the limit in (1) is uniform in ¢ on each
bounded interval

(3) 0<k<c=zk,.

Korevaar et al actually proved the uniformity first then used this pro-
perty in proving the characterization (2).

Now a wide class of slowly oscillating functions can be written in
the special form

(4) L(z) = aedi’ %

We shall give such functions the name ¢ special slowly oscillating func-
tion ”’. However, we require in (4) only that ¢ > 0 and &(x) — 0 as
% — oo, where 8 is bounded and Lebesgue integrable on each bounded
interval. The function & need not be continuous.

In order to maintain smoothness and to get a definite result we find
it necessary—and quite reasonable—to deal mainly with special slowly
oscillating functions.

For applications see Bateman [1], [2] and Bateman and Grosswald [3].

4. THEOREM. Suppose A and B are complex valued function on
(1, o) of bounded variation on each bounded interval and with A(l) =
B@1) = 0. Suppose

(1) R(z) = %lc,gc“uL,L(x)
and

S@) = 3, d.o»M,()



DIRICHLET MULTIPLICATION IN LATTICE POINT PROBLEMS. II 611
with
(2) V@) = O{V(2)}, Vi(x) = O{Vu(x)}

where the c,, a,, d,, B, are complex numbers such that if R(a.) = NR(B,)
then «,, = B,, and the L, and M, are special slowly oscillating functions.

We assume R and S so chosen that there exist «, 8 with a < RN(a,)
for each p,B < N(B,) for each v, and there exist slowly oscillating
Sunctions L,, M, such that

Al(x) - A(x) - R(OC) - '{.xmLo(x)} y
(3) 4(z) = Bz) — S(z) = O{w? M)} .

Further, we assume that there exist p = o, T = B and slowly oscil-
lating functions P, and Q, such that

(4) Va(x) = O{a"Pyx)}, Vi(@) = O{e"Qu(@)} .

If C is the Stieltjes resultant of A and B then there is a function
T of the form (1) such that if p >B and v >a,1 <y <z, 2 = afy,

(5) Ce) = T(x) + O{a"Ly(x)} + O My(x)}

+0fo_s, qu‘le(u)Lo(x/u)du}+O{xf@ 5, u‘lL,L(u)Mo(x/u)du}
Ry =a 1 flmd-p

+ 02"y Ly(2)Qu(y)) + Oy’ My(y)Py(2)} ,

the O-constants being independent of x,y and z. More specifically,

(6) T(x) = SjR(x/u)dS(u) + 3, danN)

+ Dlu cuxmeNi(x) — 44(1) > cuwuLi(x)
R@y)>p (@, )>B

where
[ Remasw) = e, || @mysLuomdona,m)
1 M,V
is a complex linear combination of functions
2w, ()

with Y., = «,. or 3y, whichever has the greater real part, L. a slowly
oscillating function; and

N(e) = o7 | dafudan M ()

N(x) = x‘“»g

x
1

Az [w)d(u*eL, (1))



612 J. P. TULL

are linear combinations of slowly oscillating functions. Further, the

Sfunctions L,,, N}, N, are absolutely continuous on each bounded interval
1, x).
If © = « the error is then

(7) O{2P M)} + O {m qu‘lQo(u)Lo(x/u)du}

+ O{xﬂm s, qu‘lL“(u)Mo(w/u)du}

=8 J1

the integrals in the error terms being absolutely continuous slowly
ocsillating functions.
If « > 7 we have simply

(8) C(x) = T(x) + O{a"Ly(x)}

T(x) being, in these latter two cases, the same as in (6) excepting that
the term

St AN ()
is absorbed in the error term. The cases P < B are similar.
Finally,
(9) Vo(x) = O{z™>*®n S (x)}
with
!Po(x), if p>7,
SO(LL') — Qo(x) ’ /Lf 10 < T ’

Sm%‘IPo(u)Qo(OG/u)du, ifp=r.

Note that if there are different «,, 3, with equal real parts, then
the theorem still holds with the exception that the resulting integral

S j(x/u)‘”“Lu(x/u)d(u"vM»(u))

in T(x) is not necessarily a combination of powers of 2 times slowly
oscillating functions.

5. It suffices to consider only those values of z > 1 for which the
integral defining the Stieltjes resultant converges. For any such z,

Cz) = ng(x/u)dB(u) L4 L+ I+ 1,

where
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I, = SIR(x/u)dS(u) ,

I;7

Il

|| ardsw)

I,

i

[ Remda,
I, = Sfdl(x/u)ddz(u) .

The proof now consists of demonstrating several lemmas which
amount to the fact that if I, and I, are split up suitably, as indicated
in formula (4.6), then the right hand side of (4.6) is a sum of functions
ax"N(x) where N is an absolutely continuous slowly oscillating function,
and the remaining terms are of the order of magnitude stated in (4.5),
(4.7), or (4.8) as the case may be. We shall give here the two lemmas
used to demonstrate the estimates on the error terms given in (4.5, 7,
8, 9). The remainder of the proof then involves juggling terms by means
of integration by parts and considering various cases according to whether

R(B,)>, =, or >a and R(w,) >, =, <.

LEMMA 1. If L and M are slowly oscillating functions (on x = 1)
and v > 0, then for 1<y =<ux,q=1,

(1) [ M@ L(udn = 0 M@)LEm} |

the O-constant depending only on L, M, and 7.

Since L and M are positive functions we may assume ¢ = 1. Now if
L(z) = ap() exp S £-15(6)dt

(2) .

Mi(z) = br(z) exp S £ e(t)dt

where p(x) — 1, t(x) —> 1, 8(x) > 0, ¢(x) > 0, as © — o,a > 0,b > 0, then
let
J(@) = L(z)/o(x) , K(x) = M(x)/t(»)
so that
L(z) ~ J(») , M(x) ~ K(x)

as £ — oo,
Without loss of generality, we may assume that for all ¢t > 1,

(3) [8@) = v/4, le@)| = v/4
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for otherwise, the excess, which occurs only on a bounded interval, can

be obsorbed into the coefficient functions ao(x) and br(x).
Now clearly

S’;’m-l M@ L(e/u)du = 0] S’m K(u)J(oju)du} .
Upon integrating by parts we have
Sjm—l Kw)J(w/u)du
= — (W KW)aly) — KOJ@)}

— %Sfm-l K(u)e(u)J(x/u)du

. % S”uv K(u)J(@/u)d(@/w)du

WEW)J(xly) — K1)J(x);

-;_ S”uv K() I (fw)d
by (3). Thus

Sfu**K(u)J(x/u)du < f— WE@)J(ly) — K1)J(@))
< %y*K(y)J(x/y) = Oy M(y)L(x[y)} .

This completes the proof.

With the aid of lemma 1 and some simple inequalities one can readily
prove the following.

LEMMA 2. If A and B are functions of bounded variation on (1, x)
for each x > 1 and if for x =1,

Ax) = O("L(@)) , Vi(x) = O@Q(x)) ,

where L and Q are slowly oscillating functions on x =1 and « and T
are real mumbers, then for 2<y < x,2 = x/y, if © s not a product
of a discontinuity of A by a discontinuity of B

JO{zwy’fL(z)Q(y)} (T > (X)
(4) [ Aemasu =) ofe( ' easent) =
10{z“y’L(z)Q(y)} + O{z*L(z)} (t <)
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uniformly in x and y

6. It is fairly easy to show that Theorem 2 of [8] is a corollary to
the theorem of the present paper.

As was mentioned in paper [8] the author has given an example
[7] which shows that Landau’s theorem [6] on the multiplication of
Dirichlet series gives the best possible result. Further, we showed that
the same example applies to the result of [8] so that the exponent of
2 in the error term is as a general theorem best possible if we restrict
the main terms to the form in (1.1). This gives some indication of the
strength of our result, however, we are as yet unable to decide whether
the result with the more general main terms of the present paper is
improvable.

The author wishes to give due credit to his teacher, P. T. Bateman,
who gave valuable help in getting this paper started.
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