CONNECTIVITY OF TOPOLOGICAL LATTICES

ELDON DYER AND ALLEN SHIELDS

In this note we show that compact connected topological lattices
have strong acyclicity properties, both globally and locally. This yields
a proof of a conjecture of A. D. Wallace [6] in the finite dimensional
case,

A topological lattice is a topological space (Hausdorff) upon which is
imposed a lattice structure compatible with the topology. More explicitly,
the topological space M is a topological lattice if there are maps

(1) ANMxM->Mand V:Mx M—->M

which define a lattice structure on M. This means that for x,y,ze M

(2) A@,x) =2 and V(x,2) =2,
(3) A@, y) = Ay, @) and V(2,9) = V(y,2),
(4) A, Ay, 2) = A(A(@, ¥), 2) and
Vz, V(,2) = V(V(x,9),2), and
(5) A@, V(,y) =2 and V(z, Az, v) =2

It is customary to write # Ay in place of A(x,%) and x vy in place of
V(z,y). Relation (5) implies that xAy =« if and only if xvy =y.
We shall say that « <y if and only if x Ay = 2. It is easily seen that
the relation x < y induces a partial ordering on M. The element 1e M
is a unit in M provided m <1 for all m ¢ M. Similarly, an element
0e M is a zero in M if 0 < m for all me M. Clearly, if such elements
exist they are unique.

We shall need several elementary lemmas on topological lattices.
Lemmas 2 and 4 were proved in [1], however for completeness we prove
them here. Lemma 1 was proven by A. D. Wallace [7].

LEMMA 1. If M is a compact topological lattice, then it has a unit
and a zero.

LEMMA 2. If M is a topological lattice, then
(@) tf U 1is a neighborhood of x e M, there is a meighborhood V

of « such that if y,z€ V, then yvze U and yanze U, and
(b) if y <2 and U, is a neighborhood of x, there are mneighbor-
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hoods V, of x and V, of y such that if ' e V, and y' e V,, then
vy e U,.

To prove (a) we observe that A~ (U) N V(U) is a neighborhood
of (x,2) e M x M and that there there is a neighborhood V of 2 such
that V. x V. A2(U) N V- (U). Then if y and zliein V, (y, ) lies in
this intersection, and so yvze U,yanze U,

In (b) V-'(U,) is a neighborhood of (x,y) e M x M and there are
neighborhoods V, x V, < YV ~*(U,). Clearly these neighborhoods have
the asserted properties.

LEMMA 3. If M is a compact topological lattice and U is a neighbor-
hood of x € M, there is a neighborhood W of x such that if y,z e W and
me M, then (may)vze U,

For m ¢ M let V(m) and N(m) be neighborhoods of # and x Am as
in Lemma 2(b). Let P(m) and Q(m) be neighborhoods of m and x such
that P(m) x Q(m) < A~'(N(m)) and let R(m) = V(m) N Q(m). Then if
m' e P(m) and 4,z € R(m), m' Ay e N(m) and (m' ny)vze U. Since M
is compact, there is a finite set [m,]? of points of M such that |J7 P(m,) =
M. Let W= N?R(m;). Then W is the required neighborhood of z.

For 2,y e M, x <y, we define
(6) Cop=zeMlz<z=Zy).

Such sets C,, will be called convex sets. It is clear that if M is a com-
pact topological lattice, then its convex subsets are also compact topo-
logical lattices in their natural lattice and topological structures.

LEMMA 4. If M is a compact topological lattice and U is a neighbor-
hood of x, then there is a mighborhood V of x such that if y e V, then
Cy,ny U Cx,yv:: - U

Let W be a neighborhood of x as in Lemma 3 and V be a neighbor-
hood of x for W as in Lemma 2(a). Then if ye V,yvae W. If y <
2=yvw, then z=@kAa{yve})vye Uand if t <z<yve, then z =
@an{yvael})vee U.

A space X is acyclic if H*(X) = 0, where H*( ) denotes the reduced
cohomology ring; X is cle if for each x ¢ X and closed neighborhood U
of z, there is a closed neighborhood V of x, V < U, such that the
homomorphism of reduced groups H*(U)— H*(V) induced by inclusion
is trivial.

Before proceding to the proof of Theorem 1 we recall a well-known
generalization of the fact that homotopic maps induce the same homo-
morphisms of cohomology.
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THEOREM. If X and Y are compact, N is compact and connected,
Ny, Ny are two points of N, f,9: X— Y, and F: X x N— Y are given
such that F'|X xn,= f and F|X xn,=g, then f*=¢g*: H*(Y)—-> H*X).

THEOREM 1. If the compact topological lattice M is connected, then
1t 1s acyclic and cle.

The fact that M is acyclic was first proven by A. D. Wallace [8].
We give here a slightly different proof.

Let M= (M x1)U (1 x M)c M x M. Since M is connected and
1xle(Mx1)n@Ax M), M is connected. For z,y e M define

Fo M= Cpppva U Coa

by

Sosim,1)=mAa{yva})vy and f,,(1,m)=ma{yvae})ve.
Note that

Aa{yvael)vy=yve=_Aa{yva})vae.
Define G: M x M — M by G(m,m) = f, n(m). Then
G(m, (0,1)) = f4,n(0,1) =(O0A{mVO})vm =m

and

G(m, (1, 0)) = fom(1,0) = OV {mvO0})A0=0.

If i: M — M is the identity and j: M — 0 > M, then i = G|M x (0, 1)
and j =G|M x (1, 0). Hence ¢* = j*. But ¢* is the identity isomorphism
of H*(M), and j* is trivial. Hence, M is acyeclic.

For a closed neighborhood U of x € M, let V be a closed neighbor-
hood of # as in Lemma 4. Define F:V x M— U by

F(v,m) = fuu(m) C Cypya U Convw © U

Note that F'|V x (0,1) is the inclusion map of V into U and that
F|V x (0,1) is the trivial map of V onto . It follows as before that
the inclusion map induces the trivial cohomology homomorphism, and
hence, that M is cle.

In this connection we remark that Lee Anderson [1] has shown that
a locally compact connected lattice is locally connected.

An immediate consequence of Theorem 1 and results of E, G. Begle
[2] is the following.
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COROLLARY 1. If M 1is a finite dimensional, compact connected
topological lattice, then M has the fixed point property.

A slightly stronger statement is also true; namely, if M is such
a lattice and f is an upper semi-continuous mapping of M into the set
of its convex subsets, then some element of M lies in its image.

THEOREM 2. If the compact metric topological lattice M 1is con-
nected, then it is contractible and locally contractible.

Sinece M is cle®, it is locally connected. Thus, M is a compact,
connected, locally connected metric space. It follows that there is a map-
ping h:I— M such that h(0) = (0,1) e M and h(1) = (1,0) e M. Here
I denotes the unit interval.

Define H: M x I - M by H(m,t) = G(m,h). Then H is the con-
tracting homotopy sought. For V < U as in the proof of Theorem 1,
define J: V x I - U by J(v,t) = F(v, h(t)). Then J is a contraction of
V to & within U.

A consequence of this theorem and standard results on absolute
neighborhood retracts (see, for example, [5] Propositions 12.2b, 16.4,
19.2) is the following.

COROLLARY 2. If M is a finite dimensional, compact metric, con-
nected topological lattice, then it is an absolute retract.

Any convex subset of a compact connected topological lattice has
these same properties itself, and is thus acyclic and cle. Furthermore,
the intersection of finitely many convex subsets is a convex subset. We
shall show that if M satisfies certain additional conditions, it has
a neighborhood basis of convex subsets.

A lattice M is said to be distributive if for x,y,ze M

(7) (xvy)nz=(@A2)V(YyAz).

A lattice M is said to be of breadth b if for each finite set [x] of
more than b elements of M, there is a subset [y;] of b elements such
that x,A2,A -« =y, AY,A -++ AY,, and b is the least number for which
this holds. Similarly, one can define the breadth, b,, using joins instead
of meets. It is then a simple fact that b = b, (see [3] p. 20).

THEOREM 3. If M is a compact distributive topological lattice of
finite breadth and U is a neighborhood of a point x € M, then there is
a convex set C,, that is a meighborhood of x and lies in U,
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Let b denote the breadth of M, let W, denote a closed neighborhood
of x as in Lemma 3 for the neighborhood U, and let W,, .--, W,, denote
neighborhoods of x such that for 2 <7 < 2b, if y,z¢ W, then yvze W,_,
and y az € W,_,. Let R denote the union of the ranges of all lattice
polynomials over the domain W,,. By Theorem 12, p. 145 of [3], any
such polynomial can be written in the form

r [n(n)
A Vo).
h=1_k=1

Since each V. is the join of not more than b elements of W,,
every such element lies in W,. Hence, any element in the range of
a lattice polynomial over W,, is the meet of not more than b elements
of W, and so lies in W,. Thus, R c W,. Since R is a sublattice of M,
the closure R of R is a sublattice of M, and B c W,. R is a compact
topological lattice and by Lemma 1 has a unit @ and a zero b. By
Lemma 3, C,,c U. C,, is a neighborhood of x since W,,c Rc Rc C, .

In closing we would like to note the following conjectures.

Suppose M is a compact, metric, connected, distributive topological
lattice. Then

(i) M admits sufficiently many lattice homomorphisms onto the unit
interval to separate points;

(ii) M is an absolute retract;

(iii) dim M = breadth of M; and

(iv) if dim M = n, M is homeomorphic to a subset of an n-cell.

D. E. Edmondson has announced [4] an example of a compact,
metric connected two dimensional lattice that is modular but not dis-
tributive, and that cannot be imbedded in the plane. Lee Anderson
has a proof (unpublished) that breadth M < dim M. Therefore in
Theorem 3 the hypothesis that M has finite breadth may be replaced
by the hypothesis that M is finite dimensional.
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