
ALMOST LOCALLY PURE ABELIAN GROUPS

D. L. BOYER AND E. A. WALKER

0. Introduction* It is the purpose of this paper to introduce and
to give a preliminary investigation of almost locally pure Abelian groups
[see definition 1]. For primary groups the concept of almost locally
pure Abelian group coincides with that of no elements of infinite height
[Theorem 9],

1. DEFINITION. A group ( = Abelian group), G, is almost locally
pure (hereafter abbreviated a.l.p.) if for every finite set of elements
Qu , 9n of G there exists a finitely generated pure subgroup, P, of
G which contains glf " ,gn.

2. EXAMPLES. Direct sums of cyclic groups are clearly a.l.p.
The complete direct sum of copies of the integers is a.l.p. since by
[1] every finite subset is contained in a completely decomposable direct
summand and each such summand is free of finite rank.

3. REMARK. If one defines a group G to be locally pure if every
finite subset generates a pure subgroup, then it is easy to see that G
is a direct sum of cyclic groups of prime order, for various primes.

4. THEOREM. A direct sum of a. 1. p. groups is a.l.p.

Proof. Let G = ^ja,®H(Xl, where φ denotes the weak direct sum,
and where Ha is a.l.p. for all a. Let g19 •••,(/„ be in G. Now let Hβ

be a summand in which some gt has a non-zero component, and consider
the components gβi, , gβn of g19 , gn in Hβ. In each such Hβ (there
are only a finite number) there exists a finitely generated pure subgroup
Pβ containing gβi, . . . , ^ . Then Σ β φ P β is a finitely generated pure
subgroup containing g19 ---,gn.

5. THEOREM. If G is a.l.p., if K is a subgroup of G, and if for
every finite set of elements glf •••, gn of G, there exists a pure subgroup,
P, of G such that the group generated by K and g19 , gn is a sub-
group of P and PjK is finitely generated, then GjK is a.l.p.

// G and G/K are a.l.p., where K is pure in G, then for every
finite set of elements glf * ,gn of G, there exists a pure subgroup, P,
of G such that the group generated by K and gly •••, gn is a subgroup
of P, and PjK is finitely generated.
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Proof. For the proof of the first statement, assume there exists such
a P in G for each finite set of elements of G. Then if gx + K, , gn + K
are elements of G\K, there exists a pure subgroup, P, of G such that
the group generated by K and glf , gn is a subgroup of P and P\K is
finitely generated. Now P\K is pure in G/if and G\K is a.l.p.

If GjK is a.l.p. and ̂ , •••, gn are elements of G, then there exists
a finitely generated pure subgroup, P\K, of G\K which contains
gx + K, ••, #w + K. The inverse image, P, of P/ϋΓ has the desired
properties.

6. COROLLARY. // G is a.l.p. and H is a finitely generated sub-
group, then G\H is a.l.p.

7. COROLLARY. If T is the torsion subgroup of an a.l.p. group,
then G/T is a.l.p.

Proof. For glf , gn in G, let H be a finitely generated pure sub-
group containing g19 ••, gn. Then by [2], P, the subgroup generated
by H and T is pure. Clearly the subgroup generated by T and g19 , gn

is a subgroup of P and P/T is finitely generated. Hence by the theorem
GIT is a.l.p.

8. EXAMPLE. A strong direct sum of a.l.p. groups is not neces-
sarily a.l.p. Consider G = Σ w ® C(pn), where ® denotes the strong
direct sum and C(pn) is cyclic of order pn. Then if G where a.l.p., G/T
would be a.l.p., where T is the torsion subgroup. But a torsion-free
a.l.p. group, F, is only finitely divisible (i.e. for each x Φ 0 in F there
exists a maximum positive integer, mx, such that mxy — x has a solu-
tion in F), whereas the element (0,1/p, 0, 0, l/p\ 0, 0, 0, llp\ 0, 0, 0, 0,

•••) + T is not zero and is divisible by all powers of p.

9. THEOREM. A torsion group is a.l.p. if and only if its p-com-
ponents have no elements of infinite height.

Proof. This follows from the footnote on page 79 of [1] and from 4.

10. LEMMA. Every subgroup of a torsion-free a.l.p. group is a.l.p.

Proof. Let H be a subgroup of the torsion-free group, G, and let
fei, •••,&„ be elements of H. Then there exists a finitely generated
pure subgroup, P, of G which contains hx, * ,hn. Since P Π H is
a finitely generated pure subgroup of H, H is a.l.p.

11. LEMMA. The torsion subgroup, Tf of an a.l.p. group, G, is a.l.p.
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Proof. The proof is similar to the proof of Lemma 10.

12. THEOREM. Every subgroup of an a.l.p. group is a.l.p.

Proof. Let G be a.l.p., let S be an arbitrary subgroup of G and
let T be the torsion subgroup of G. By 7 G/T is a.l.p. and by 10
(S U T)IT is a.l.p. Thus S/(S n T) is a.l.p. Now let s19 , sn be ele-
ments of S. Since S((S Π T) is a.l.p. there exists a finitely generated
pure subgroup, P/(S Π T), of S/(S Π Γ) such that s, + (S Π Γ), •••,
sw + (S Π T) are elements of P/(S Π Γ). Since P/(S Π Γ) is finitely
generated and torsion-free, P = (Sfl Γ) φ K, where K is finitely generat-
ed and torsion-free. Since K is finitely generated, it is clearly a.l.p.,
and it follows from 11 and 9 that S Π T is a.l.p. Hence by 4, P is a.l.p.
and s19 , sn are elements of P. Thus there exists a finitely generated
pure subgroup, P19 of P containing s2, •• ,s n . Since S Π Γ is a pure
subgroup of S, P is a pure subgroup of 5. Hence Px is pure in S.

13. LEMMA. A countable torsion-free a.l.p. group, G, is free.

Proof. Let Hι c ίf2 c c ifw c be an ascending chain of
subgroups of G, each having finite rank r. Let hly ---,hr be a maximal
linearly independent subset of Hlf and hence of all the His. Since G
is a.l.p., there exists a finitely generated pure subgroup P containing
hlt •• ,fe.r. Hence each ΐ ^ is contained in P. Since P is free of finite
rank, it satisfies the ascending chain condition, so that by Theorem E,
page 168, of [3], G is free.

14. THEOREM. // the torsion subgroup T, of an a.l.p. group, G,
has countable index, then T is a direct summand (and the complementa-
ry summand is free).

Proof. By 7 GjT is a.l.p., countable and torsion-free. Thus by 13
G/T is free. Hence G = T@K.

15. LEMMA. A countable a.l.p. p-group, G, is a direct of sum
cyclic groups.

Proof. By Theorem 9 this is a restatement of a theorem of Prϋfer

[4].
Now we prove a generalization of Prufer's theorem.

16. THEOREM, A countable a.l.p. group, G, is a direct sum of cyclic
groups,
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Proof. Let T be the torsion subgroup of G. Then by 14, G =
Γ φ i Γ = : Γ P l φ . . . φίΓ, where Tp. is the pΓcomponent of T. Since G
is countable it follows from 4 and 15 that G is a direct sum of cyclic
groups.

17. REMARKS. From 12 and 16 it follows that every countable sub-
group of an a.l.p. group is a direct sum of cyclic groups.

If one represents the group of rational numbers as a quotient group
of a free group, one obtains a pure subgroup (the kernel of the map-
ping) of an a.l.p. group which is not a direct summand.

From 16 it follows that if H is a pure subgroup of G and GjH is
both a.l.p. and countable, then H is a direct summand of G and the
complementary summand is a direct sum of cyclic groups.

It follows from Corollary 6 that if T is the torsion subgroup of an
a.l.p. group, G, and if H/Tis finitely generated then G\H = (G/Γ)/(fί/Γ)
is also a.l.p.

18. THEOREM. // H is pure in G and if H and G\H are a.l.p.,
the G is a.l.p.

Proof. Let glf " ,gn be elements of G. Since GjH is a.l.p. there
exists a finitely generated pure subgroup, L\Hy of G\H which contains
gx + Hy , gn + H. Since H is pure and L\H is finitely generated,
L = H@K, infinitely generated. Since gt is in L for i = 1, , n, let
g. = hi + kim Since H is a.l.p. let P be a finitely generated pure sub-
group of H which contains the hi9 Now gt is in P®K and P®K is
pure in L, which is pure in G. Hence P@K is a finitely generated
pure subgroup of G which contains the g%. Hence G is a.l.p.

19. THEOREM. Every group, G, has a maximal pure a.l.p. subgroup,
My (which may be 0) and 0 is the only pure a. 1. p. subgroup of G/M.

Proof. The existence of M is easily proved by applying Zorn's
lemma. If PjM were a non-zero pure a.l.p. subgroup of GjMy then P
would be a pure subgroup of G and by Theorem 18 P would by a.l.p.,
contradicting the maximality of M.

20. COROLLARY. If G is a p-group and M is a maximal pure a.l.p.
subgroup of G, then G\M is divisible.

Proof. Otherwise G\M — D φ Rf with D divisible and R reduced
and R has a finite cyclic direct summand, P, which is a pure a.l.p.
subgroup of G/Jlί,
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21. COROLLARY. If G is a p-group and M is a countable maximal
pure a.l.p. subgroup, then M is a basic subgroup of G.

Proof, By Theorem 16 M is a direct sum of cyclic groups and by
20 GjM is divisible. Hence M i s a basic subgroup of G.
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