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1. Introduction* Kato [2] has shown local square integrability with
boundedness at oo of the potential coefficient function to be a sufficient
condition for the Schrodinger operator in L2(Rn) to have a unique self-
adjoint extension in case dimension n = 3. His statement is for n = 3p,
thus with p factors R3, but with the condition on V stated separately
for each R3 factor as is natural for application to quantum mechanics
this in essence amounts to n — 3 from our standpoint. Using the Young-
Titchmarsh theorem on Fourier transforms, we generalize Kato's argu-
ment to general dimension n > 1. We show the connection of the re-
sulting criterion with our earlier construction [1] of a self-adjoint
extension as the inverse of a modified Green function integral operator.
We also give a variational characterization of the spectrum here.

2. Uniqueness condition. Let V(x) be a given, real-valued, measur-
able function over x e Rn, euclidean w-space. We consider the following
additional conditions upon V, using the notation (JC y) = Σ 5 = i ^ ?/j and
I x I = V{x x) for JC and y e Rn, and also denoting n dimensional
Lebesque measure on Rn by μn.

CONDITION I. For some 6 < + co let V(x) be essentially bounded
(A = [ess sup I V(x) |] < + °°) over {x e Rn \ \ x \ > b}, and let

\V(x) \w*><n+<»dμn(x) - Mp < + co
i*l<δ}

for some p > 0 satisfying also n + p > 2.

CONDITION II. Let V(x) satisfy Condition I with in addition
n + p = 4 in (1) if dimension n < 4.

Condition II is our generalization of Kato's uniqueness criterion, our
following Theorem T. 1 in the special case n = 3 thus being due to Kato
[2]. Following Kato, we define &ίx c L2(Rn) as the linear manifold of
Hermite functions, polynomials in the coordinates x5 multiplied by
exp( —1/2 I x |2). Assuming Condition II), clearly the pointwise product
Vu e L2{Rn) for all u e ^ . Hence
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( 2 ) [H, u](x) = - y*u{χ) + V(x)u(x)

with /72 = Σ?-i (d2ld%)) the Laplacian, defines Hx as a linear operator in
L2(Rn) with dense domain 2&lm Also the easily established Green's iden-
tity for u and w e 2$λ shows that Hλ is symmetric (see [3], p. 28-41,
p. 48-50 for terminology and theorems used hereafter).

Next for u e L2(Rn) we have existent (see [4]) the Fourier-
Plancherel transform u e L2(Rn) defined by

( 3 ) u{y) = Hm(

with the limit in the L2(Rn) norm sense over y e Rn; similarly

u(x) = lim(^Y [ e
\2π / }{y\\y\<N}

with the limit also in the L2(Rn) norm sense. In terms of (3) and (4),
define & as the set of u e L2(Rn) such that | y \2ύ(y) is also in L2(Rn)
over y. Define T as a linear operation in L2(Rn) with domain & by
Tu = w9 w(y) = I # |2u(#) f° r ^ e ^ > w e L2(Rn) existing uniquely for
such t6 since (3) and (4) define a unitary operator and its inverse on
L2(Rn).

We may now state the main theorem of this section as follows. Ac-
tually, since Condition II will be seen at the end of the next section
to imply Condition S stated there, this theorem is a consequence of
StummePs theorem ([5], Th 4.2), p. 171), except for an awkward but
essentially trivial change of basic domain. Also our proof is rather
different, being much closer to Kato's original argument. See also [6].

THEOREM T.I. Let V satisfy condition II. Then the pointwise
product [Vu](x) = V(x)u(x) has Vu e L2(Rn) for u e &, and Hu =
Tu + Vu for u 6 £& has H to be a self-adjoint operator in L2(Rn) with
dense domain &. Furthermore, 2$λ c £^, Hλ c H, and H is the uni-
que self-adjoint extension of Hx.

Here S^x^ 2$, and hence £^is dense, follows clearly from the
fact ([4], p. 81, Theorem 57) that S*(^±) c &rl9 where S denotes the
unitary operator from L2(Rn) onto itself given by (4), Su = u, and where
S*u — u in (3) represents the adjoint and inverse S*. Thus Txu— — V2u
for u e ^ has Tλu = Tu for u e 3>λ from \β*{T&)~\{v) = \ y \2ύ(y) by
integration by parts hence 2\ c T. Thus ϊl^^Ή. follows from the fol-
lowing lemma (Lemma 4 of Kato [2]), which represents the heart of our
argument.
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LEMMA T. 2. Let V satisfy Condition II. Then for ue 2? follows
both Vu e L2(Rn) and the L2(Rn) norm inequality

( 5 ) Vu\\ < α | | Tu\\ +β\\u

for some a and β positive and finite, for which a may be chosen as
small as desired with β depending on a.

To prove this lemma, we will first establish that £ ^ c Lr,(Rn) with
r' = 2(n + p)/(n — 4 + p) and p > 0 given in Condition II if dimension
n > 4, and that & c L^(Rn) if n — 1, 2, or 3. For this purpose we
start, for u e 3$ and arbitrary ω > 0 and with p > 0 as in Condition
II, with the Schwarz-Holder estimate

( 6 ) f

^ \u(y) ni + ω* I y \ )AμM\ [ ) , 0- + ω* I V

[ fo dr

where

Γ foo fπ-i ηi/p'

w p = C Γ W dt

where <yw — 2πw/2[Γ('λi/2)]~1 is n — 1 dimensional < fareaM measure of the
unit spherical shell in Rn, where l/j>+l/p' = l with 2=:p[2(^+Jo)/(^ + io+4)]
and thus 1 < p = 1 + 4/(w + /o) < 2, p;/p = l/(p - 1) = (n + ί>)/4, - np/p' =
— 4w/(n + />), and 4 — wp/p' = Apl(n + />).

Now if dimension n = 1,2, or 3, then n + p — 4 in Condition II and
(6) yields for u e &

(ess sup I u(x) \) < ( ^
V / \2

using also (4) with convergence almost (μn) everywhere for a subsequence
from L2(Rn) norm convergence.

Now if dimension n > 4, then in (6) define r = 2(w + ρ)l(n + p + 4) =
2\p, and hence l < r < 2 from 1 < p = 1 + 4l(n+ρ)<2. Now l/r+l/r ' = l
has
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r, = 1 = 1 = 2(n + p)

λ
+

n + p
Hence the Young-Hausdorff-Titchmarsh theorem ([4], Theorem 74), p. 96),
generalizing with negligible changes in proof from Rx to Rn, using sub-
sequences convergent almost everywhere to show that the known exis-
tent L2(Rn) and Lr,(Rn) norm limits in (4) must agree, yields in (6) for
u e & if n > 4

( 8 )

Thus we see if dimension n = 1, 2, or 3 that (7) with Condition II,
+ jθ = 4, yields for i6 e &

9 ) || F ^ ||2 < (^-J(cn,p)
aMp[ft>4-» || Γw |Γ + α>-» || w ||2 + A 2 1 | w ||2

over all ω > 0. Thus, since V | a \2 + | b |2 < | a | + | b |, (5) follows with
a arbitrarily small as desired for Lemma T. 2, since 4 — n > 1 here.

If dimension % > 4, then we use (8), Condition II, and over the
x\ <b portion of the integral a Schwarz-Holder estimate with 2r — r' —

2(n + p)l(n — 4 + p) > 2 from 1 < r < 2, 1/r + 1/r' = 1, and thus

= — (^ + ^) .
_ /

V i + ^

Hence, if w > 4, for u e &

(10) || F^H2 < (Mp)4/<n+p

X [ω4p/(«+P) || Γ % ||2 + ω-4,/(,+ P) || ^ | |2 ] + A2 II ̂  II2

for all ω > 0. Thus again (5) follows in this case n > 4 with α arbit-
rarily small, since ωipl(n+p) -* 0 as ω —• 0+. Thus the proof of Lemma T. 2
is complete.

Returning to the proof of our Theorem T. 1, from the remarks pre-
ceding Lemma T. 2 we see this lemma permits H to be defined on £#
dense, and H^H from T^T. Also T is self-ad joint with domain ^ .
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For by definition S*TS is a purely multiplicative operator, [S*TSύ](y)
— V ?u{y), with the natural domain of all ϋ e L2(Rn) such that
I y Γ u(u) *s *n L2(Rn). It is well known and easy to see that this makes
S*TS self-ad joint, and hence so is T since S is unitary.

Next (Tu, u) = \ \y\2 \u{y) \2dμn{y) > 0 for || u || > 0 shows that the

spectrum of T is confined to [0, + oo]. Hence (T + λ2/)"1 is for real
λ>0 a bounded Hermitian operator on L2(Rn) with range &, (T+λ 2 i)ϋ^ =
L2(Rn) following from the spectral theorem for self-adjoint T. Thus
(much as in Kato [2], Lemma 5)), from (5), we have for all u e L2(Rn)

( 1 1 ) \ \ V ( T + X ' l y h L \ \ < a \ \ T ( T + X 2 i ) - % \ \ + β \ \ ( T + \ 2 I ) - ι u II

since || T(T + λ2!)-11| < 1 and \\(T + λ2/)"11| < 1/λ2 are clear from the
spectral representation of T. Thus choosing a < 1/2 in (5), and then

λ sufficiently positive so that -^- < — , we see from (11) that the oper-

ator V defined on £gr by [Vu\(x) = V(x)u(x) satisfies

(12) || V(T + λ2/)"11| < (a + -£) < 1 .

Hence / + V(T + λ2/)"1 is a bounded linear operator on L2(Rn) with range
L2(Rn), since

[/ + v(T + λ2/)-1]-1 = J + Σ (- i
p = l

also exists bounded. Thus, for λ large so (12) holds,

(13) H + XU = T + λ2l + V = [I + V(T + λ2/)"1](Γ + λ2l)

takes ^ onto L2(Rn), since T + λ2/ has already been seen to do so. Since
T = T* has been shown and since V is obviously symmetric, it follows
that H = T + V and H + λ2/ are symmetric, H + λ2/ c (H.+ λ2/)*. But
(if + λ 2 / ) ^ = L2(K) in (13) thus makes i ί+λ 2 / - (iί+λ2/)* - iϊ*+λ 27,
if = if*, and hence i ί is self-adjoint (see [3], p. 35).

In order to complete the proof of Theorem T. 1, it remains only to
show that the self-adjoint extension H of Hλ is the unique self-adjoint
extension. Since here Hx c iff * e H = if* c if * is well-known [3],
and likewise jfff* cz Jϊ c ff* for any other self-ad joint extension J&,
since H = jff** will make if? = (JET*)** = {H^Y = H* = H = Hf'\ and
since Hf* = ifx the closure of Hly it suffices for this uniqueness to show
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In order to do so, we first (Lemma 1), Kato [2]) notice that orthogo-
nality of nonzero uQ e L2(Rn) to (/ + T^u = (I + T)u for all u e &λ

would require ύ0 to be orthogonal to all (1 + | y \2)u(y) equivalently,
since S * ( ^ Ί ) C ^r1 and S(^r1) ^ 3fx makes S * ( ^ ) = ^ = S ( ^ Ί ) ,
this would require &0(ϊf)(l + 11/12) exp ( — (1/4) | #12), an element of L2(Rn),
to be orthogonal to all polynomials in y3 multiplied by exp ( — (1/4) | y |2).
But the density of ^ in L2(Rn) and a change of scale by the factor
l/ΊΓ shows this to be impossible. Hence (I + T)£gr1i& dense in L2(Rn).

Thus given % 6 £ r̂ and δ > 0 there exists ^ e S i such that

δ > || (I + T)u - (I + Γ

= [ J Λ ( l + I if I2)21 u(y) - Hυ) I2 <*/*»(*) J "

> (max II u — %! ||,

Thus by (5),

|| Hu - HlUl || - || H(u - Ul) \\ < \\ T(u - ux) \\ + \\ V(u - Ul) \\

< (1 + a) || T(u - ux) || + β || w - ux \\ < (1 + a + /8)δ .

Hence the graph of if is contained in the closure of the graph of H19

H c H19 and if is the unique self-adjoint extension of Hx as desired.

Thus Theorem T. 1 is completely proved.

3 Connection with other conditions. We will show in this section
that Condition I, which is always implied by (and for n > 4 coincides
with) Condition II, implies our earlier one (Condition III, see eq. 19)
for the construction of a self-adjoint extension as the inverse of a modi-
fied Green function integral operator. In fact, it is easy to verify for
V(x) — \x\'η that Condition I and Condition III are each equivalent to
0 < η < (min 2, n), so that in this sense they have the same strength.
We remark that Condition I is the natural one, used in a forthcoming
joint paper, for an asymptotic formula for the distribution of eigen-
values of the bottom part of the Schrodinger operator spectrum. Finally
we will show, as noted before T. 1, that

Condition II ==> Condition S =φ Condition III .

In order to give this connection with the modified Green function,

we need to introduce the fundamental singularity nKω(r) for - p2 + ω2l

with constant ω > 0. This may be defined (see [1], p. 555) uniquely by

the requirements that nKJr) be continuous over r > 0, that nKJ\ x\)e

Lx{Rn) over x, and that [ω2 + | y I2]"1 = I nKM{\ x \)eKx'^dμn(x) over y e

Rn. Such nKω(r) > 0 over r > 0 and ω > 0. We define
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- ^ ) for
4 /

2Kω(r) = M2[l +

and

xKJ(r) =

with Mw the least possible real constant having nKω(r) < nKω(r) over all
r > 0 and ω > 0, such positive finite Mw always existing. Finally define
for ω > 0,

(14) | F | ω - ess sup \ nKω{\ x-y\)\ V(y) \ dμn(y) .

THEOREM T. 3. Let V satisfy Condition I. Then \V\ω < + co for
all ω > 0

(15) lim \Vl = 0 .

Moreover for all ω > 0

(16) lim I 7 - V,|ω =

Fp(x) - F(x) i/ \V(x) \ < p, Vp(x) = p if V(x) > p, and Vp(x) =
-p if V(x) < - p.

The proof is rather elementary, using for n > 2 the Schwarz-Holder
inequality with r = (l/2)(n + p) > 1 and 1/r + 1/r' = 1, and hence

n- 2 + p

Thus Condition I yields in (14) for n > 2, the Schwarz-Holder inequality

being used on the \y\ < b portion, and also nKJ<t\ω) - ωn~2

nKλ(t) and

(n - 2)(n + ρ)/(n - 2 + p) - n = -2ρ\(n - 2 + p)< 0 ,

(17) |T | ω <

In (17) the second integral is obviously finite, and so is the first for
n = 2. For f i > 2 we see in the first integral that only the portion
0 < £ < l is in doubt, and here we have to consider the integrand factor
t raised to the exponent

- (n - 2 ) - » ± £ - + n - 1 = £̂ i > _ i .
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Thus the first integral in (17) is also finite for n > 2 as well as for n=2,

and (17) shows \V\ω < + oo for all ω > 0 and also that (15) follows for

n > 2.
Finally for (16), taking p > A so that V(x) - Vp(x) = 0 almost (μn)

everywhere over | x \ > b by Condition I, we see that in place of (17)
we have, with cn < + oo by the finiteness of the first integral in (17),
for n > 2

(18) \V- Vp I < cnω-2p^n+4\ I V(x) - Vp(x) |CWC»+P) dμn(x)Ύ* .
LJHι*ι<&} J

Since l i m ^ | V(x) - Vp(x) | = 0 f or all x e Rnj and since | V(x) - Vp(x) \ <
I V(x)\, we see Condition I and dominated convergence in (18) yields
(16) as desired for n < 2.

Finally consider n = 1,1Kω(r) = 1Kω(r) = (2ω)-1

e-
ωr. Notice that Con-

dition I with 1 + p > 2 clearly implies itself with p replaced by ρf = 1.
Thus in place of (17) and (18) we have for n — 1

(17)' \ΊΓ\ω < Mtfω)-1 + Aω~2 ,

(18)' W-Vp L < (2o))-1( I F(x) - Vp(x)\dμn(x) ,

which clearly yield (15) and (16) in the same way as above. Thus the
proof of Theorem T.3 is complete.

Now consider the following condition on V. As stated in Corollary
T.4 immediately thereafter, this condition is implied by Condition I, as
we see from (15) above.

CONDITION III. There exists some ω, 0 < ω < + ω, such that

(19) \V\ω<l.

COROLLARY T.4. / / Condition I is satisfied, then so is Condition III.
Condition III is our earier condition in [1] mentioned above. For our

modified Green function, consider the formulae

(20) Gω(x,y) = nKMx-y\) + ±(-iy\ f

f nKω(\ x-,2 \)V{lZ)nK^\ lZ - 2

V(pz)nKω(\ v z - y \)dμn{xz) '

(21) [Gωu](x) = ί GJix, y)u{y)dμn{y) .

By virtue of our earlier work ([1], p. 560, 5S7, Lemma 3.4, Theorem 3.5,
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Theorem 4.5), we have the following theorem, using \V\ω < |F | ω / from

nKω(r) < nKω\r) in (14) for ω > ω'.

THEOREM T.5. Let the conditions of Theorem T.3 hold and let ωlf

0 < ωλ < + oo, be chosen so that (19) holds. Then for ω > ωλ the right
side of (20) converges almost (μn x μn) everywhere as a definition of
Gω(x, y), Gω(x, y) — Gω(y, x) almost (μn x μn) everywhere, in (21) the
right side exists finite almost (μn) everywhere and is in L2(Rn) for
ue L2(Rn), and the operator Gω on L2(Rn) so defined is bounded Hermitian
II Gω II < ω~2(l — I VΊu)-1. Moreover the operator H2 defined by

(22) H2 = Gzι - of I

exists as a self-adjoint operator in L2(Rn) independent of ω > ωx.
Now under Condition I here, which is less than Condition II if

n < 3, the linear manifold ^— {u e L2(Rn) \Vu e L2(Rn)} need no longer
contain ^ , and hence Hλ may not exist as an operator in L2(Rn).
Thus define ^ = ^ " Π &19 and as in (2)

(23) [H, u](x) - - V2u(x) + V(x)u(x)

for u e <2[ thus Hλ satisfies (H^, w) = (u, Hxw) for u, w e ^ . Note

S{ — ^ί and Hx — Hλ if n > 4, Condition I and II coinciding. Hence,

after proving the following theorem, H2 — H follows for n > 4.

THEOREM T.6. Let V satisfy Condition I. Then the self-adjoint

operator H2 defined by (22), known existent by Corollary T.4 and

Theorem T.5, is an extension of Hu H1 <Ξ H2

We note here that ^ need not be dense in L2(Rn) if n < 3 , although

Hx will not be a very respectable operator from the Hubert space view-

point if ^ is not dense, in particular not being symmetric. This

theorem is the same as our earlier one ([1]), Theorem 5.3, p. 572) except

for change in the initial domain from S^ = ^/^Π ^ there to ^ = ^ f ΐ Ί ^

here. Merely sketching the proof, we first see

(24) (u, φ) = \ [Gωu\(x){(ω> + V(x)Mx) - Vφ(x)}dμn(x)

follows for φ e ^ and u e Lλ(Rn) Π L2(Rn), the proof being unchanged
from the earlier one ([1], Theorem 5.1, p. 568) for φ having continuous
second partials and vanishing outside a bounded set. Taking φ e J ^ =
<Λ" Π Si in (24) and using the facts that Gω is bounded Hermitian and
that Lλ(Rn) Π L2(Rn) is dense in L2{Rn), we obtain from (23)

(25) Gω(ωU + Hx)φ = φ
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for φ € £%. Thus ^ e (range of Gω) = (domain of G"1), and ω2l + Hx c
G;1, i^ c G;1 - ω2/ - fl, as desired, proving T.6.

THEOREM T.7. Let V satisfy Condition I and define hx =
lim^ooίess inf ,* ,^ . F ( x ) . TTkβw £ / m limit exists satisfying — A <hλ< A
and the spectrum Σ of the self-adjoint operator H2 defined by (22),
known existent by Corollary T.4 and Theorem T.5, has ( — cχ>,fc1)Πlτ

to consist of pure point spectra with (— coyh)ΓϊΣ finite and having a
finite dimensional eigenspace for all h<hλ. If also ho = [ess inf V(x)]>

xeRn

— oo, then ( — oofh0)Γ\Σ is empty.
Since (19) and (16) follow from Condition I for large ω by Theorem

T.3, this theorem follows from our earlier one ([1], Theorem 6.4, p. 579).
Finally we finish this section by proving in the following Theorems

T.8 and T.9 the implications asserted before, namely II =φ S =Φ> III. Since
Condition S, as noted before Theorem T.I, implies the conclusion of that
theorem, from II=^S we have an alternate proof of Theorem T.I. For
knowledge of this work of Stummel [5] we are indebted to the referee.
Although Theorems T.8 and T.9 seem of sufficient interest to record,
their proofs are simple exercises in the use of the Schwarz-Holder
inequality.

We start by stating Stummel's Condition S.

CONDITION S.

(26) {sup ( I V(y)\2 \x~y \-ydμn{y)\< + ~

for some real y satisfying y > n — 4 and y > 0.

THEOREM T.8. // V satisfies Condition II, then it also satisfies
Condition S.

THEOREM T.9. If V satisfies Condition S, then equation (15) and
hence Condition III are satisfied by V.

To prove T.8 first, Condition II clearly yields (26) with 7 = 0, which
thus takes care of the trivial case 1 < n < 4.

Now consider dimension n > 4. Then for the p > 0 in (1) of the
given Condition II, we may choose real y to satisfy

(27) n - d—-—) >y>n 4
\n+ p )

and must then verify (26). Take p = (l/4)(w + p) > 1 and then \\p +
\jpf — i9 for which
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n[(n + p) - 4 ] > (n + ρ)y , n + p>4 + (n ^
n

- JLVn + p) > 4 , p = (l/4)(rc + /o) > ( l - ̂ -V,

1 1 = 1<1-X,
p' p n

and hence yp' < n. Thus for (26) we have the Schwarz-Holder estimate

(28) ( \V(y)\*\x-y\-ydμn(y)

U Πi/pΓ fi ηi/p'

{iflljc-irl^i} J L Jo J

with 2̂ 9 = (l/2)(w + jθ), 7P' < w, and σw as in (6). Thus the second factor
on the right of (28) is a finite constant, Condition II assures that the
first factor is bounded over JC e Rny and (27) and (28) yield (26) for
Condition S. This completes the proof of T.8.

Now for Theorem T.9 it suffices to prove that Condition S implies
limω_+ o o |F|ω = 0, since equation (15) yields the conclusion of Corollary
T.4 as noted there. Considering first the general case n > 4, and taking
β = n-2-yl2<n-2-(n- 4)(l/2) - n/2 so that 2β < n from γ >
n — 4 > 0, the Schwarz inequality yields

(29) j W(y)\. e"1""' 2dμπ(y)
\ X — y \n~ιX —

ΰ
-jl/2 Γ f l "Ίl/2

I V(y)\> \x~y \-ydμn(y) σn\ e^^'^dr .
{y\\χ-y\<i} J L Jo J

On the right here the second factor is < [ω'(n-2β^σnΓ(n - 2β)f'2 -> 0 as
ω -^ + oo since n — 2/5 > 0 the first factor is independent of ω and
bounded over x e Rn according to Condition S. Hence we see that the
left side of (29) converges to zero uniformly over x e Rn as ω —* + oo
for n > 4.

In order to estimate \V\ω, we must also consider the left side of
(29) with the range of integration replaced by its complement in Rn.
For this we define

B(j) ={xeRn\\xt- 2ji{n)-^ | < {n)'1^ for 1 < i < n], j = (jlf j 2 , •, jn)
for integer j t , and also r(j) = mfxeB(J) \x\. Noting that B(0) c
{x || x I < 1} makes {x || x | > 1} c: \Jj¥:QB(j)y we see with n > 4
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(30) ( \V(y)\
J { \ \ \ > ι }

\(y)\ ltμM
{y\\χ-y\>ι} I x — y | n " 2

< f β-'" I V(x - z) I dμn{z)
J[z\\z\>i}

< Σ e-ωrCi) ( \V{x-z)\ dμn(z)

lJ/2 , _ _
-ωr(j)< (-*=) sup I V(y) \* dμn{y)

Since | x — # |~γ > 1 in (26), we see that Condition S assures that the
first factor on the far right side of (30) is a finite constant. Moreover,
we see that the second factor

] e-»r(j) U o as ω -> + oo ,

using

r( j) > ( sup I x M — 2

to estimate the portion of this sum where

r ( j ) > 3 by

which —> 0 by dominated convergence, and using r(j) > ijVn > 0 for
j φ 0 to estimate the remaining finite sum portion. Thus the left side
of (30) converges to zero uniformly over x e Rn as ω —> + oo, which
when combined with the same conclusion about (29) proved above yields
\~V\ω —> 0 and completes the proof of T.9 for dimension n > 4.

For dimension n < 4, we see Condition S becomes just (26) with

γ = 0. Hence I [nKω(\ x \)fdμn(x) = cwαr(4-w), easily seen with cn< + oo

for n < 4 from the definition preceding (14), gives in place of (29)

(31) Γsup f I V(y) I nKa{\ x~
L € J { | | }

as o> —> + oo. Also (30) still shows the integral over the complimentary
region to converge to zero uniformly over x e i ϋ w a s ω - ^ + oo iί n = 3,
and a very similar computation gives the same result if n = 1 or 2.
Hence limω_>+ββίVΊω = 0 follows from Condition S when dimension n < 4
as well as when n > 4, and the proof of T.9 is complete.

4. Variational characterization, of the spectrum* In this section
we will show (see T.13 following) that a variational characterization of
the spectrum, well-known at least for continuous V and bounded domains,
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also holds for H2 with V subject only to Condition I. This is rather
easy to obtain ([2], p. 209, eq. (23)) under Condition II, and the major
effort in our argument amounts to showing that Condition I, which is
weaker for 1 < n < 3, actually suffices.

We start with the following theorem, where by the Lλ sense of the

Fourier transform u for u e Lx{Rn) we mean (3) with no limit and

\ replaced by the oridinary Lebesque integral \ . Notice that
J{Λ:| |Λ:|<ΛΓ} J ^

if u e Lλ(Rn) Π L2(Rn), then by taking subsequences we may be sure that
the two definitions of u(y) are equal almost (μn) every were. Hereafter
\\u\\r denotes the Lr(Rn) norm of u, and \\u\\ or \\u\\2 the L2(Rn) norm.

THEOREM T.IO. Let V satisfy Condition I and let λ0 be in the point
spectrum of H2J defined by (22), with eigenvector w o e ^ = Gω(L2(Rn)),
H2u0 — XQuQ and || u0 || = 1. Then Vu0 e L±({x \\ x | < &}) and over yeRn

(32) I y \2u0(y) + ψo(y) = \ύo(y)

where ψo=fQ + g0, fQ is the Lλ sense transform of fo(x) = V(x)uo(x)χb(x)
with χb(x) the characteristic function of {x e Rn \\ x \ < 6}, and gQ is
the usual L2 transform of g0 — Vu0 — /0.

If (n + p) > 4, then Condition II follows from Condition I, H2 — H
and u0 6 ^ 2 = £ϊ by Theorems T.I and T.6, Vu0 e L2(Rn) by Lemma T.2

and hence εL^ {JC 11 JC | < 6}), ψ0 exists as defined and = Vu0 defined in
the usual L2 sense, and (32) follows from Hu0 = Xouo and the definition
of H.

The proof of T. 10 thus being complete for (n + p) > 4 and hence
for n > 4, we now consider the remaining case 2 < n + p < 4, for which

1 < n < 3. Since Gωu0 — (λ0 + α)2)"X with λ0 + ω2 > 0 for ω > ωx fol-
lows from (22) and H2uQ = λo^o, we see ([1], (3.5), (3.6), and (3.21), p.
558 and 562) by using the Schwarz inequality that uQ is essentially
bounded, u0 e L^RJ and ||w0||oo = ess sup \uo(x)\ < + oo. Thus by Con-

xeRn

dition I, Vu0 e Lr({x\ \x\ < b}) c Lx({x| | x | < b}) with r = \(n + p)
satisfying 1 < r < 2, and ψQ exists as defined.

Now, Lx n L2 being dense in L2, there exists a sequence u'k e Lx(iίn) n
L2(Rn) such that the L2 norm \\u0 — uf

k\\2->0. Hence as above, uk =
(λ0 + Gf)Gωu'k has uk e L^ Π L2 and both \\u0 — uk\\2 -• 0 and also
ll̂ o ~ f̂clloo—• 0. Actually ([1], Lemma 4.1, p. 565), uk and Vuk e
also, and

(33) ( |#| 2 - X0)ύk(y) + ψk(y) = (λ0 + ω*){u'k{y) - ύk(y)}

with ψk = Fufc in the Lx sense. Defining fk and srfc from ufc analogously

to /o and βτ0 from u0, ψk — fk + άk defined in the Lλ sense. Moreover,

ll/o - Λ l U < (2^)-w/2||/o - Λ H i < (2τr)-^|| F l U l ^ o - ^11- — 0
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with

llVlll'b = \{x^<JV{X)ldμn{X)'
and 11 gQ — g% | |2 < A \ \ u0 — uk \ |2 -^ 0 by using Condition I. Thus, after
taking subsequences, we may assume almost (μn) everywhere that

ψic(y) = My) + 9k(y) -*h(y) + ύo(y) = ψo(y) > My) -

and uf

}c(y)-^ύ0(y)f since | | ά & - ώ o | | 2 = \\uk - w o | | 2 -* 0 and ||&ί — &0||a =
I K — ^olla—* 0. Thus (33) yields (32), and the proof of theorem T. 10
is complete.

We next give some approximation lemmas.

LEMMA T. 11. Let V satisfy Condition I with n + p > 4, and
hence Condition II also; let u0 e 2$. Then there exists a sequence of
uk e «@r, satisfying simultaneously \\uQ — uk\\ —> 0, || T(u0 — uk)\\ —+ 0,
|| F ( ^ o — uk)\\ —> 0 /or these L2(Rn) norms.

This was proved in the last two paragraphs of § 2. In the following
we denote (z ξ) — Σ?- i^> 1*1 = τ/(^ z) for ^ and ξ e Cn, unitary
Wr space. ^ = Gω(L2(Rn)) for ω > ^ is the domain of H2 as usual.

LEMMA T. 12. Let V satisfy Condition I with 2 < n + p < 4 αwd
ίeί ^o 6 ^ satisfy H2u0 = λo^o α^d | |^ 0 | | = 1. T&ew ||f|'&0(lf) 6 -̂ a(-B»)
and u0 e Loo(i2w) and ^0 e L^JB^), and ίfeerβ exists a sequence of uk e 3ίλ

such that simultaneously \\u0 — uk\\2 —> 0, ||w0 — ^ 1 ^ —> 0,

( I F(x) I \uo(x) - u^x) fdμn{x) - 0 ,

and

ί I r^uJίx) - Γ^fc(x) \2dμn(x) - 0 ,

where V denotes the ordinary gradient differential operator and Γgβnu
the Cn vector valued function whose components are in L2(Rn) and have
the components of iyu{y) as their L2 sense Fourier transforms.

To prove T. 12, first notice 2 < n + p < 4 makes 1 < n < 3, and
hence, as shown in proving T. 10, u0 e LJfiώ and f0 e Lr{Rn) with
r = \{n + p), 1 < r < 2. Thus, using the Young-Hausdorff-Titchmarsh
theorem as in (8), the Lx sense f0 e Lr,(Rn) with

r' = 1 = ^ + ^ > 2 , and r' =
1 - 1/r n + p - 2

if w + p = 2.
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Next notice that for 0 < v < 2 we have from (32)

(34) ( τ τ k i )2~V| y ΫK{y) = (1 + ' y l)~2+v[xMy)

Thus we may conclude \y\vu0(y) e L2(Rn), as desired, whenever this
holds for both terms on the right of (34). The first term is obviously
in L2(Rn). For the second term we use fQ e Lr,(Rn) and the Schwarz-
Holder inequality with

2a = r ' = n + p > 2 , α' = 1 n + P
+ p 2

> 2 , α
n + p - 2 1 - 1/α 4 - (w + p)

holding even for n + p — 2y for which α = oo and af — 1. Thus, with
σw as in (6),

<35) ί ί H Λ μ M £ " M ^
provided that

n < (2 -
4 - (n + p)

This last inequality is equivalent to

2 - v > ί4 ~ (^ + l ° »
2(w + iθ)

and this to

v < 4p + n(n + p) _ n + 2p
2(n + p) 2 n + p '

We see for our n = 1, 2, or 3, /> > 0, 2 < w + p < 4, that this last in-
equality is always satisfied for v — 1 and for v — vx = π/2 + p/(n + />).
Note w/2 < Vj < 2. Thus we have shown \y\uo(y) and |^|vi^(i/) to be
e La(Λn).

Next for any finite set of vv > 0, define

As in the last two paragraphs of § 2, LS)Ύ is dense in L2(Rn), since any
u e L2(Rn) has

) e L2(Rn)
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and therefore is not orthogonal to all Q(y) exp( — i\y\2) with polynomial
Q, and thus ύ cannot be orthogonal to L ^ . Hence, for any u e L2(Rn)
such that Lu e L2(Rn) there exists (since £% transforms onto ^ ) a
sequence uk e ^ such that \\L(u — uk)\\2 —> 0, and thus simultaneously

t
for the finite set of up as well as \\u — uk\\2 = \\u — uk\\2 —> 0. Applying
this result to u0 e L2(Rn) with the finite set {1, i J of i/s, since |^|ίto(^)
and |^|Vl^0(ί/) were shown to be in L2(Rn), there thus exists a sequence
of uk e i ^ such that simultaneously

— Uh\U = \\U —

and

with

From the second limit statement just proved, and from \y\ύo(y) e
L2(Rn), we see that PgenuQ exists as defined and that, since iyuk(y)
clearly has its components the L2 transforms of the Cn vector valued
function Vuk(x),

\ I r,enu0(x) - Fuk(x)\*dμn(x) = ( I y |2| ύo(y) - ύk(y)\2dμn(y) -> 0 .

Next for u e L2(Rn) having \y\Vιu{y) e L2(Rn),

(36) H&ll, < Λf[jΛ (1 + | ^ | 2 V l ) l ^ ) | 2 ^ ( ^ ) ] 1 / 2

M\\ύ\\2 + Λf [ J Λ I i r r
1/2

using the Schwarz inequality and 2vλ > n. Thus from \y\Vluo(y)e L2(Rn)
we conclude ||&0||i < +°° and &0 e Lx{R^t and likewise | |u 0 — uk\\λ —* 0
follows from

( 11/ l2Vl I fco(if) - ύk(y)\2dμn(y) -> 0

shown above. Thus we have
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l | tto-tttll-<(2π)-»"| |M o-ώ i | | I —0

from the Lt sense of (4) agreeing here with the L2 sense as usual.
Hence finally

(37) j Λ I V(x)\ I uo(x) - uk(x) \>dμn(x)

< |K - uk\\l\ \V(x)\dμn(x) + A | K - uk\\l
J {Jc| \x\<b]

by Condition I with the right side —> 0 as k —> + oo. Thus the proof of
Lemma T. 12 is complete.

We now are ready to give our variational characterization of the
spectrum Σ of H2, assuming only Condition I. Define

hL = lim (ess inf V(x)) ,

and by Theorem T. 7 we know that Σ Π (— oo, h) for h < hλ consists of
a finite set of λ which are each in the point spectrum of H2 with finite
multiplicity. Thus there is uniquely defined a finite or countable set
{Xp} = Σ Π (— oo, fej), λp < Xp+1, and the Xp — X repeat according to the
multiplicity of each λ in the point spectrum of H2. In the statement
following, u ± S means (u, w) — 0 for all w e S.

THEOREM T. 13. Let V satisfy Condition I and let {Xp}, possibly
empty, be defined as above. Then each such Xp satisfies

(38) λ p = s u p ] inf ( (\ru(x)\>+ V{x)\u{x)\>)dμn{x)\ ,
SQL2(Rn), I w e ^ 1 jRn )

\\U\\=1,U±S

and such Xp exists for any integer p > 1 for which the right side of
(38) is <hλ. Moreover, in this statement ^ may be replaced by £&%,
the set of all u e L2(Rn) which possess continuous second partials
everywhere and such that u(x) together with all its partial derivatives
of order < 2 is O([l + | x |m] exp ( — | | x |2)) over x e Rn for some integer
m > 0 depending on u.

For integer p > 1 define τp(^{) as the right side of (38), and
similarly τp(^0) with S\ replaced by i^0. ^ 0 3 3>λ clearly makes
Tp(^o) < ?A&d' Thus to prove theorem T. 13 we need only show first
that any existing Xp has Xp > τ p (£^), and secondly that τp(^0) < hλ has
Xp existing with τp(&0) > Xp.

Now for each λ^ we may choose φp e &>2, the domain of H2, such,
that H2φp = \pψp and (φp, ψp.) = 8P,P., since H2 is self-adjoint. Thus
using T. 10 and multiplying (32) by φp{y) and integrating over Rn we
have, since (φ o , φv,) = (φP9 ψp,) = δPtP,,
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(39) λA,*' = ( {I if \2ΦP(y)ψAϋ) + ψMΦAυ)}dμn(y)

the integral of each term in (39) existing finite in the Lebesque sense.
This finiteness is clear if n + p > 4, since then Condition II holds and
cPp e &2= &, \y\ψP(y) e L2(Rn) and ψp e L2(Rn) by T. 2. Otherwise
2 < n + p < 4, and T. 12 yields | y \ φp(y) e L2(Rn) and φp e Lx(Rn) n
L2{Rn) hence ψp = fP + gp with gp e L2(Rn) and fp e L^Rn) from
/p 6 Lx(Rn) also makes the second term integral be finite as well as the
first. Also ParsevaPs equality applied to the terms on the right side
of (39) yields

(40) λΛ, p , = ( ί(r*n<Pp{x) V*n<PA*)) + V{x)φP{x)φAx)}dμn{x) ,
*Rn

provided that in addition we show

in the case 2 < n + p < 4, where as usual fp(x) = V(x)φp(x)χb(x) as in
T. 10. Replacing V by the truncate Vq defined for (16) and defining
JP = Vqφpχb, then Jp e L2(i2n) and (β/p, φp) = (β/p, 9V) follows by
ParsevaPs equality. Clearly Condition I, <pp e LJJR^ by T. 12, and
dominated convergence over {x \ \ x \ < b} yields || fp ~ qfp \\x —• 0 as
g - ^ + c » , and hence also \\fp — qfp 1U -^ 0. Thus φp, e L^Rn) and
^V e ^i(-β») by T. 12 in our case 2 < w + ô < 4 gives the desired result

(41) ( h{y)ψAϋ)dμn{y) = lim (β/p, φp,) - lim (qfp, φp.)

and (40) is completely proved.

Now from (40), for u = Σ ? - I C ^ J
 w e have

(42)

Next by T. 11 and T. 12, since ^ 2 = & if w + p > 4, for each φ3 e
1 < j < P, we can choose a sequence ^ 6 ^ having | | ^ ; — fc^j||2

[ I V(x) I I cPj{x) ~ kΨj(x) I2 d/i»(x) - 0 ,

and
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( I P^ψjix) - Γkφj(x) \2dμn(x) -> 0

as k —» CXD, and also satisfying \\φ3 — kφ3\\2 < l/(3p) for all k. This last
requirement assures that \(kφjy kφr) — δ J i < Γ | < θjp for some fixed θ < 1
(actually θ = f here), and hence the set {kφό} over 1 < j < p is linearly
independent and thus spans a j> dimensional manifold ^/ί k of £^ . Thus
given S cz L2(Rn) with card S < p, the orthogonal projection of S into
the subspace ^ % spans at most a p — 1 dimensional manifold, and
hence there exists uk e ^y£'h, \\nk\\ — 1, uk _L S. Also

= Σ
has

by the Schwarz inequality,
V

and hence by taking subsequences we can assume kCj —> 0Cj for some
complex Qc3 as fe->+oo for each j , 1 < j < p. Thus u0 — Σ?=io<?j^j
has uk —> u0 in each of the three quadratic form norms for which kφ3 —> φ3

above, using the Minkowski inequality. Hence (42) for uQ has the left
side to be equal the limit as k —> + oo of the same expression with uk

replacing u0. Since uk e ^//k c ^ , | | u j | = 1, and uk ± S, we thus
see that TP(^Q < Xp holds for existing Xp < hlf which completes the
first part of our proof.

In order to complete the proof Theorem T. 13, we must show
rp(iFo) < hx has rp(£^0) > Xp with Xp existing. Consider fixed u0 e £^0.
The truncate Vq, defined as for (16), with q > A satisfies Condition II
clearly, and thus defines the self-adjoint qH with domain £%r 3 ^ as
in T. 1, and qH 3 qH0 defined on £F0 by (2) with Vq. Hence by inte-
grating by parts, and using the exponential bounds in the definition of
&Q, qE being the spectral measure for qH,

(43) f {| Γuo(x) |2 + Vq{x) I uo(x) |2}dμn(x) = (qHuOf u0)

Xd(qE(X)uQ, u0)

— oo

= 1 Σ M<,E({QXj})u u)\ + \ xd(β(\)uu)
( λ <h ) Jλ^/i

Σ
λ

+ /tillM.II2 - Σ (qE({MKu0)
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for any h < hlf the sum Σ~λ.<Λ being finite then by T. 7 and here being
defined to give one term for each distinct X e Σq.

Now taking q—> +co in (43), by Condition I and dominated conver-
gence the limit of the left side is obtained by replacing Vq by V. On
the right side | V — Vq |ω —* 0 by (16) under Condition I, and hence
II Gω - qGω || -> 0 ([1], 3.20, p. 561). Defining Fω as the spectral measure
of Gω and /ω(λ) = l/(λ + ω2), we have ([1], Theorem 4.5, p. 567) E(B) =
Fω(fω(B)) for Borel subsets B of the spectrum Σ of H2; also the usual
loop integral formula

1 Γ ^
FΛβ, <?]) = — : l (zl — G^dz

2τπJ

holds in the weak sense, where C is a rectangular curve in the complex
plane with sides parallel to the axes whose interior region intersects
the real axis in (α, c), provided both " α " and " c " are at a positive
distance fτomfω(Σ). Thus || Gω - q G ω | | -* 0 implies \\E(B) - q£;(5)||->0
for any closed interval S c ( - w , y whose endpoints are not in {Xp}.
Hence qXj —* X3 for X3 existing, and (43) becomes

(44) \ {\ Vu{x) |2 + V(x) I u(x) |2} dμn(x)
n

= { Σ λ,|(u, Ψ))ή + h\\\u\\> - Σ |M, Wl

for u e &o and fe < h19 the sum Σλ <Λ meaning as usual one term for
each index j satisfying X3 < h.

Now assume τp{^) < hx for some integer p > 1, set hf = i [ ^ + r p ( ^ ) ] ,
and thus τ p ( ^ ) < Λ,' < ^ . Now consider the particular S — {ψj \ Xj < h'
exists and j < p} c L2(Rn), for which (card S) < p clearly. Thus (44)
with || % || = 1, (w, φj) = 0 for ^ 6 S, and λ = hf would give r ^ ^ i ) > hf

if either λ^ did not exist or else Xp>hr, yielding the contradiction
hf < τp(&0) < h'. Thus λp < h' < ^ must exist, and (44) with || u \\ — 1,
(u, φj) — 0 for j < p, and h ~ Xp gives r p ( ^ 0 ) > λp as desired. Thus
the proof of Theorem T. 13 is complete.
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